AMENABILITY AND FIXED POINT PROPERTIES

CORNELIA DRUȚU

ABSTRACT. A fundamental dichotomy in the theory of infinite groups is the one between amenable groups and groups with Kazhdan's Property (T). In this talk I shall overview versions of these two opposite properties, connections to actions on non-positively curved spaces and on Banach spaces, to other geometric features of the groups, and to expander graphs. I shall also mention what is known in the setting of random groups and that of important classes of infinite groups (e.g. lattices, mapping class groups, Out (F_n) etc).

For this topic, we will restrict to finitely generated (f.g.) groups.

Definition (von Neumann)**.** A finitely generated group *G* is *amenable* if it admits a left-invariant probability measure.

⇐⇒ ∀ *e*, ∀ *F* ⊆ *G* finite, ∃ Ω finite such that

$$
\frac{|F\Omega \, \Delta \, \Omega|}{|\Omega|} \leq \epsilon
$$

Example.

- (1) *G* finite
- (2) *G* = \mathbb{Z}^n , Ω = $[-k, k]^n$, *k* large

(3) *G* has subexponential growth, $\Omega = B(e, n)$

Properties of amenability.

Date: 25 August 2016.

2 CORNELIA DRUȚU

- (1) Amenability is inherited by subgroups.
- (2) If $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ is a SES, then *G* is amenable ⇐⇒ *N*, *Q* amenable.
- (3) Stable by direct limits

Example.

- (4) *G* solvable
- (5) Juschenko–Monod: examples of f.g. simple amenable groups

Question. Can one construct f.p. simple amenable groups?

Theorem. *The following are equivalent:*

- *(a) G non-amenable*
- *(b)* $(expansion)$ \exists / \forall *word metric)* \exists *C* > 0, α > 1 *such that* \forall *F finite*, *neighborhood* $|\mathcal{N}_C(F)| > \alpha|F|$ *.*
- *(c)* (expansion) $\exists f : G \rightarrow G$, $d(f, id) < +\infty$ such that $|f^{-1}(g)| =$ 2, $\forall g \in G$. (The bound on $d(f, id)$ means that ∃C such that $\forall g \in G$ $G, d(f(g), g) \le C.$
- *(d)* $(Gromov) \exists f : G \rightarrow G$, $d(f, id) < +\infty$ such that $|f^{-1}(g)| \geq 2$, $\forall g \in G$ *G.*
- *(e) G* is paradoxical: $G = X_1 \sqcup \cdots \sqcup X_n \sqcup Y_1 \sqcup \cdots \sqcup Y_m$ such that

$$
G = g_1 X_1 \sqcup \cdots \sqcup g_n X_n = h_1 Y_1 \sqcup \cdots \sqcup h_m Y_m.
$$

Example.

(1) *F*₂ paradoxical. Let *F*₂ = $\langle a, b \rangle$.

Let *W^a* be the set of words beginning with *a*, and so on.

$$
F_2 = W_a \sqcup W_{a^{-1}} \sqcup (W_b \setminus \{b^n \mid n \ge 1\}) \sqcup (W_{b^{-1}} \sqcup \{b^n \mid n \ge 0\})
$$

(2) $F_2 \subseteq G \implies G$ paradoxical.

Conjecture (von Neumann–Day)**.** Is it true that every non-amenable *G* contains *F*₂?

Theorem (J. Tits, 1972)**.** *True if G linear, moreover with "amenable" replaced by virtually solvable.*

Example. The Tits alternative is true for

(1) subgroups of MCG(*S*) (Ivanov)

(2) subgroups of Out(*Fn*) (Bestvina–Feighn–Handel)

(3) $\pi_1(M \text{ compact}, K \leq 0)$ (Ballmann)

In general, the von Neumann–Day conjecture is false.

- Ol'shanskii's monsters (1980)
- Adyan: the free Burnside group

$$
B(m,n) = \langle x_1, \ldots, x_n \, | \, w^m = 1 \, \rangle
$$

which is infinite for $n \ge 2$, *m* odd, $m \ge 665$

- Ol'shanskii–Sapir: a f.p. example
- Monod (2013): an example of groups of homeomorphisms of **R***P* 1 , piecewise projective
- Lodha–Moore (2014): a f.p. subgroup of Monod's groups, which is 3-generator 9-relator and torsion-free

Quantitative non-amenability

For all *G* paradoxical, the Tarski number of *G* is defined

 $Tar(G) = min \{ n + m \mid \forall$ paradoxical decompositions $\}$.

Properties.

- (1) $Tar(G) > 4$
- (2) $H \leq G \implies \text{Tar}(G) \leq \text{Tar}(H)$
- (3) $F_2 \leq G \iff \text{Tar}(G) = 4$

$$
G=X_1\cup gX_2=Y_1\cup hY_2
$$

Conclusion. For $Tar(G) \geq 5$ \rightsquigarrow classify counterexamples to von Neumann–Day conjecture.

Known Facts (de la Harpe–Ceccherini-Silberstein–Grigorchuk)**.**

(1) *G* torsion \implies *Tar*(*G*) \geq 6

- (2) Adyan–Sirvanjan \implies *Tar*(*B*(*m*, *n*)) independent of *n* (they embed into each other)
- (3) $Tar(B(n, m)) < 14$

Amenability / non-amenability are quasi-isometry invariants (follows from equivalent condition of non-amenability *(b)* above).

Ershov: proved there exists *G* Golod–Shafarevich group such that $∀m, ∃H_m <_{f.i.} G$, $Tar(H) ≥ m$.

 \implies Tarski number is not a quasi-isometry invariant (not even finite index invariant).

Ershov–Golan–Sapir: $\forall n, \exists G$ with $Tar(G) \in [n, 2n]$. They also gave an example of *G* with $Tar(G) = 5$. Moreover, they computed $Tar(torsion)$ group of D. Osin) = 6 .

Question. Is $Tar(G) = 4$ a quasi-isometry invariant. That is, is the property of having a free subgroup a quasi-isometry invariant?

Is *Tar*(*G*) small a quasi-isometry invariant (the example of Ershov is for large Tarski number)?

What are the exact values of $Tar(B(n, m)) \in [6, 14]$?

Definition of property (T) and a-T-menability.

G locally compact, second countable. Two properties are defined using actions by isometries (just metric isometries, not necessarily linear!) on a Banach space.

Mazur–Ulam: Every isometry of *X* Banach is affine

$$
v \mapsto u \cdot v + b, \quad u \in U(X)
$$

All actions are continuous: $G \cap X$ by affine isometries, the orbit maps $G \to X : g \mapsto gv$ must be continuous for all *v*.

Definition. Property (T) \iff every actions on a Hilbert space has a global fixed point (which was originally called Property (FH)).

Definition. a-T-menability (a.k.a. Haagerup property) $\iff \exists$ an action on a Hilbert space which is proper in the sense that $g \to \infty \implies$ $\|gv\|$ → +∞ (for every basepoint, $\forall v$)

Examples of a-T-menable groups

- (1) amenable groups
- (2) random groups in the Gromov density model for density $d \, < \, \frac{1}{6}$

Importance (Higson–Kasparov)**.** If *G* is a-T-menable then the strongest version of the Baum–Connes conjecture is true (\implies Novikov conjecture).

(3) free groups are a-T-menable but not amenable

Examples of groups with (T).

- (1) (lattices in) semi-simple groups with all factors of rank ≥ 2
	- $SL(n, \mathbb{R})$, $n > 3$, $SL(n, \mathbb{Z})$
	- $SO(n, m), n, m \geq 2$, $SO_{\mathbb{Z}}(n, m)$

(2) For $d > \frac{1}{3}$, random groups have (T)

Relevance of (T).

- Baum-Connes (bad news)
- structural properties (f.g., finite abelianization, $G \neq A *_{C} B$, $A *_{C}$)
- smooth dynamics (Navas, Fisher–Margulis, local rigidity)
- construction of expanders

Connections with NPC spaces and actions on them.

Many NPC spaces have "Hilbert-like" metric: either the distance, or some power of the distance, is a Hilbert norm.

Definition (A conditionally negative definite (CND) kernel). ψ : *X* \times $X \to [0, +\infty)$, symmetric and $\forall n \in \mathbb{N}, \forall x_1, \ldots, x_n \in X, \forall \lambda_1, \ldots, \lambda_n$ with $\sum \lambda_i = 0$,

$$
\sum \lambda_i \lambda_j \psi(x_i, x_j) \leq 0.
$$

Example.

- (1) Hilbert space *H*, $\psi(x, y) = ||x y||^2$
- (2) L^p , $\psi(x, y) = ||x y||_p^p$ $_p^p$, $p \in [1,2]$
- (3) (Schoenberg) $\forall \psi \text{ CND}, \exists f : X \rightarrow H, \psi(x, y) = ||f(x) f(y)||_2^2$ 2

Theorem (Delorme–Guichardet, Akemann–Walter)**.**

- *(1) G has* $(T) \iff \forall \psi : G \times G \rightarrow [0, +\infty)$ *CND G-left-invariant is bounded*
- *(2) G is a-T-menable* $\iff \exists \psi : G \times G \rightarrow [0, +\infty)$ *CND G-leftinvariant proper*

Corollary.

- *(1) If* (X, d) *is such that* d^{α} *is CND, then every action of G on X has bounded orbits, if G has (T).*
- *(2)* $∃ G ∼ X$ *as above, properly discontinuous* \implies *G is a-T-menable.*

Example (of such (X, d)).

(1) $\mathbb{H}_{\mathbb{R}}^n$, $\mathbb{H}_{\mathbb{C}}^n$, $\mathbb{H}_{\mathbb{R}}^n \hookrightarrow l^1$ (measured walls)

Question: is there a geometric proof for $\mathbb{H}_{\mathbb{C}}^n$? Current proof due to Faraut and Harzallah.

(2) real trees (T, d_T)

 $(2) \implies F_2$ are a-T-menable (through action on Cayley graph). This reproves the following:

Theorem (Alperin, Watatani)**.** *Property (T)* =⇒ *Property (FR) (fixed points for real trees).*

Converse is false: Coxeter groups with m_{ij} < $+\infty$

Converse holds if we enlarge class:

Definition. (*X*, *d*) is median if \forall *x*, *y*, *z*, \exists a median point *m*:

$$
d(x, m) + d(m, y) = d(x, y)
$$

$$
d(x, m) + d(m, z) = d(x, z)
$$

$$
d(y, m) + d(m, z) = d(y, z)
$$

Example.

- (1) Trees
- (2) $(\mathbb{R}^n, \|\cdot\|_2)$
- (3) $L^1(X, \mu)$
- (4) *X* simplicial graph

(Vertices, d_X) is median $\iff X = 1$ -skeleton of a CAT(0)cube complex (Chepoi)

simplicial trees \rightarrow real trees

vertices CAT(0) cube complex \rightarrow non-discrete version of CCC

Theorem (Chatterji–D.–Haglund)**.**

(1) G has $(T) \iff$ *every action on a median space has bounded orbit*

8 CORNELIA DRUȚU

(2) G is a-T-menable ⇐⇒ *there exists a proper action on a median space*

∼ Audience question about actions on asymptotic cone with fixed point ∼

Action of *G* \curvearrowright *Cone*_ω(*H*) without fixed point: if $\exists \phi_n : G \rightarrow H$ pairwise non-conjugate. In particular, if $Out(G)$ is infinite, $G \cap$ *Cone* ω (*G*) without a fixed point.

$$
G \cap G, g \mapsto L_g, L_g(1)_{\infty} = 1_{\infty}
$$

Versions of Property (T) and a-T-menability

(1) Consider actions on Hilbert spaces, affine, uniformly bi-Lipschitz as follows: $∀ g ∈ G$

$$
v \mapsto \pi_g \cdot v + b_g
$$

π : *G* →Bounded(Hilbert).

 $\sup_{g \in G} ||\pi_g|| < +\infty$

Conjecture of Y. Shalom: every hyperbolic group has a proper action that is uniformly bi-Lipschitz.

Bader–Furman–Gelander–Monod: Higher rank lattices have fixed point properties.

(2) Replace Hilbert with L^p , which gives the properties FL^p and a-*FL^p* -menability.

For $p \in [1,2]$, $FL^p \iff (T)$ (for $p = 1$, result of Bader– Gelander–Monod), and a- FL^p -menability \iff a-T-menability.

For $p \gg 2$: FL^p is strictly stronger, a- FL^p -menability is strictly weaker.

(Bourdon–Pajot, G. Yu): every hyperbolic group is a-*FL^p* menable, $p >$ conformal-dim(∂G).

Higher rank lattices have FL^P , \forall $p \geq 1$ (BFGM)

 $FL^p \implies$ stronger rigidity results (A. Navas).

Define ∀ *G* with (T)

$$
\mathcal{N}(G) = \{ p \in [1, \infty) \mid G \text{ has } FL^{p} \}
$$

$$
p(G) = \sup \mathcal{N}(G).
$$

Known: $\mathcal{N}(G)$ is open in $[1, +\infty)$ (Fisher–Margulis), contains [1,2]. The general version can be found in the book of D.–Kapovich.

Open questions.

- (1) $\mathcal{N}(G)$ connected?
- (2) If $\mathcal{N}(G) \subsetneq [1, +\infty)$, is its complement (or its interior) the set of *p* for which we have a-*FL^p* -menability?
- (3) (CDH): If $\mathcal{N}(G)$ is bounded, is there a geometric significance of the supremum $p(G)$?

If *G* hyperbolic, is *p*(*G*) a function of conformal-dim(*∂G*)?

Theorem (D.–Mackay)**.** *In the triangular model for random groups, for density d* > ¹ 3 *asymptotically almost surely*

 $\text{conformal-dim}(\partial G)^{\frac{1}{2}-\epsilon} \leq p(\Gamma) \leq \text{conformal-dim}(\partial G)$

(the upper bound is by BPY).