
ARITHMETIC GROUPS: GEOMETRY AND COHOMOLOGY

KEVIN WORTMAN

I. BIERI–ECKMANN DUALITY

• F a field of coefficients, henceforth implicit.

• Γ a discrete group.

Definition. H∗(Γ) = H∗(K(Γ, 1)).

Duality

If Γ acts freely and cocompactly on a contractible complex X with
Hn

c (X) = 0 if n 6= d for some d, then Γ is a d-dimensional duality
group and for all k,

Hk(Γ, Hd
c (X)) ∼= Hd−k(Γ).

We call Hd
c (X) the dualizing module.

II. SL2 Z AND BOREL–SERRE

• SL2 R acts properly on H2.

• Z ≤ R is discrete.

Thus SL2 Z ≤ SL2 R is discrete so SL2 Z acts properly on H2.
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The action is not cocompact, but the fix is easy: take a compact subset
of a fundamental domain, then take all its translates.

X0 is the space you get after removing horoballs, one for every point
in P1(Q), from H2.

SL2 Z acts cocompactly on X0, and on each Xn.

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Ĥ2, where Ĥ2 ∼=homeo Xn is H2 augmented
by a line R for each x ∈ P1(Q).

• ∂Ĥ2 =
⊔

P1(Q) R 'homotopic P1(Q) discrete.

• SL2 Z acts cocompactly on Ĥ2, the Borel–Serre bordification
(implicitly: of H2 with respect to the SL2 Z action).

• SLq Q acts on Ĥ2.

Duality. Finite-index torsion-free (fitf) Γ ≤ SL2 Z act freely on Ĥ2, so
Γ is a 1-dimensional duality group:

Hn
c (Ĥ

2) = H2−n(Ĥ
2, ∂Ĥ2) = H̃1−n(P

1(Q))

The first equality is from Lefschetz, the second from a long exact
sequence pair.

III. SLq Z[1/p] AND EUCLIDEAN BUILDINGS

Qp is a discretely valued field.

Complete with respect to the norm | nm pk|Qp = p−k (p does not divide
n, m).

Q×p � Z
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Z[1/p]
∆
↪→ R×Qp is a discrete embedding.

=⇒ we have a discrete embedding

SL2 Z[1/p]
∆
↪→ SL2 R× SL2 Qp.

=⇒ SL2 Z[1/p] acts properly on H2 × Tp, a (p + 1)-regular tree.

Let ux =

(
1 x
0 1

)
, aλ =

(
λ 0
0 λ−1

)
.

H2: Let A = {aλ | λ ∈ (0, ∞)}.

d(aλ, uxaλ) = d(1, a−1
λ uxaλ) = d(1, ux/λ2)→ 0 as |λ|R → ∞.

SL2 R acts on
⋃

x∈R ux A = H2.

Tp: Let A =
{

aλ

∣∣∣ λ ∈ Q×p

}
.

Let L = R

A � Z acts by integer translations on L.

d(aλl, uxaλl) = d(l, a−1
λ uxaλl)→ 0 as |λ|Qp → ∞.
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fitf Γ ≤ SL2 Z[1/p] act freely, cocompactly, on Ĥ2 × Tp, so Γ is a
2-dimensional duality group:

H∗c (Ĥ
2 × Tp) = H∗c (Ĥ

2)⊗ H∗c (Tp).

Borel–Serre (1974, 1976): fitf subgroups of arithmetic groups (e.g.
SLn Z, SLn Z[

√
2]) and S-arithmetic groups (e.g. SLn Z[1/p]) are du-

ality groups.

∼ break ∼

IV. SL2(Fp[t]), SEMIDUALITY

(joint with Studenmund)

Below, char(F) 6= p.

Fp[t] ≤ Fp((t−1)) discrete:

=⇒ SL2 Fp[t] ≤ SL2 Fp((t−1)) discrete

=⇒ SL2 Fp[t] acts properly on Tp.
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Not cocompactly, but acts freely enough for finite-index non-p-torsion-
free Γ ≤ SL2 Fp[t] (only torsion is p-torsion).

X0 ⊆ X1 ⊆ X2

SL2 Fp[t] acts cocompactly on each Xn, but Xn is not contractible.

Fp((t−1))

∂Xn → ∂Xn+1

H0
c (∂Xn+1) ↪→ H0

c (∂Xn)
δ
↪→ H1

c (Tp)⋂∞
n=0 H0(∂Xn) = 0.

Let Ĥ1
c (Tp) = lim←−H1

c (Tp)/H0
c (∂Xn)

Ĥ1
c (Tp) ∼= H1

c (Tp)⊕

 ⊕
x∈P1(Fp(t))

Vx


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SL2(Fp(t)) acts on Ĥ1
c (Tp).

Conjecture.

• X Euclidean building of dimension d

• G(OS) arithmetic group over function fields.

• G(OS) acts on X as a lattice.

• K be the fraction field of OS.

then there is Hn(Γ, Ĥd
c (X))→ Hd−n(Γ) isomorphism if n 6= d, d− 1,

surjection if n = d− 1, and G(K) acts on Ĥd
c (X) where Γ ≤ G(OS) is

finite-index and non-p-torsion-free.

Theorem (Studenmund–W.). Conjecture is true if G = SL2.

(Actually works for any arithmetic group that acts on a product of
trees.)

Audience question: what is Vx? Vx ∼=
⊕

R F.

Audience question: have you been able to do any group cohomology
calculations using the dualizing module? Not yet.

Audience question on finiteness properties in the isomorphism of the
conjecture.
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