ARITHMETIC GROUPS: GEOMETRY AND COHOMOLOGY

KEVIN WORTMAN

I. BIERI-ECKMANN DUALITY

- *F* a field of coefficients, henceforth implicit.
- Γ a discrete group.

Definition. $H^*(\Gamma) = H^*(K(\Gamma, 1)).$

Duality

If Γ acts *freely* and *cocompactly* on a *contractible* complex X with $H_c^n(X) = 0$ if $n \neq d$ for some d, then Γ is a *d*-dimensional duality *group* and for all k,

$$H_k(\Gamma, H_c^d(X)) \cong H^{d-k}(\Gamma).$$

We call $H_c^d(X)$ the *dualizing module*.

II. $\operatorname{SL}_2 \mathbb{Z}$ and Borel–Serre

- SL₂ \mathbb{R} acts properly on \mathbb{H}^2 .
- $\mathbb{Z} \leq \mathbb{R}$ is discrete.

Thus $SL_2 \mathbb{Z} \leq SL_2 \mathbb{R}$ is discrete so $SL_2 \mathbb{Z}$ acts properly on \mathbb{H}^2 .

Date: 26 August 2016.

The action is not cocompact, but the fix is easy: take a compact subset of a fundamental domain, then take all its translates.

 X_0 is the space you get after removing horoballs, one for every point in $\mathbb{P}^1(\mathbb{Q})$, from \mathbb{H}^2 .

SL₂ \mathbb{Z} acts cocompactly on X_0 , and on each X_n .

 $X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq \hat{\mathbb{H}}^2$, where $\hat{\mathbb{H}}^2 \cong_{homeo} X_n$ is \mathbb{H}^2 augmented by a line \mathbb{R} for each $x \in \mathbb{P}^1(\mathbb{Q})$.

- $\partial \hat{H}^2 = \bigsqcup_{\mathbb{P}^1(\mathbb{Q})} \mathbb{R} \simeq_{homotopic} \mathbb{P}^1(\mathbb{Q})$ discrete.
- SL₂ Z acts cocompactly on Ĥ², the *Borel−Serre* bordification (implicitly: of ℍ² with respect to the SL₂ Z action).
- SL_q Q acts on $\hat{\mathbb{H}}^2$.

Duality. Finite-index torsion-free (fitf) $\Gamma \leq SL_2 \mathbb{Z}$ act freely on $\widehat{\mathbb{H}}^2$, so Γ is a 1-dimensional duality group:

$$H^n_c(\widehat{\mathbb{H}}^2) = H_{2-n}(\widehat{\mathbb{H}}^2, \partial \widehat{\mathbb{H}}^2) = \widetilde{H}_{1-n}(\mathbb{P}^1(\mathbb{Q}))$$

The first equality is from Lefschetz, the second from a long exact sequence pair.

III. $SL_q \mathbb{Z}[1/p]$ and Euclidean buildings

 Q_p is a discretely valued field.

Complete with respect to the norm $|\frac{n}{m}p^k|_{Q_p} = p^{-k}$ (*p* does not divide *n*, *m*).

$$\mathbb{Q}_p^{\times} \twoheadrightarrow \mathbb{Z}$$

 $\mathbb{Z}[1/p] \stackrel{\Delta}{\hookrightarrow} \mathbb{R} \times \mathbb{Q}_p$ is a discrete embedding.

 \implies we have a discrete embedding

$$\operatorname{SL}_2 \mathbb{Z}[1/p] \stackrel{\Delta}{\hookrightarrow} \operatorname{SL}_2 \mathbb{R} \times \operatorname{SL}_2 \mathbb{Q}_p.$$

 \implies SL₂ $\mathbb{Z}[1/p]$ acts properly on $\mathbb{H}^2 \times T_p$, a (p+1)-regular tree.

Let
$$u_x = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
, $a_\lambda = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$.

 $\mathbb{H}^2: \text{Let } A = \{a_{\lambda} \mid \lambda \in (0, \infty)\}.$

$$d(a_{\lambda}, u_{x}a_{\lambda}) = d(1, a_{\lambda}^{-1}u_{x}a_{\lambda}) = d(1, u_{x/\lambda^{2}}) \to 0 \text{ as } |\lambda|_{\mathbb{R}} \to \infty.$$

SL₂ \mathbb{R} acts on $\bigcup_{x \in \mathbb{R}} u_{x}A = \mathbb{H}^{2}.$
 T_{p} : Let $A = \left\{ a_{\lambda} \mid \lambda \in \mathbb{Q}_{p}^{\times} \right\}.$
Let $L = \mathbb{R}$

 $A \twoheadrightarrow \mathbb{Z}$ acts by integer translations on L. $d(a_{\lambda}l, u_{x}a_{\lambda}l) = d(l, a_{\lambda}^{-1}u_{x}a_{\lambda}l) \to 0$ as $|\lambda|_{\mathbb{Q}_{p}} \to \infty$.

fitf $\Gamma \leq SL_2 \mathbb{Z}[1/p]$ act freely, cocompactly, on $\widehat{\mathbb{H}}^2 \times T_p$, so Γ is a 2-dimensional duality group:

$$H^*_c(\widehat{\mathbb{H}}^2 \times T_p) = H^*_c(\widehat{\mathbb{H}}^2) \otimes H^*_c(T_p).$$

Borel–Serre (1974, 1976): fitf subgroups of arithmetic groups (e.g. $SL_n \mathbb{Z}, SL_n \mathbb{Z}[\sqrt{2}]$) and *S*-arithmetic groups (e.g. $SL_n \mathbb{Z}[1/p]$) are duality groups.

 \sim break \sim

IV. $SL_2(\mathbb{F}_p[t])$, SEMIDUALITY

(joint with Studenmund)

Below, char(F) $\neq p$.

 $\mathbb{F}_p[t] \leq \mathbb{F}_p((t^{-1}))$ discrete:

 \implies SL₂ $\mathbb{F}_p[t] \leq$ SL₂ $\mathbb{F}_p((t^{-1}))$ discrete

 \implies SL₂ $\mathbb{F}_p[t]$ acts properly on T_p .

Not cocompactly, but acts freely enough for finite-index non-*p*-torsion-free $\Gamma \leq SL_2 \mathbb{F}_p[t]$ (only torsion is *p*-torsion).

 $X_0 \subseteq X_1 \subseteq X_2$

 $\operatorname{SL}_2 \mathbb{F}_p[t]$ acts cocompactly on each X_n , but X_n is not contractible.

 $\mathbb{F}_p((t^{-1}))$

 $\partial X_n \to \partial X_{n+1}$ $H^0_c(\partial X_{n+1}) \hookrightarrow H^0_c(\partial X_n) \stackrel{\delta}{\hookrightarrow} H^1_c(T_p)$ $\bigcap_{n=0}^{\infty} H^0(\partial X_n) = 0.$ Let $\widehat{H^1_c(T_p)} = \varprojlim H^1_c(T_p) / H^0_c(\partial X_n)$ $\widehat{H^1_c(T_p)} \cong H^1_c(T_p) \oplus \left(\bigoplus_{x \in \mathbb{P}^1(\mathbb{F}_p(t))} V_x\right)$

 $\operatorname{SL}_2(\mathbb{F}_p(t))$ acts on $\widehat{H^1_c(T_p)}$.

Conjecture.

- X Euclidean building of dimension d
- $G(\mathcal{O}_S)$ arithmetic group over function fields.
- $G(\mathcal{O}_S)$ acts on *X* as a lattice.
- *K* be the fraction field of \mathcal{O}_S .

then there is $H_n(\Gamma, \widehat{H_c^d(X)}) \to H^{d-n}(\Gamma)$ isomorphism if $n \neq d, d-1$, surjection if n = d - 1, and G(K) acts on $\widehat{H_c^d(X)}$ where $\Gamma \leq G(\mathcal{O}_S)$ is finite-index and non-*p*-torsion-free.

Theorem (Studenmund–W.). *Conjecture is true if* $G = SL_2$.

(Actually works for any arithmetic group that acts on a product of trees.)

Audience question: what is V_x ? $V_x \cong \bigoplus_{\mathbb{R}} F$.

Audience question: have you been able to do any group cohomology calculations using the dualizing module? Not yet.

Audience question on finiteness properties in the isomorphism of the conjecture.