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ABSTRACT. Homological stability is the classical phenomenon
that for many natural families of moduli spaces the homology
groups stabilize. Often the limit is the homology of another in-
teresting space; for example, the homology of the braid groups
converges to the homology of the space of self-maps of the Rie-
mann sphere. Representation stability makes it possible to extend
this to situations where classical homological stability simply does
not hold, using ideas inspired by asymptotic representation theory.
I will give a broad survey of homological stability and a gentle
introduction to the tools and results of representation stability,
focusing on its applications in topology.

Part I: homological stability

Part II: representation stability

Yn → Yn+1

H∗(Yn)→ H∗(Yn) is isomorphism for ∗ ≤ f (n). H∗(SO(n))
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SO(1) SO(2) SO(3) SO(4) SO(5) SO(6) SO(∞)

H0 Z Z Z Z Z Z Z

H1 Z Z/2 Z/2 Z/2 Z/2 Z/2
H2 0 0 0 0 0
H3 Z Z2 Z⊕Z/2 Z⊕Z/2 Z⊕Z/2
H4 Z/2 Z/2 Z/2 Z/2
H5 0 Z/2 Z⊕Z/2 Z/2⊕Z/2
H6 Z Z/2 Z/2⊕Z/2 Z/2⊕Z/2
H7 Z Z Z⊕Z/2⊕Z/2
H8 Z/2 Z⊕Z/2⊕Z/2 . . .
H9 0 Z/2 . . .

H10 Z Z/2⊕Z/2 . . .

SO(n) SO(n + 1)

Sn

SO(n)→ SO(n + 1) is (n− 1)-connected.

H∗(SO(n))→ H∗(SO(n + 1)) for ∗ < n− 1.

Often there’s some interesting Y such that H∗(Yn) = H∗(Y), n � ∗
(for example, SO(∞)).

Configuration space Confn(M) = {S ⊂ M : |S| = n}.

Example. Confn(C) is a K(Braidn, 1).

H∗(Confn(C)) = H∗(Braidn)

Theorem (Arnold 1969). H∗(Confn(C)) → H∗(Confn+1(C)) is an
isomorphism for n ≥ 2∗.

Audience question: what is the map? Add a point very far away from
the other points.

Theorem (F. Cohen 1973). limn→∞ H∗(Confn(C)) = H∗Maps∞(R2, R2).

Warning: π1 Maps∞(R2, R2) = Z 6= π1 Conf∞ C = Braid∞.
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Stability for GLn Z (originally theorem of Charney)

New approach Bestvina–Church, inspired by Hatcher–Vogtmann.

Define constants cn as follows: Pn = simplicial complex with vertices
pairs (a, b) in Zn with a · 1 = 1, simplices on (a1, b1), . . . , (ak, bk) if
ai · bj = 1 if i = j and 0 otherwise.

cn = connectivity of Pn

Pn is cn-connected.

Conjecture (Church–Bestvina). Pn ' ∨Sn−2, so cn = n− 3.

Xn = { inner products ω on Rn} = { positive definite symmetric
n× n matrices ' R(n+1

2 )}

nonpositively curved metric

GLn R y Xn

GLn Z y Xn with compact =⇒ finite stabilizers.

H∗(GLn Z; Q) = H∗(Xn/ GLn Z; Q), Yn = Xn/ GLn Z

Given ω, say v ∈ Zn is ω-integral if ω(v, v) = 1 and ω(v, Zn) ⊂ Z.

Define Xk
n = {ω ∈ Xn | # of ω-integral vectors > n− k}.

X1
n ⊂ X2

n ⊂ · · · ⊂ Xn
n ⊂ Xn+1

n = Xn.

The filtration starts with lots of ω-integral vectors, ends with one
ω-integral vector.

Theorem (C.–Bestvina). (1) Xk
n is ck-connected, so H∗(GLn Z; Q) =

H∗(Xk
n/ GLn Z; Q) for ∗ ≤ ck.

(2) The quotient space Xk
n/ GLn Z is independent of n for n ≥ k− 1.

(If conjecture of BC =⇒ H∗(GLn Z; Q) independent of n for
n > ∗+ 1.)
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(3) Integrally H∗(GLn Z) = Horb
∗ (Xk

n/ GLn Z).

As orbifold Xk
n/ GLn Z not constant by stabilizers for Gk×On−k(Z).

∼ starting again from scratch... ∼

Often guess a space Y and prove limn→∞ H∗(Yn) = H∗(Y) without
knowing that H∗(Yn) actually stabilize.

Recall: if G is a discrete group

topology: when points collide, you multiply the labels, and when
points hit they boundary, they disappear.

BG is a K(G, 1), π1 = G, πi = 0.

What if M monoid, like M = N (all you need in the definition of BG
is multiplication).

What is BN? π1BN 6= N because π1 is a group.

It turns out that π1BN is Z, in fact BN = K(Z, 1).

BM = K(M∗, 1), where M∗ is groupified M (questioned by audience,
need sufficiently nice M).

In general, ΩBG is a K(G, 0), which is to say ΩBG ' G.

For M discrete, ΩBM = M∗.

In general, ΩBM is “groupification of M”
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M ΩBM
FinSubsets(R2) Maps∞(R2, R2) (F.Cohen)
FinSubsets(R∞) Maps∞(R∞, R∞) (Barratt–Priddy–Quillen)
Surf∂(R∞) Maps∞(R∞, Aff2(R

∞)) (Madsen–Weiss)
= {U ⊂ R∞}{U smooth connected 2-
manifold w/ 1 component boundary
Metric graphs = { isometry classes of metric
graphs w/ basepoint }?

Maps∞(R∞, Graphs(R∞)) (Galatius)

(∼= Maps∞(R∞, R∞))
Subspaces(C∞) Maps∞(R1, GL∞ C) (Bott periodicity)

The entries in left column are equivalent to
⊔

n∈N Confn R2,
⊔

n∈N BSn,⊔
g∈N BDiff(Σg),

⊔
n∈N BAut(Fn),

⊔
n∈N BU(n), respectively.

If M = tMn, then Z×M∞ → ΩBM is H∗-iso.

Theorem (Arnold). H∗(Confn(C), Z) → H∗(Confn+1(C); Z) stabi-
lizes.

Theorem (McDuff, Segal). For any open manifold M,

H∗(Confn(M); Z)→ H∗(Confn+1(M); Z)

stabilizes for n� ∗.

Theorem (Church 2012). For any M,

H∗(Confn(M); Q) ' H∗(Confn+1(M); Q)

stabilizes for n > ∗.

Why the historical gap?

(1) No maps Confn(M)→ Confn+1(M).

(2) False integrally (Artin 1925):

H1(Confn(S2); Z) = Z/(2n− 2)Z

Sn y PConfn(M) = Mn − {pi = pj}, and PConfn(M)→ Confn(M).

H∗(PConfn(M); Q)Sn → H∗(Confn(M); Q)

“reduces” to understanding H∗ of PConfn(M) as an Sn-representation.
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Now we have maps PConfn(M) ← PConfn+1(M) (forget the last
point).

H∗(SLn Z; Z) stabilizes,

SLn(Z, l) = ker(SLn Z→ SLn Z/l) = {M ≡ id mod l}

but H∗ doesn’t stabilize, H1 SL(Z, Z/l) = slnZ/l = (Z/l)n2−1.

Define T ⊂ [n]

SLT Z = {M ∈ SLn Z | Mij = δij if i or j /∈ T}.

SLT(Z, l) = {M ∈ SLn(Z, l) | Mij = δij if i or j /∈ T}.

S ⊂ T, SLS Z ⊂ SLt Z.

Theorem (Church–Ellenberg, after Putman CEFN). “inductive stabil-
ity”

∀ n, Hi(SLn(Z, l); Z) = lim−→T⊂[n],|T|≤2i+2 Hi(SLT(Z, l); Z) Hi(Γn) =

lim−→|T|≤C,T⊂[n] Hi(ΓT)

Definition. FI = category of Finite Sets T and Injections S ↪→ T.

FI-module, V : FI → Z-Mod.

Example. SL•Z : FI → Groups

SL•(Z, l) : FI → Groups

Hi(SL•(Z, l)) : FI → Z-Mod is an FI-module.

PConf• M : FI → Spacesop, T 7→ PConfT(M) = Inj(T, M).

Hi PConf• M : FI → Z-Mod is an FI-module.

An FI-module V is for each n abelian group Vn with Sn-action, Sn y
Vn, with maps Vn → VN (n < N) that play nicely with Sn-action.

As algebraic objects, notion of finitely generated FI-module, similarly
finitely presented, projective, injective etc.
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Theorem (CEF). If V an FI-module over Q, then the following are equiva-
lent:

(1) representation stability for Sn-representations Vn

(2) V is finitely generated.

Theorem (CE). Any V, the following are equivalent:

(1) inductive stability : ∃C such that Vn = lim|T|≤C VT

(2) V is finitely presented

Theorem (CEFN). FI is Noetherian, so finitely generated =⇒ finitely
presented, and both are preserved by e.g. spectral sequences.

Theorem (Church–Putman). ∀ k, ∃Ck, ∀ genus g such that k-th term of
Johnson filtration is generated by elements supported on surfaces / splittings
of genus ≤ Ck.

Is SL•Z finitely presented as FI-group?

Does there exist C such that SLn Z = lim−→|T|≤C
SLT Z?


