
AMENABILITY AND FIXED POINT PROPERTIES

CORNELIA DRUŢU

ABSTRACT. A fundamental dichotomy in the theory of infinite
groups is the one between amenable groups and groups with Kazh-
dan’s Property (T). In this talk I shall overview versions of these
two opposite properties, connections to actions on non-positively
curved spaces and on Banach spaces, to other geometric features
of the groups, and to expander graphs. I shall also mention what is
known in the setting of random groups and that of important
classes of infinite groups (e.g. lattices, mapping class groups,
Out(Fn) etc).

For this topic, we will restrict to finitely generated (f.g.) groups.

Definition (von Neumann). A finitely generated group G is amenable
if it admits a left-invariant probability measure.

⇐⇒ ∀ ε, ∀ F ⊆ G finite, ∃Ω finite such that

|FΩ ∆ Ω|
|Ω| ≤ ε

Example.

(1) G finite

(2) G = Zn, Ω = [−k, k]n, k large

(3) G has subexponential growth, Ω = B(e, n)

Properties of amenability.
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(1) Amenability is inherited by subgroups.

(2) If 1 → N → G → Q → 1 is a SES, then G is amenable
⇐⇒ N, Q amenable.

(3) Stable by direct limits

Example.

(4) G solvable

(5) Juschenko–Monod: examples of f.g. simple amenable groups

Question. Can one construct f.p. simple amenable groups?

Theorem. The following are equivalent:

(a) G non-amenable

(b) (expansion) (∃ / ∀ word metric) ∃C > 0, α > 1 such that ∀ F finite,
neighborhood |NC(F)| > α|F|.

(c) (expansion) ∃ f : G → G, d( f , id) < +∞ such that | f−1(g)| =
2, ∀ g ∈ G. (The bound on d( f , id) means that ∃C such that ∀ g ∈
G, d( f (g), g) ≤ C.)

(d) (Gromov) ∃ f : G → G, d( f , id) < +∞ such that | f−1(g)| ≥ 2, ∀ g ∈
G.

(e) G is paradoxical: G = X1 t · · · t Xn tY1 t · · · tYm such that

G = g1X1 t · · · t gnXn = h1Y1 t · · · t hmYm.

Example.

(1) F2 paradoxical. Let F2 = 〈a, b〉.

Let Wa be the set of words beginning with a, and so on.

F2 = Wa tWa−1 t (Wb \ {bn | n ≥ 1}) t (Wb−1 t {bn | n ≥ 0})

(2) F2 ⊆ G =⇒ G paradoxical.

Conjecture (von Neumann–Day). Is it true that every non-amenable
G contains F2?

Theorem (J. Tits, 1972). True if G linear, moreover with “amenable” re-
placed by virtually solvable.
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Example. The Tits alternative is true for

(1) subgroups of MCG(S) (Ivanov)

(2) subgroups of Out(Fn) (Bestvina–Feighn–Handel)

(3) π1(M compact, K ≤ 0) (Ballmann)

In general, the von Neumann–Day conjecture is false.

• Ol’shanskii’s monsters (1980)

• Adyan: the free Burnside group

B(m, n) = 〈 x1, . . . , xn |wm = 1 〉

which is infinite for n ≥ 2, m odd, m ≥ 665

• Ol’shanskii–Sapir: a f.p. example

• Monod (2013): an example of groups of homeomorphisms of
RP1, piecewise projective

• Lodha–Moore (2014): a f.p. subgroup of Monod’s groups,
which is 3-generator 9-relator and torsion-free

Quantitative non-amenability

For all G paradoxical, the Tarski number of G is defined

Tar(G) = min {n + m | ∀ paradoxical decompositions} .

Properties.

(1) Tar(G) ≥ 4

(2) H ≤ G =⇒ Tar(G) ≤ Tar(H)

(3) F2 ≤ G ⇐⇒ Tar(G) = 4

G = X1 ∪ gX2 = Y1 ∪ hY2

Conclusion. For Tar(G) ≥ 5  classify counterexamples to von
Neumann–Day conjecture.

Known Facts (de la Harpe–Ceccherini-Silberstein–Grigorchuk).
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(1) G torsion =⇒ Tar(G) ≥ 6

(2) Adyan–Sirvanjan =⇒ Tar(B(m, n)) independent of n (they
embed into each other)

(3) Tar(B(n, m)) ≤ 14

Amenability / non-amenability are quasi-isometry invariants (follows
from equivalent condition of non-amenability (b) above).

Ershov: proved there exists G Golod–Shafarevich group such that
∀m, ∃Hm <f.i. G, Tar(H) ≥ m.

=⇒ Tarski number is not a quasi-isometry invariant (not even finite
index invariant).

Ershov–Golan–Sapir: ∀ n, ∃G with Tar(G) ∈ [n, 2n]. They also gave
an example of G with Tar(G) = 5. Moreover, they computed Tar(torsion
group of D. Osin) = 6.

Question. Is Tar(G) = 4 a quasi-isometry invariant. That is, is the
property of having a free subgroup a quasi-isometry invariant?

Is Tar(G) small a quasi-isometry invariant (the example of Ershov is
for large Tarski number)?

What are the exact values of Tar(B(n, m)) ∈ [6, 14]?

Definition of property (T) and a-T-menability.
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G locally compact, second countable. Two properties are defined
using actions by isometries (just metric isometries, not necessarily
linear!) on a Banach space.

Mazur–Ulam: Every isometry of X Banach is affine

v 7→ u · v + b, u ∈ U(X)

All actions are continuous: G y X by affine isometries, the orbit
maps G → X : g 7→ gv must be continuous for all v.

Definition. Property (T) ⇐⇒ every actions on a Hilbert space has a
global fixed point (which was originally called Property (FH)).

Definition. a-T-menability (a.k.a. Haagerup property) ⇐⇒ ∃ an
action on a Hilbert space which is proper in the sense that g→ ∞ =⇒
‖gv‖ → +∞ (for every basepoint, ∀ v)

Examples of a-T-menable groups

(1) amenable groups

(2) random groups in the Gromov density model for density
d < 1

6

Importance (Higson–Kasparov). If G is a-T-menable then the
strongest version of the Baum–Connes conjecture is true ( =⇒
Novikov conjecture).

(3) free groups are a-T-menable but not amenable

Examples of groups with (T).

(1) (lattices in) semi-simple groups with all factors of rank ≥ 2

• SL(n, R), n ≥ 3, SL(n, Z)

• SO(n, m), n, m ≥ 2, SOZ(n, m)

(2) For d > 1
3 , random groups have (T)

Relevance of (T).

• Baum-Connes (bad news)

• structural properties (f.g., finite abelianization, G 6= A ∗C B, A∗C)
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• smooth dynamics (Navas, Fisher–Margulis, local rigidity)

• construction of expanders

Connections with NPC spaces and actions on them.

Many NPC spaces have “Hilbert-like” metric: either the distance, or
some power of the distance, is a Hilbert norm.

Definition (A conditionally negative definite (CND) kernel). ψ : X×
X → [0,+∞), symmetric and ∀ n ∈ N, ∀ x1, . . . , xn ∈ X, ∀ λ1, . . . , λn

with ∑ λi = 0,

∑ λiλjψ(xi, xj) ≤ 0.

Example.

(1) Hilbert space H, ψ(x, y) = ‖x− y‖2

(2) Lp, ψ(x, y) = ‖x− y‖p
p , p ∈ [1, 2]

(3) (Schoenberg) ∀ψ CND, ∃ f : X → H, ψ(x, y) = ‖ f (x)− f (y)‖2
2

Theorem (Delorme–Guichardet, Akemann–Walter).

(1) G has (T) ⇐⇒ ∀ψ : G× G → [0,+∞) CND G-left-invariant is
bounded

(2) G is a-T-menable ⇐⇒ ∃ψ : G × G → [0,+∞) CND G-left-
invariant proper

Corollary.

(1) If (X, d) is such that dα is CND, then every action of G on X has
bounded orbits, if G has (T).

(2) ∃G y X as above, properly discontinuous =⇒ G is a-T-menable.

Example (of such (X, d)).

(1) Hn
R, Hn

C, Hn
R ↪→ l1( measured walls)

Question: is there a geometric proof for Hn
C? Current proof

due to Faraut and Harzallah.

(2) real trees (T, dT)
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(2) =⇒ F2 are a-T-menable (through action on Cayley graph). This
reproves the following:

Theorem (Alperin, Watatani). Property (T) =⇒ Property (FR) (fixed
points for real trees).

Converse is false: Coxeter groups with mij < +∞

Converse holds if we enlarge class:

Definition. (X, d) is median if ∀ x, y, z, ∃ a median point m:

d(x, m) + d(m, y) = d(x, y)

d(x, m) + d(m, z) = d(x, z)

d(y, m) + d(m, z) = d(y, z)

Example.

(1) Trees

(2) (Rn, ‖·‖2)

(3) L1(X, µ)

(4) X simplicial graph

(Vertices, dX) is median ⇐⇒ X = 1-skeleton of a CAT(0)-
cube complex (Chepoi)

simplicial trees→ real trees

vertices CAT(0) cube complex→ non-discrete version of CCC

Theorem (Chatterji–D.–Haglund).

(1) G has (T) ⇐⇒ every action on a median space has bounded orbit
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(2) G is a-T-menable ⇐⇒ there exists a proper action on a median
space

∼ Audience question about actions on asymptotic cone with fixed
point ∼

Action of G y Coneω(H) without fixed point: if ∃ φn : G → H
pairwise non-conjugate. In particular, if Out(G) is infinite, G y
Coneω(G) without a fixed point.

G y G, g 7→ Lg, Lg(1)∞ = 1∞

Versions of Property (T) and a-T-menability

(1) Consider actions on Hilbert spaces, affine, uniformly bi-Lipschitz
as follows: ∀ g ∈ G

v 7→ πg · v + bg

π : G →Bounded(Hilbert).

supg∈G

∥∥πg
∥∥ < +∞

Conjecture of Y. Shalom: every hyperbolic group has a proper
action that is uniformly bi-Lipschitz.

Bader–Furman–Gelander–Monod: Higher rank lattices have
fixed point properties.

(2) Replace Hilbert with Lp, which gives the properties FLp and
a-FLp-menability.

For p ∈ [1, 2], FLp ⇐⇒ (T) (for p = 1, result of Bader–
Gelander–Monod), and a-FLp-menability ⇐⇒ a-T-menability.

For p� 2: FLp is strictly stronger, a-FLp-menability is strictly
weaker.

(Bourdon–Pajot, G. Yu): every hyperbolic group is a-FLp-
menable, p > conformal-dim(∂G).
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Higher rank lattices have FLP, ∀ p ≥ 1 (BFGM)

FLp =⇒ stronger rigidity results (A. Navas).

Define ∀G with (T)

N (G) = {p ∈ [1, ∞) |G has FLp}

p(G) = supN (G).

Known: N (G) is open in [1,+∞) (Fisher–Margulis), contains [1, 2].
The general version can be found in the book of D.–Kapovich.

Open questions.

(1) N (G) connected?

(2) If N (G) ( [1,+∞), is its complement (or its interior) the set
of p for which we have a-FLp-menability?

(3) (CDH): If N (G) is bounded, is there a geometric significance
of the supremum p(G)?

If G hyperbolic, is p(G) a function of conformal-dim(∂G)?

Theorem (D.–Mackay). In the triangular model for random groups, for
density d > 1

3 asymptotically almost surely

conformal-dim(∂G)
1
2−ε ≤ p(Γ) ≤ conformal-dim(∂G)

(the upper bound is by BPY).


