EXTENDING TO LIE ALGEBRAS SOME RESULTS ON SUBDIRECT PRODUCTS OF GROUPS

CONCHITA MARTINEZ PEREZ

ABSTRACT. Since Baumslag and Roseblade discovered that finitely presented subgroups of a product of two free groups must be virtually a product of free groups there has been an intensive research on properties of subdirect products of groups mainly focusing on the homological and homotopical properties, including the celebrated 1-2-3 Theorem by Bridson, Howie, Miller and Short. In this talk we will discuss how to extend some of these results to Lie algebras.

This is a joint work with Dessislava Kochloukova.

1. SUBGROUPS OF PRODUCTS OF FREE GROUPS

Example.

1) Mihailova.

Free $F \stackrel{\pi}{\twoheadrightarrow} Q$, some group.

Define $P = \{(g_1, g_2) | \pi(g_1) = \pi(g_2) \} \leq F \times F$.

This is a pull back of

$$
F \xrightarrow[\pi]{F} Q
$$
\n
$$
F \xrightarrow[\pi]{\pi} Q
$$

If *Q* has unsolvable word problem \implies *P* has unsolvable membership problem.

Miller: Example where *P* has unsolvable conjugacy problem.

Date: 26 August 2016.

Minasyan: Q is not residually finite \implies *P* not conjugacy separable (conjugacy separable means that $\forall g, h \in P$ not conjugate, $\exists P/H$ finite in which their images are not conjugate).

Grunewald: *P* not finitely presented.

Definition. In general, with $G_1 \stackrel{\pi_1}{\twoheadrightarrow} Q \stackrel{\pi_2}{\twoheadleftarrow} G_2$, we can define

$$
P = \{(g_1, g_2) | \pi_1(g_1) = \pi_2(g_2)\} \le G_1 \times G_2
$$

which we call the *fibre product*.

 $P \cap G_1 \hookrightarrow P \twoheadrightarrow G_2$

 $P \cap G_1 \vartriangleleft G_1$

P is *subdirect* (that is, it maps epimorphically onto factors), and we definite similarly for more components.

Any $P \leq G_1 \times G_2$ subdirect is a fibre product.

Definition. *G* is of type \mathcal{F}_n if it has a $K(G, 1)$ with finite *n*-skeleton.

Example.

2) Bieri–Stallings groups.

Take *n* finitely generated free groups $F \times \cdots \times F \stackrel{\mu}{\twoheadrightarrow} \mathbb{Z}$ by sending the standard generators \mapsto 1.

Classically, for $n = 2$, ker μ is not finitely presented.

For general *n*, ker μ is of type \mathcal{F}_{n-1} but not \mathcal{F}_n .

Bestvina–Brady group.

 $F \times F \leq SL(4, \mathbb{Z})$

Inspiration for Bieri–Neumann–Strebel–Renz invariants \rightsquigarrow tell you "something" about properties of subgroups of *G* over *G*'.

Baumslag–Roseblade: there are uncountable many subgroups of $F \times F$.

Theorem (Baumslag–Roseblade). *Finitely presented subdirect* $P \leq F_1 \times$ F_2 , direct product of two free groups \implies *P* is either free or has finite index *in* $F_1 \times F_2$ *.*

Theorem (Bridson, Howie, Miller, Short)**.**

- *(i)* \mathcal{F}_n *group* $P \leq F_1 \times \cdots \times F_n \implies P$ *is virtually a product of (less than n) free groups.*
- *(ii) finitely presented subdirect product* $P \leq F_1 \times \cdots \times F_n$ *, with* F_i *nonabelian free groups and every* $P \cap F_i \neq 1 \implies P$ *virtually surjects onto pairs* $P \to F_i \times F_j$ *.*
- *(iii) if the conditions of (i) and (ii) both hold, then P virtually surjects onto product of m (Kochloukova)*
- *(iv) instead of free, one can use limit groups (finitely generated fully residually free groups, as introduced by Sela)*

2. LIE ALGEBRAS

L. *K* a field, *L* a vector space with $[\cdot, \cdot]$, bilinear, $[X, X] = 0$, Jacobi.

Best known example is Lie algebra associated to a Lie group.

Magnus: *G* group, \rightsquigarrow graded Lie algebra $L(G) = \bigoplus \gamma_i(G)/\gamma_{i+1}(G) \otimes$ *K*, $[\cdot, \cdot]$ = group commutator, γ_i lower central series.

G free \rightsquigarrow *L*(*G*) free.

L free Lie algebra.

 $A \leq L$ subalgebra \implies *A* free.

A \triangle *L* finitely generated \implies *L* = *A*.

L any Lie algebra \rightsquigarrow $\mathcal{U}(L)$ universal enveloping algebra. Use $\mathcal{U}(L)$ to define "everything" in homological algebra.

Theorem (K,MP)**.** *(i), (ii), (iii) extend to Lie algebras.*

But we need to know how the finiteness properties translate from groups to Lie algebras!

Definition. *L* is FP_n if $\exists \cdots \rightarrow P_n \rightarrow \cdots \rightarrow P_0 \rightarrow K$, with P_i projective and finitely generated.

 $\mathcal{F}_n \leftrightarrow L$ is FP_n and *L* is finitely presented

Proof (of Baumslag–Roseblade Theorem). $P \leq F_1 \times F_2$, which we may assume is a fibre product. Without loss of generality, $F_1 \cap P$, $F_2 \cap P \neq 1$ also.

 $P \cap F_1 \hookrightarrow P \twoheadrightarrow F_2$

 $H_2(P)$ has finite rank \implies (with a spectral sequence argument that is drastically simplified since $P \cap F_1$ and F_2 are free) $H_1(F_2, H_1(P \cap F_1))$ is finite rank.

If $P \cap F_1 \, (\triangleleft F_1)$ is finitely generated, then we are done.

(Hall) up to finite index, $F_2 = \langle t \rangle *$ (something).

 $H_1(P \cap F_1)$ is a direct summand of $H_1(F_2, H_1(P \cap F_1))$ so it has finite rank.

However, this deduction fails for Lie algebras.

3. CONVERSES - 1-2-3 THEOREM

If $A \hookrightarrow G_A \stackrel{\pi_A}{\twoheadrightarrow} Q$ and $B \hookrightarrow G_B \stackrel{\pi_B}{\twoheadrightarrow} Q$, with $P = \text{fibre product}.$

 G_A , G_B finitely generated, *Q* finitely presented \implies *P* finitely generated.

Theorem (1-2-3 Theorem, Baumslag, Bridson, Miller, Short, Howie)**.** *A finitely generated,* G_A , G_B *finitely presented,* Q *of type* $\mathcal{F}_3 \implies P$ *finitely presented.*

Theorem: this also holds for Lie algebras.

Remark.

- Used to produce a Mihailova $P \leq \Gamma \times \Gamma$ (with Γ hyperbolic), and *P* finitely presented.
- Used to prove converses of (ii) (*Gⁱ* finitely presented).

 \Box

- There is a $n-(n + 1)-(n + 2)$ conjecture (*A* type \mathcal{F}_n , G_A and G_B type \mathcal{F}_{n+1} and *Q* of type $\mathcal{F}_{n+2} \implies P$ of type \mathcal{F}_{n+1}).
- Kuckuck \rightarrow partial progress.

Group case, π_2 (2-Cayley complex), $Q \mathcal{F}_3$.

Audience question: FP_2 and finitely presented different for Lie algebras? Yes.

Audience question: are there RAAGs for Lie algebras? Not yet.

Audience question: how do you avoid needing Marshall Hall's theorem in the Lie algebra case? *H*₁(*F*₂, *V*) finite rank. $\exists t \in F_2$, *tV* finite dimension \rightsquigarrow dim *V* finite.