Irreducible affine isometric actions

Bachir Bekka

MSRI, December 6, 2016

Plan

- **1** I. Irreducible affine isometric actions : general facts
- **2** II. Characterizations of irreducible affine isometric actions
- **③** III. Space of 1-cocycles as Hilbert space
- IV. Space of harmonic cocyles as von Neumann algebra module

Based in part on joint work with T. PILLON AND A. VALETTE

Actions by affine isometries

Let G be a locally compact group, \mathcal{H} a (real or complex) Hilbert space and

 $\alpha: \mathcal{G} \to \mathsf{Isom}(\mathcal{H})$

an action by affine isometries; α is given by

- a unitary representation $\pi: \mathcal{G}
 ightarrow \mathcal{U}(\mathcal{H})$ and
- a 1-cocycle with coefficients in π, that is, a continuous mapping b : G → H such that

$$b(gh) = b(g) + \pi(g)b(h)$$
 for all $g, h \in G$.

Conversely : a unitary representation (π, \mathcal{H}) and a 1-cocycle *b* define an affine isometric action $\alpha_{\pi,b}$ through :

$$lpha_{\pi,b}(g)v = \pi(g)v + b(g)$$
 for all $g \in G, v \in \mathcal{H}$.

Actions by affine isometries

A coboundary is a cocycle of the form ∂_v for some $v \in \mathcal{H}$, where

$$\partial_{v}(g) = \pi(g)v - v$$
 for all $g \in G$.

The space $Z^1(G, \pi)$ of 1-cocycles is a vector space containing $B^1(G, \pi)$ as linear subspace. The 1-cohomology of G with coefficients in π is

$$H^{1}(G,\pi) = Z^{1}(G,\pi)/B^{1}(G,\pi)$$

Irreducible actions by affine isometries

Let $\alpha : \mathcal{G} \to \text{Isom}(\mathcal{H})$ be an action by affine isometries.

Definition

(Neretin 1997) The action α is *irreducible* if \mathcal{H} has no non-empty, closed and proper $\alpha(G)$ -invariant affine subspace.

Examples

Let $\pi : G \to \mathcal{U}(\mathcal{H})$ be an *irreducible* unitary representation of G and $b \in Z^1(G, \pi)$; then $\alpha = \alpha_{\pi,b}$ is irreducible if and only if $b \notin B^1(G, \pi)$.

Remark

- If G has Property (T), then H¹(G, π) = 0 for every π (Delorme-Guichardet 1972-1977) and so G has no irreducible actions by isometries on Hilbert spaces.
- If G is σ -compact and does not have Property (T), then $H^1(G, \pi) \neq 0$ for some *irreducible* representation π (Shalom 2000) and so has an irreducible actions by isometries on a Hilbert space.

Examples-continued

- Let $b: G \to \mathcal{H}$ be a continuous homomorphism; then $\alpha = \alpha_{\mathrm{I}d,b}$ is irreducible if and only if $\mathrm{Span}(b(G))$ is dense in \mathcal{H} .
- Let G = R², and α₁, α₂ : G → Isom(R) defined by the homomorphisms b₁, b₂ : G → R given by b₁(x, y) = x, b₂(x, y) = y. Then

$$\alpha_1 \oplus \alpha_2 : G \to \operatorname{Isom}(\mathbb{R}^2)$$

is irreducible.

A sample application to ℓ^2 -Betti numbers

Theorem

(B., Pillon, Valette) Let Γ be cocompact lattice in a non amenable Lie group G. Then

$$eta_{(2)}^1(\Gamma) \geq \operatorname{covol}(\Gamma) \sum_{\sigma \in \widehat{G}_d} d_\sigma \cdot \dim_{\mathbf{C}} H^1(G, \sigma)$$

where \widehat{G}_d is the set of all square-integrable irreducible unitary representations of G.

Characterization of irreducible affine actions

Let $\pi : G \to \mathcal{U}(\mathcal{H})$ be a unitary representation of G, $b \in Z^1(G, \pi)$, and $\alpha = \alpha_{\pi,b}$ the corresponding action by isometries. Observe that $\operatorname{Span}(b(G))$ is $\alpha(G)$ -invariant.

Proposition

(B., Pillon, Valette) The following properties are equivalent :

- $\alpha = \alpha_{\pi,b}$ is irreducible;
- $\operatorname{Span}((b + \partial_v)(G))$ is dense in \mathcal{H} for every $v \in \mathcal{H}$.

Quick proof : $\alpha_{\pi,b+\partial_{V}}(g) = t_{v}^{-1}\alpha_{\pi,b}(g)t_{v}$, where t_{v} is translation by v.

Characterization of irreducible affine actions-continued

Let $\alpha : G \to \text{Isom}(\mathcal{H})$ be an action by affine isometries.

Proposition

"Schur's Lemma" (B., Pillon, Valette) The following properties are equivalent.

- α is irreducible.
- every affine map $\mathcal{H} \to \mathcal{H}$ which commutes with all $\alpha(g), g \in G$, is a translation (along $\mathcal{H}^{\pi(G)}$).

Admissible probability measures

Let G be a locally compact group, generated by a compact symmetric subset Q. Let $|\cdot|_Q$ be the corresponding word distance on G :

$$|g|_Q = \min\{n \in \mathbf{N} : g \in Q^n\}.$$

Definition

A probability measure μ on G is admissible if it has the following properties :

- μ is symmetric;
- μ is absolutely continuous w.r.t. Haar measure;
- μ is adapted : its support generates G;
- μ has a second moment : $\int_G |x|_Q^2 d\mu(x) < \infty$.

The space of 1-cocycles as Hilbert space

Let μ an admissible measure and (π, \mathcal{H}) a unitary representation of G; then $b \in L^2(G, \mathcal{H}, \mu)$ for every $b \in Z^1(G, \pi)$.

This follows from the fact that $||b(x)|| \leq C|x|_Q$, for $C = \sup_{q \in Q} ||b(q)||$.

Proposition

(Guichardet 1972, Ozawa-Erschler 2016) $Z^1(G,\pi)$ is a closed subspace of $L^2(G,\mathcal{H},\mu)$.

This follows from the fact that the topology of $Z^1(G, \pi)$ (uniform convergence on compact subsets) is given by

the norm $\|b\|_Q := \sup_{q \in Q} \|b(q)\|$ and the fact $\|b\|_Q$ is equivalent to the $L^2(G, \mathcal{H}, \mu)$ -norm.

Harmonic cocycles

The adjoint of the map $\partial : \mathcal{H} \to Z^1(G, \pi), v \mapsto \partial_v \text{ is } -\frac{1}{2}M_\mu$, with $M_\mu : Z^1(G, \pi) \to \mathcal{H}$ given by

$$M_{\mu}b:=\int_{G}b(x)d\mu(x)$$

The orthogonal complement $B^1(G,\pi)^{\perp}$ in $Z^1(G,\pi)$ can therefore be identified with the space of harmonic cocycles :

Definition

A cocycle $b \in Z^1(G, \pi)$ is μ -harmonic if $M_{\mu}(b) = 0$, that is, $\int_G b(x)d\mu(x) = 0$. Let $\operatorname{Har}_{\mu}(G,\pi)$ be the space of μ -harmonic cocyles in $Z^{1}(G,\pi)$; then

$$\operatorname{Har}_{\mu}(G,\pi)\cong \overline{H}^{1}(G,\pi)=Z^{1}(G,\pi)/\overline{B^{1}(G,\pi)}$$

The *commutant* of $\pi(G)$ is

$$\pi(G)' = \{T \in B(\mathcal{H}) : T\pi(g) = \pi(g)T \text{ for all } g \in G\};$$

this is a von Neumann algebra.

Crucial observation

 $\operatorname{Har}_{\mu}(G,\mu)$ is a module over $\pi(G)'$: if $b \in \operatorname{Har}_{\mu}(G,\mu)$ and $T \in \pi(G)'$, then $Tb \in \operatorname{Har}_{\mu}(G,\mu)$, where

$$Tb(g) = T(b(g))$$
 for all $g \in G$.

Irreducibility of actions in terms of harmonic cocycles

Recall : a vector v in a module over a ring R is a *separating vector* for R if Tv = 0 for $T \in R$ implies T = 0.

Proposition

(Adapted from B., Pillon, Valette) Let $b \in \operatorname{Har}_{\mu}(G, \mu)$. The following properties are equivalent :

- $\alpha = \alpha_{\pi,b}$ is irreducible;
- *b* is a separating vector for the $\pi(G)'$ -module $\operatorname{Har}_{\mu}(G, \mu)$.

Irreducibility of actions for harmonic cocycles

Let $b \in \operatorname{Har}_{\mu}(G, \pi)$ be a μ -harmonic 1-cocycle.

Theorem

The affine action $\alpha_{\pi,b}$ is irreducible if and only if Span(b(G)) is dense.

On the proof : Use the $\pi(G)'$ -module structure of $\operatorname{Har}_{\mu}(G,\pi)$ to show that in fact

$$\operatorname{Span}(b(G)) = \bigcap_{b'} \operatorname{Span}(b'(G)),$$

where b' runs over the 1-cocycles in the cohomology class of b in $\overline{H}^1(G,\pi).$

Irreducibility of actions : arbitrary cocycles

Let $P_{\operatorname{Har}}: L^2(G, \mathcal{H}, \mu) \to \operatorname{Har}_{\mu}(G, \pi)$ be the orthogonal projection.

Corollary

Let $b \in Z^1(G, \pi)$. (i) If $\text{Span}(P_{\text{Har}}b(G))$ is dense in \mathcal{H} , then the affine action $\alpha_{\pi,b}$ is irreducible. (ii) In case $B^1(G, \pi)$ is closed in $Z^1(G, \pi)$, the converse holds.

Remark The converse does not hold in general if $B^1(G, \pi)$ is not closed : there exists an irreducible representation π of F_2 with $\overline{H}^1(F_2, \pi) = 0$ (Martin-Valette 2008) and so $\operatorname{Har}_{\mu}(G, \pi) = 0$. Since $H^1(F_2, \pi) \neq 0$, there exists $b \in Z^1(G, \pi)$ which is not a coboundary.

When is $B^1(G, \pi)$ closed?

Let (π, \mathcal{H}) be a unitary representation and \mathcal{H}_0 the orthogonal complement of the space $\mathcal{H}^{\pi(G)}$ of $\pi(G)$ -invariant vectors.

Proposition

(Guichardet 1972) $B^1(G,\pi)$ is closed in $Z^1(G,\pi)$ if and only if π has no almost invariant vectors in \mathcal{H}^0 .

The case where $\pi(G)'$ is a finite von Neumann algebra

Assume that $\mathcal M$ is a finite von Neumann algebra, with faithful normalized trace $\tau.$

Examples

- $\mathcal{M} = \mathcal{M}_n(\mathbf{C})$ with au normalized trace;
- M = λ_Γ(Γ)" ⊂ B(ℓ²(Γ)) the von Neumann algebra generated by the regular representation of a group Γ, with τ given by

$$\tau(T) = \langle T\delta_e, \delta_e \rangle.$$

The von Neumann dimension

Let $L^2(\mathcal{M})$ be the Hilbert space obtained from τ by the GNS construction. We identify \mathcal{M} with the subalgebra of $\mathcal{B}(L^2(\mathcal{M}))$ of operators given by left multiplication with elements from \mathcal{M} . The commutant of \mathcal{M} in $\mathcal{B}(L^2(\mathcal{M}))$ is $\mathcal{M}' = J\mathcal{M}J$, where $J : L^2(\mathcal{M}) \to L^2(\mathcal{M}), x \mapsto x^*$. The trace on \mathcal{M}' is defined by $\tau(JxJ) = \tau(x)$ for $x \in \mathcal{M}$. Every \mathcal{M} -module \mathcal{H} is given by a projection

$$P: L^2(\mathcal{M}) \otimes \ell^2(\mathbf{N}) \to \mathcal{H}$$

which commutes with \mathcal{M} . Can write $P = (P_{ij})_{i,j}$ as matrix with $P_{ij} \in \mathcal{M}'$. The von Neumann dimension of the \mathcal{M} -module \mathcal{H} is

$$\operatorname{dim}_{\mathcal{M}}\mathcal{H}=\sum_{i} au(P_{ii})$$
.

The harmonic cocycles as von Neumann module

Let (π, G) be a *factor* representation, that is $\mathcal{M} = \pi(G)'$ is a factor. Assume also that $B^1(G, \pi)$ is closed in $Z^1(G, \pi)$.

Theorem

(i) Case \mathcal{M} is of type I_{∞} or of type II_{∞} : there exists $b \in Z^1(G, \pi)$ such that $\alpha_{\pi,b}$ is irreducible if and only if the commutant of \mathcal{M} in $\mathcal{B}(\operatorname{Har}_{\mu}(G, \pi))$ is of type I_{∞} or II_{∞} respectively. (ii) Case \mathcal{M} is of type I_n for $n \in \mathbb{N}$ or of type II_1 : there exists

 $b \in Z^1(G, \pi)$ such that $\alpha_{\pi,b}$ is irreducible if and only if

 $\dim_{\mathcal{M}} \operatorname{Har}_{\mu}(G,\pi) \geq 1.$

(iii) Case \mathcal{M} is of type III and $\operatorname{Har}_{\mu}(G, \pi) \neq \{0\}$: there always exists $b \in Z^1(G, \pi)$ such that $\alpha_{\pi,b}$ is irreducible.

A wreath product example

Let $\Gamma = G \wr \mathbf{Z}$ be the wreath product of a finitely generated group G with \mathbf{Z} .

Let μ_1 be an admissible probability measure on G, μ_2 the uniform distribution on the generators ± 1 of **Z** and $\mu = (\mu_1 + \mu_2)/2$. Let (π, \mathcal{H}) be a unitary representation of G, viewed as representation of Γ . Then

$$\operatorname{Har}_{\mu}(\Gamma,\pi) = \operatorname{Har}_{\mu_1}(G,\pi) \oplus \mathcal{H}$$

and the action of the von Neumann algebra $\pi(\Gamma)' = \pi(G)'$ on $\operatorname{Har}_{\mu}(G,\mu)$ corresponds of $\pi(G)'$ on $\operatorname{Har}_{\mu_1}(G,\mu_1)$ and on \mathcal{H} .

Theorem

Assume that $H^1(G, \pi) = 0$ (this is the case, for instance, when G has Property (T). There exists an irreducible affine action of Γ with linear part π if and only if the representation π is cyclic.