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ABSTRACT. This talk will be focused on the problem of: to what
extent can the fundamental groups of compact 3-manifolds be
distinguished by the finite quotients of their fundamental groups.
The talk will highlight examples (e.g. the figure eight knot comple-
ment) and introduce ideas and techniques used in attacking the
problem.

This talk features applications of the work of Agol and Wise to very
concrete problems about the finite quotients of 3-manifold groups.

All groups will be finitely generated (usually finitely presented) and
residually finite (RF).

Definition (RF). ∀ 1 6= g ∈ G, ∃ ϕ : G → A, |A| < ∞ such that
ϕ(g) 6= 1.

Example.

(1) f.g. subgroups of GLn(Z)

(2) π1(compact 3-manifold)

Definition. C(G) = {A : |A| < ∞, G � A} (“list of finite quo-
tients”)

Question. To what extent does C(G) determine G?

Question. If C(G) = C(H), what similarities and differences might
G and H have?

Interest in C(G):

• group theorist: proving / deciding group is non-trivial.

Date: 24 August 2016.
1



2 ALAN REID

• topologist: enumerating finite covers to check whether mani-
folds are non-homeomorphic.

Notation. Genus of Γ. G(Γ) = {H : C(H) = C(Γ)}

The use of ‘genus’ comes from integral quadratic forms: q1q2/Z – to
be in same genus the forms are equivalent “locally” for all p and over
R.

What might this mean here :-

Fix Γ = 〈S〉, H = 〈S′〉.

Local data = finite quotient Cayley graph

Question. How much of this local data picks out global struc-
ture of Γ?

Question.

For which Γ is G(Γ) = {Γ}?

For which Γ is |G(Γ)| > 1?

How big can |G(Γ)| be?

Example. G(Z) = {Z}.

Why? Let ∆ ∈ G(Z). Assume ∆ is non-abelian. Can find c = [a, b] 6=
1 ∈ ∆. ∆ is RF =⇒ ∃ ϕ : ∆ → A, |A| < ∞, with ϕ(1) 6= 1.
Contradiction – all finite quotients are cyclic.

Structure Theorem for f.g. abelian groups =⇒ ∆ ∼= Z.

Note.

(1) This argument also shows G(Γ) = {Γ} for Γ any f.g. abelian
group.

(2) You can see the rank of f.g. abelian group Γ in finite quotients.

(3) Γ, ∆ with C(Γ) = C(∆) then Γab ∼= ∆ab.

Constructions of Γ 6∼= ∆ with C(Γ) = C(∆).



RECOGNIZING 3-MANIFOLD GROUPS BY THEIR FINITE QUOTIENTS 3

Stability. (Baumslag, early 1970’s)

(Baumslag’s student Pickel completely understood the nilpotent case.)

Stability Lemma (Baumslag). Let G, H be f.g. groups. If G ×Z ∼=
H ×Z =⇒ C(G) = C(H).

Stability of Extensions. Let N be a f.g. group and Gϕ = N oϕ Z

where ϕ is a periodic outer automorphism of N of order n. Then if
(k, n) = 1 then Gϕ ×Z ∼= Gϕk ×Z.

Baumslag. Take m = 11, note Z/mZ has an automorphism of or-
der 6= 1, 2, 3, 4, 5, 6.

1 Z/mZ Γ1 Z 1

1 Z/mZ Γ2 Z 1

6 ∼=

Baumslag inputs such that Γ1 6∼= Γ2,

Hempel. F closed orientable surface, ϕ : F → F periodic automor-
phism of F. The mapping torus Mϕ with group Gϕ can be constructed
so that Gϕ 6∼= Gϕk . These are Seifert fiber spaces (SFS) with the same
finite quotients.

Remark.

(1) G. Wilkes (student of M. Lackenby). If M is a closed orientable
SFS and N is a compact 3-manifold with C(π1M) = C(π1N).
Then either

• N ∼= M, or

• N is an H2 ×R manifold and M and N are as above.

(2) Turaev, Kwasik–Rosicki

M, N are geometric 3-manifolds with M× S1 ∼= N × S1. Then
M ∼= N unless M, N as above.

(3) There are other closed 3-manifold that are not determined by
their finite quotients. This comes from Number Theory.

(Stebe, Funar) T2-bundles over S1 with infinite order mon-
odromy.
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SL2(Z) = MCG(T2)

∃ θ1, θ2 ∈ SL2(Z) hyperbolic with Mθ1 6∼= Mθ1 and C(π1Mθ1) =

C(π1Mθ2).

θ1 =

(
188 275
121 177

)
, θ2 =

(
188 11
3025 177

)
Number theory comes in to show that θ1 and θ2 are conjugate
in SL2(Z/mZ) ∀m but not in SL2(Z).

Number theory can be used to construct lattices in higher rank
semi-simple Lie groups with |G(Γ)| > 1.

Stability. G×Z ∼= H ×Z =⇒ C(G) = C(H).

This uses the Remak–Krull–Schmidt Theorem.

Notation. G a f.g. group. G(n) = ∩{N C G : [G : N] ≤ n}. To
prove C(G) = C(H), it suffices to show that

G/G(n) ∼= H/H(n) ∀ n

Check. (G×Z)(n) = G(n)×Z(n)

(G×Z)/G(n)×Z(n) G/G(n)×Z/Z(n)

(H ×Z)/H(n)×Z(n) H/H(n)×Z/Z(n)

=

∼=

=

Then Remak–Krull–Schmidt Theorem allows one to deduce G/G(n) ∼=
H/H(n).

Focus on low-dimensional examples.

• free groups

• surface groups

• π1(finite volume hyperbolic 3-manifolds)
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Open.

• G(Fn) = {Fn}, n ≥ 2? (Remeslennikov 1971)

• G(π1Σg) = {π1Σg}? g ≥ 2

• G(π1(M a finite volume hyperbolic 3-manifold)) = {π1M}?

Talk about progress on these questions. This uses Agol, Wise.

Example. Distinguish free group from a surface group. We need to
distinguish F2g from π1Σg (using the abelianization).

For F2g
ϕ→ Z/2Z, the kernel K is a free group of rank 4g− 1.

Now map K
ψ→ (Z/pZ)4g−1, p prime.

Let H = ker ψ, which is characteristic hence normal.

F2g/H = a finite group with (Z/pZ)4g−1 as index 2 subgroup.

But this cannot be surjected by π1Σg.

Distinguish F2 from finite volume hyperbolic 3-manifolds.

Example that’s tricky: link L in S3, S3 \ L = H3/Γ

This has all 2-generator finite groups as quotients.

Worked example.

The figure eight knot.
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FIGURE 1: Figure eight knot, source: Makotoy
https://commons.wikimedia.org/wiki/File:Fig8_knot_rp.png

Γ = π1(S3 \ K). S3 \ K = H3/Γ, Γ = 〈
(

1 1
0 1

)
,

(
1 0
ω 1

)
〉 (has

entries in Z[ω]) where ω2 + ω + 1 = 0.

Theorem (Bridson–R., Boileau–Friedl). Let N be a compact 3-manifold
with C(π1N) = C(Γ). Then N ∼= S3 \ K.

Write ∆ = π1N.

Preliminary Comments.

• Γab ∼= Z =⇒ ∆ab ∼= Z.

• Γ has lots of non-abelian finite quotients. For example, reduc-
tion module primes in Z[ω], surjects onto lots of SL2(Fp).

• S3 \ K has the structure of a once-punctured T2-bundle over
S1
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1→ 〈a, b〉 → Γ→ Z→ 1

θ =

(
2 1
1 1

)
• N is orientable.

• N can’t be a closed 3-manifold uses Agol, Wise.

• N can’t be a connect sum (irreducible) uses L2-methods.

• ∂N 6= ∅ =⇒ ∂N = T2 “half lives, half dies”, T2 incompress-
ible

Reduced N to compact orientable irreducible ∂N = T2 incompress-
ible.

Goal. Show that N is fibered → it has to be fibered with fiber a
once-punctured T2. Then easy to finish: only such examples with
H1 = Z are the figure eight and trefoil knot complements (and Giesek-
ing manifold, if we allow non-orientable). Example: Γ → D5 but
π1(trefoil) 6→ D5.

Organizing Finite Quotients – Profinite Completion

Write N = {finite subgroups of finite index}.

Γ̂ = lim←−
N∈N

Γ/N

= {(γN) ∈∏ Γ/N : ∀M, N where M ⊂ N, fMN(γM) = γN}

Theorem. Γ1, Γ2 f.g., then C(Γ1) = C(Γ2) ⇐⇒ Γ̂1
∼= Γ̂2. (This isomor-

phism is now just an abstract isomorphism, not a topological isomorphism,
by work of Nikolov–Segal.)

Original Questions. When does Γ̂1
∼= Γ̂2 =⇒ Γ1

∼= Γ2?

Remark. Grothendieck’s Problem (Bridson–Grunewald).

ι : P ↪→ Γ induces isomorphism P̂ ∼= Γ̂, but P 6∼= Γ.

Question. Does there exist Γ hyperbolic with ∆ hyperbolic and ∆ ∈
G(Γ)?
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Assume N not fibered. N = H3/∆ finite volume.

H ∼= π1Σg ⊂ ker = K ⊂ ∆ → Z with K corresponding to cover
Ñ → N.

There is π1-injective embedded closed surface in Ñ.

Freedmen (M. + B.)

(Wise): H and all its finite index subgroups are separable in ∆

1→ K → ∆̂→ Ẑ→ 1

and H ⊂ K, H = Ĥ (uses LERF).

〈a, b〉

1 F Γ Z 1

1 F̂ Γ̂ Ẑ 1

1 K ∆̂ Ẑ 1

Ĥ

=
= ∼=

⊂

Cohomological methods tell us that having such Ĥ is illegal.

Cohomological methods used to rule out closed with boundary hav-
ing same profinite completions, Agol + Wise (uses ‘good’ in the sense
of Serre).

Question. Prove that if Γ1, Γ2 are finite covolume Kleinian groups
with Γ̂1

∼= Γ̂2 =⇒ Γ1
∼= Γ2.

Question. Does there exist a residually finite word hyperbolic group
that is not good?
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Audience question: what is the definition of good?

Γ is good if ∀ q, ∀ finite module M,

Hq(Γ̂, M)
∼=→ Hq(Γ, M).


