EXTENDING TO LIE ALGEBRAS SOME RESULTS ON SUBDIRECT PRODUCTS OF GROUPS

CONCHITA MARTINEZ PEREZ

ABSTRACT. Since Baumslag and Roseblade discovered that finitely presented subgroups of a product of two free groups must be virtually a product of free groups there has been an intensive research on properties of subdirect products of groups mainly focusing on the homological and homotopical properties, including the celebrated 1-2-3 Theorem by Bridson, Howie, Miller and Short. In this talk we will discuss how to extend some of these results to Lie algebras.

This is a joint work with Dessislava Kochloukova.

1. SUBGROUPS OF PRODUCTS OF FREE GROUPS

Example.

1) Mihailova.

Free $F \xrightarrow{\pi} Q$, some group.

Define $P = \{(g_1, g_2) \mid \pi(g_1) = \pi(g_2)\} \le F \times F$.

This is a pull back of

$$F \xrightarrow{\pi} Q$$

If *Q* has unsolvable word problem \implies *P* has unsolvable membership problem.

Miller: Example where *P* has unsolvable conjugacy problem.

Date: 26 August 2016.

Minasyan: *Q* is not residually finite $\implies P$ not conjugacy separable (conjugacy separable means that $\forall g, h \in P$ not conjugate, $\exists P/H$ finite in which their images are not conjugate).

Grunewald: *P* not finitely presented.

Definition. In general, with $G_1 \xrightarrow{\pi_1} Q \xleftarrow{\pi_2} G_2$, we can define

$$P = \{(g_1, g_2) \mid \pi_1(g_1) = \pi_2(g_2)\} \le G_1 \times G_2$$

which we call the *fibre product*.

 $P \cap G_1 \hookrightarrow P \twoheadrightarrow G_2$

 $P\cap G_1 \lhd G_1$

2

P is *subdirect* (that is, it maps epimorphically onto factors), and we definite similarly for more components.

Any $P \leq G_1 \times G_2$ subdirect is a fibre product.

Definition. *G* is of type \mathcal{F}_n if it has a K(G, 1) with finite *n*-skeleton.

Example.

2) Bieri–Stallings groups.

Take *n* finitely generated free groups $F \times \cdots \times F \xrightarrow{\mu} \mathbb{Z}$ by sending the standard generators $\mapsto 1$.

Classically, for n = 2, ker μ is not finitely presented.

For general *n*, ker μ is of type \mathcal{F}_{n-1} but not \mathcal{F}_n .

Bestvina–Brady group.

 $F \times F \leq \mathrm{SL}(4,\mathbb{Z})$

Inspiration for Bieri–Neumann–Strebel–Renz invariants \rightsquigarrow tell you "something" about properties of subgroups of *G* over *G*'.

Baumslag–Roseblade: there are uncountable many subgroups of $F \times F$.

Theorem (Baumslag–Roseblade). *Finitely presented subdirect* $P \le F_1 \times F_2$, *direct product of two free groups* \implies *P is either free or has finite index in* $F_1 \times F_2$.

Theorem (Bridson, Howie, Miller, Short).

- (i) \mathcal{F}_n group $P \leq F_1 \times \cdots \times F_n \implies P$ is virtually a product of (less than n) free groups.
- (ii) finitely presented subdirect product $P \leq F_1 \times \cdots \times F_n$, with F_i nonabelian free groups and every $P \cap F_i \neq 1 \implies P$ virtually surjects onto pairs $P \rightarrow F_i \times F_j$.
- *(iii) if the conditions of (i) and (ii) both hold, then P virtually surjects onto product of m (Kochloukova)*
- *(iv) instead of free, one can use limit groups (finitely generated fully residually free groups, as introduced by Sela)*

2. LIE ALGEBRAS

L. *K* a field, *L* a vector space with $[\cdot, \cdot]$, bilinear, [X, X] = 0, Jacobi.

Best known example is Lie algebra associated to a Lie group.

Magnus: *G* group, \rightsquigarrow graded Lie algebra $L(G) = \bigoplus \gamma_i(G) / \gamma_{i+1}(G) \otimes K$, $[\cdot, \cdot] =$ group commutator, γ_i lower central series.

G free \rightsquigarrow *L*(*G*) free.

L free Lie algebra.

 $A \leq L$ subalgebra $\implies A$ free.

 $A \lhd L$ finitely generated $\implies L = A$.

L any Lie algebra $\rightsquigarrow U(L)$ universal enveloping algebra. Use U(L) to define "everything" in homological algebra.

Theorem (K,MP). (*i*), (*ii*), (*iii*) extend to Lie algebras.

But we need to know how the finiteness properties translate from groups to Lie algebras!

Definition. *L* is FP_n if $\exists \dots \rightarrow P_n \rightarrow \dots \rightarrow P_0 \rightarrow K$, with P_i projective and finitely generated.

 $\mathcal{F}_n \leftrightarrow L$ is FP_n and L is finitely presented

Proof (of Baumslag–Roseblade Theorem). $P \le F_1 \times F_2$, which we may assume is a fibre product. Without loss of generality, $F_1 \cap P$, $F_2 \cap P \ne 1$ also.

 $P \cap F_1 \hookrightarrow P \twoheadrightarrow F_2$

 $H_2(P)$ has finite rank \implies (with a spectral sequence argument that is drastically simplified since $P \cap F_1$ and F_2 are free) $H_1(F_2, H_1(P \cap F_1))$ is finite rank.

If $P \cap F_1 (\triangleleft F_1)$ is finitely generated, then we are done.

(Hall) up to finite index, $F_2 = \langle t \rangle * (\text{something})$.

 $H_1(P \cap F_1)$ is a direct summand of $H_1(F_2, H_1(P \cap F_1))$ so it has finite rank.

However, this deduction fails for Lie algebras.

3. Converses - 1-2-3 Theorem

If $A \hookrightarrow G_A \xrightarrow{\pi_A} Q$ and $B \hookrightarrow G_B \xrightarrow{\pi_B} Q$, with P = fibre product.

 G_A , G_B finitely generated, Q finitely presented $\implies P$ finitely generated.

Theorem (1-2-3 Theorem, Baumslag, Bridson, Miller, Short, Howie). A finitely generated, G_A , G_B finitely presented, Q of type $\mathcal{F}_3 \implies P$ finitely presented.

Theorem: this also holds for Lie algebras.

Remark.

- Used to produce a Mihailova $P \leq \Gamma \times \Gamma$ (with Γ hyperbolic), and *P* finitely presented.
- Used to prove converses of (ii) (*G_i* finitely presented).

4

- There is a n-(n + 1)-(n + 2) conjecture (A type \mathcal{F}_n , G_A and G_B type \mathcal{F}_{n+1} and Q of type $\mathcal{F}_{n+2} \implies P$ of type \mathcal{F}_{n+1}).
- Kuckuck \rightarrow partial progress.

Group case, π_2 (2-Cayley complex), $Q \mathcal{F}_3$.

Audience question: *FP*₂ and finitely presented different for Lie algebras? Yes.

Audience question: are there RAAGs for Lie algebras? Not yet.

Audience question: how do you avoid needing Marshall Hall's theorem in the Lie algebra case? $H_1(F_2, V)$ finite rank. $\exists t \in F_2, tV$ finite dimension \rightsquigarrow dim *V* finite.