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ABSTRACT. The Auslander Conjecture states that all discrete groups
acting properly and cocompactly on Rn by affine transformations
should be virtually solvable. In 1983, Margulis constructed the
first examples of proper (but not cocompact) affine actions of non-
abelian free groups. It seems that until now all known examples
of irreducible proper affine actions were by virtually solvable or
virtually free groups. I will explain that any right-angled Coxeter
group on k generators admits a proper affine action on Rk(k−1)/2.
This is joint work with J. Danciger and F. Guéritaud.

Question. Understand proper affine actions of f.g. Γ y
τ

RN, τ : Γ→
Aff(RN) = GLN(R)n RN faithful.

Proper ⇐⇒ τ(Γ)\RN manifold (orbifold) ⇐⇒ τ(Γ) symmetry
group of periodic affine tiling of Rn (tiles possibly noncompact).

Examples.

(1) ZN y RN by translations.

(2) 〈a, b〉 = Z2 y R2.
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τ : a 7→ translation by

(
1
0

)

b 7→
(

x 7→
(

1 1
0 1

)
x +

(
0
1

))

(3) Z2 o Z y R3, where 〈a, b〉 = Z2 and 〈c〉 = Z factor.

τ : a 7→ translation by

1
0
0



b 7→ translation by

0
1
0



c 7→

x 7→

 0
A

0
0 0 1

 x +

0
0
1




A ∈ SL2Z with three cases:

• identity, group Z2 o Z ∼= Z3 acting by translations

• parabolic/elliptic, group is a Heisenberg group

• hyperbolic, group is solvable but not nilpotent

Conjecture (Auslander, 1964). Γ y
τ

RN proper, τ(Γ)\RN compact

=⇒ Γ is virtually polycyclic.

Case τ(Γ) ⊂ O(N) n RN (“crystallographic”): Γ is virtually ZN

acting by translations (Bieberbach, 1911)

The Auslander Conjecture has been proved for n ≤ 6

• 2: easy

• 3: Fried–Goldman

• 4,5,6: Abels–Margulis–Soifer

Milnor (1977): is the conjecture true if τ(Γ)\RN noncompact?
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Margulis (1983): NO! There exist proper affine actions of the free
group Fr on R3 for all r ≥ 2.

τ(Γ) ⊂ O(2, 1)n R3

τ(Γ)\R3 “Margulis spacetime” (flat Lorentzian manifold)

In dimension 3, either Γ is virtually polycyclic, or it is virtually free
and we get a Margulis spacetime. What about higher dimension?

• Γ virtually polycyclic.

• Γ virtually free (Abels–Margulis–Soifer, Goldman–Labourie–
Margulis, Smilga).

• What about other examples?

Theorem 1. Any right-angled Coxeter group in k generators admits proper
affine actions on Rk(k−1)/2.

Corollary. Any group commensurable to a subgroup of a RACG admits
proper affine actions.

Examples.

• all RAAGs (Davis–Januszkiewicz)

• all virtually special groups (Haglund–Wise)

• all Coxeter groups (Haglund–Wise)

• all hyperbolic cubulated groups (Agol), including for example
π1( closed hyperbolic 3-manifold) (Kahn–Markovic + Sageev)

I. General Setting

G Lie group g Lie algebra
(G× G) y G : (G n g) y g affine:

(g1, g2) · g = g2gg−1
1 (g, w) · v = Ad(g)v + w

Γ discrete groupρ : Γ→ G group hom.

ρ′ : Γ→ G group hom.

ρ : Γ→ G group hom.

u : Γ→ g ρ-cocycle :

u(γ1γ2) = u(γ1) + Ad ρ(γ1)u(γ2)
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NB:

Tρ Hom(Γ, G) ↪→ {ρ-cocycles u : Γ→ g}
d
dt
|t=0 ρt 7→ u s.t. ρt(γ) = etu(γ)+o(t)ρ(γ) ∀ γ

with ρ0 = ρ.

II. Principle: “uniform contraction =⇒ properness”

(Notetaker’s note: the following red text is added later.)

G = O(n, 1) Q(x) = x2
1 + · · ·+ x2

n − x2
n+1

O(p, q + 1) x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

p+q

acting on Hn =
{
[x] ∈ P(Rn+1)

∣∣Q(x) < 0
}

.

Hp,q Rp+q+1

Theorem 2. ρ : Γ→ G injective and discrete, preserving a properly convex
open domain Ω ⊂Hp,q.

ρ′ : Γ→ G unif. contracting w.r.t. ρ

in spacelike directions, and preserves
properly convex domain Ω′ ⊂ Hp,q

(technical assumption: ρ′(Γ) Zariski
dense)

u : Γ→ g unif. contracting in space-
like directions

=⇒ Γ y
(ρ,ρ′)

G proper =⇒ Γ y
(ρ,u)

g ' Rn(n+1)/2 proper

R(p+q)(p+q+1)/2



PROPER AFFINE ACTIONS OF RIGHT-ANGLED COXETER GROUPS 5

Definition. ρ′ is uniformly contracting with respect to ρ in spacelike
directions if ∃ f : Hn → Hn Ω → Ω′

• (ρ, ρ′)-equivariant:

f (ρ(γ)z) = ρ′(γ) · f (z)

• ∃C < 1 such that ∀ y, z ∈Hn Ω with [y, z] spacelike,

d( f (y), f (z)) ≤ Cd(y, z)

Definition. u is uniformly contracting in spacelike directions if ∃X :
Hn → THn Ω→ TΩ

• (ρ, u)-equivariant:

X(ρ(γ) · z) = ρ(γ)∗X(z) + u(γ)(ρ(γ) · z)

(where u(γ)(ρ(γ) · z) means d
dt |t=0etu(γ)ρ(γ) · z)

• ∃ c < 0 such that ∀ y, z ∈Hn Ω with [y, z] spacelike,

d
dt
|t=0d(expy(tX(y)), expz(tX(z))) ≤ cd(y, z)

y z

X(y)
X(z)

∼ addition of red text to set up of Theorem 2 above begins ∼

H3,0 = H3 ⊂ P(R4)

H2,1 ⊂ P(R4)
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Ω
spacelike

timelike

lightlike

affine chart x4 = 1

Three types of geodesic: spacelike, timelike, lightlike.

Proof for G = O(n, 1).

π : O(n, 1)→Hn

g 7→ unique fixed point of g−1 ◦ f

π : o(n, 1)→Hn

v 7→ unique zero of X− v

is well-defined, continuous, and equivariant w.r.t.

Γ y
(ρ,ρ′)

O(n, 1) and Γ y
ρ

Hn, and respectively

Γ y
(ρ,u)

o(n, 1) and Γ y
ρ

Hn.

Action is proper on target =⇒ proper on source. �

III. Proper actions of RACG

Γ = 〈 γ1, . . . , γk | (γiγj)
mij = 1 ∀ i, j 〉

where mi,i = 1 and mi,j ∈ {2, ∞} for all i 6= j.

Classical theory.

Gram matrix B = (− cos π
mi,j

)1≤i,j≤k.
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→ Bt : replace −1 by −t in B

 〈·, ·〉t symmetric bilinear form on Rk nondegenerate, of signature
(p, q + 1) for all t� 1

Canonical representation (Tits):

ρt : Γ→ Aut(〈·, ·〉t)
∼→ O(p, q + 1)

γi 7→ orthog. refl. /ei 7→ orthog. refl. /xi(t)

where Aut(〈·, ·〉) ⊂ GLk(R).

Tits–Vinberg: ρt is injective and discrete and preserves a properly
convex domain

Ωt = Int(ρt(Γ) · Pt) ⊂ P(Rk)

where Pt =
{
[x] ∈ P(Rk)

∣∣ 〈x, ei〉t ≤ 0 ∀ i
}

.

Lemma. ∀ t′ > t� 1,

• ρt is uniformly contracting w.r.t. ρt′ in spacelike directions,

• ut := − d
dt′ |t′=t is uniformly contracting in spacelike directions,

where ut ∈ Tρt Hom(Γ, G) ↪→ {ρt-cocycles Γ→ g}.

Theorem 2 =⇒ proper actions on G and g.

Example 1.
∞ ∞

Bt =

 1 −t
−t 1 −t
−t 1


→ eigenvalues 1±

√
2t, 1

=⇒ signature (2, 1) =⇒ acts on H2.
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x₁(t)

x₃(t)

x₂(t)

t=1

Pt

t>1

x₃(t)

x₁(t)

x₂(t)

∞ ∞ ∞

signature (2,2), action on H2,1

→ proper on O(2, 2) and o(2, 2).


