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Plan

1 I. Irreducible affine isometric actions : general facts

2 II. Characterizations of irreducible affine isometric actions

3 III. Space of 1-cocycles as Hilbert space

4 IV. Space of harmonic cocyles as von Neumann algebra
module

Based in part on joint work with T. Pillon and A. Valette
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Actions by affine isometries

Let G be a locally compact group, H a (real or complex) Hilbert
space and

α : G → Isom(H)

an action by affine isometries ; α is given by

a unitary representation π : G → U(H) and

a 1-cocycle with coefficients in π, that is, a continuous
mapping b : G → H such that

b(gh) = b(g) + π(g)b(h) for all g , h ∈ G .

Conversely : a unitary representation (π,H) and a 1-cocycle b
define an affine isometric action απ,b through :

απ,b(g)v = π(g)v + b(g) for all g ∈ G , v ∈ H.
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Actions by affine isometries

A coboundary is a cocycle of the form ∂v for some v ∈ H, where

∂v (g) = π(g)v − v for all g ∈ G .

The space Z 1(G , π) of 1-cocycles is a vector space containing
B1(G , π) as linear subspace. The 1-cohomology of G with
coefficients in π is

H1(G , π) = Z 1(G , π)/B1(G , π) .
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Irreducible actions by affine isometries

Let α : G → Isom(H) be an action by affine isometries.

Definition

(Neretin 1997) The action α is irreducible if H has no
non-empty, closed and proper α(G )-invariant affine subspace.
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Examples

Let π : G → U(H) be an irreducible unitary representation of G
and b ∈ Z 1(G , π); then α = απ,b is irreducible if and only if
b /∈ B1(G , π).

Remark

If G has Property (T), then H1(G , π) = 0 for every π
(Delorme-Guichardet 1972-1977) and so G has no irreducible
actions by isometries on Hilbert spaces.

If G is σ-compact and does not have Property (T), then
H1(G , π) 6= 0 for some irreducible representation π (Shalom
2000) and so has an irreducible actions by isometries on a
Hilbert space.
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Examples-continued

Let b : G → H be a continuous homomorphism ; then
α = αId ,b is irreducible if and only if Span(b(G )) is dense in
H.
Let G = R2, and α1, α2 : G → Isom(R) defined by the
homomorphisms b1, b2 : G → R given by
b1(x , y) = x , b2(x , y) = y . Then

α1 ⊕ α2 : G → Isom(R2)

is irreducible.
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A sample application to `2-Betti numbers

Theorem

(B., Pillon, Valette) Let Γ be cocompact lattice in a non
amenable Lie group G . Then

β1
(2)(Γ) ≥ covol(Γ)

∑
σ∈bGd

dσ · dimC H1(G , σ) ,

where Ĝd is the set of all square-integrable irreducible unitary
representations of G .
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Characterization of irreducible affine actions

Let π : G → U(H) be a unitary representation of G , b ∈ Z 1(G , π),
and α = απ,b the corresponding action by isometries. Observe that
Span(b(G )) is α(G )-invariant.

Proposition

(B., Pillon, Valette) The following properties are equivalent :

α = απ,b is irreducible ;

Span((b + ∂v )(G )) is dense in H for every v ∈ H.

Quick proof : απ,b+∂v (g) = t−1
v απ,b(g)tv , where tv is translation by v.
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Characterization of irreducible affine actions-continued

Let α : G → Isom(H) be an action by affine isometries.

Proposition

“Schur’s Lemma”(B., Pillon, Valette) The following properties
are equivalent.

α is irreducible.

every affine map H → H which commutes with all
α(g), g ∈ G , is a translation (along Hπ(G)).
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Admissible probability measures

Let G be a locally compact group, generated by a compact
symmetric subset Q. Let | · |Q be the corresponding word distance
on G :

|g |Q = min{n ∈ N : g ∈ Qn}.

Definition

A probability measure µ on G is admissible if it has the following
properties :

µ is symmetric ;

µ is absolutely continuous w.r.t. Haar measure ;

µ is adapted : its support generates G ;

µ has a second moment :
∫
G |x |

2
Qdµ(x) <∞.
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The space of 1-cocycles as Hilbert space

Let µ an admissible measure and (π,H) a unitary representation of
G ; then b ∈ L2(G ,H, µ) for every b ∈ Z 1(G , π).

This follows from the fact that ‖b(x)‖ ≤ C |x|Q , for C = supq∈Q ‖b(q)‖.

Proposition

(Guichardet 1972, Ozawa-Erschler 2016) Z 1(G , π) is a closed
subspace of L2(G ,H, µ).

This follows from the fact that the topology of Z1(G , π) (uniform convergence on compact subsets) is given by

the norm ‖b‖Q := supq∈Q ‖b(q)‖ and the fact ‖b‖Q is equivalent to the L2(G ,H, µ)-norm.
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Harmonic cocycles

The adjoint of the map ∂ : H → Z 1(G , π), v 7→ ∂v is −1

2
Mµ, with

Mµ : Z 1(G , π) → H given by

Mµb :=

∫
G

b(x)dµ(x) .

The orthogonal complement B1(G , π)⊥ in Z 1(G , π) can therefore
be identified with the space of harmonic cocycles :

Definition

A cocycle b ∈ Z 1(G , π) is µ-harmonic if Mµ(b) = 0, that is,∫
G b(x)dµ(x) = 0.
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Let Harµ(G , π) be the space of µ-harmonic cocyles in Z 1(G , π);
then

Harµ(G , π) ∼= H
1
(G , π) = Z 1(G , π)/B1(G , π) .

The commutant of π(G ) is

π(G )′ = {T ∈ B(H) : Tπ(g) = π(g)T for all g ∈ G};

this is a von Neumann algebra.

Crucial observation

Harµ(G , µ) is a module over π(G )′ : if b ∈ Harµ(G , µ) and
T ∈ π(G )′, then Tb ∈ Harµ(G , µ), where

Tb(g) = T (b(g)) for all g ∈ G .
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Irreducibility of actions in terms of harmonic cocycles

Recall : a vector v in a module over a ring R is a separating vector
for R if Tv = 0 for T ∈ R implies T = 0.

Proposition

(Adapted from B., Pillon, Valette) Let b ∈ Harµ(G , µ). The
following properties are equivalent :

α = απ,b is irreducible ;

b is a separating vector for the π(G )′-module Harµ(G , µ).
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Irreducibility of actions for harmonic cocycles

Let b ∈ Harµ(G , π) be a µ-harmonic 1-cocycle.

Theorem

The affine action απ,b is irreducible if and only if Span(b(G )) is
dense.

On the proof : Use the π(G )′-module structure of Harµ(G , π) to show
that in fact

Span (b(G )) =
⋂
b′

Span (b′(G )),

where b′ runs over the 1-cocycles in the cohomology class of b in

H
1
(G , π).
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Irreducibility of actions : arbitrary cocycles

Let PHar : L2(G ,H, µ)→ Harµ(G , π) be the orthogonal projection.

Corollary

Let b ∈ Z 1(G , π).
(i) If Span(PHar b(G )) is dense in H, then the affine action απ,b is
irreducible.
(ii) In case B1(G , π) is closed in Z 1(G , π), the converse holds.

Remark The converse does not hold in general if B1(G , π) is not closed :

there exists an irreducible representation π of F2 with H
1
(F2, π) = 0

(Martin-Valette 2008) and so Harµ(G , π) = 0. Since H1(F2, π) 6= 0,

there exists b ∈ Z 1(G , π) which is not a coboundary.
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When is B1(G , π) closed ?

Let (π,H) be a unitary representation and H0 the orthogonal
complement of the space Hπ(G) of π(G )-invariant vectors.

Proposition

(Guichardet 1972) B1(G , π) is closed in Z 1(G , π) if and only if π
has no almost invariant vectors in H0.
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The case where π(G )′ is a finite von Neumann algebra

Assume that M is a finite von Neumann algebra, with faithful
normalized trace τ.

Examples

M = Mn(C) with τ normalized trace ;

M = λΓ(Γ)′′ ⊂ B(`2(Γ)) the von Neumann algebra generated
by the regular representation of a group Γ, with τ given by

τ(T ) = 〈T δe , δe〉.
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The von Neumann dimension

Let L2(M) be the Hilbert space obtained from τ by the GNS
construction. We identify M with the subalgebra of B(L2(M)) of
operators given by left multiplication with elements from M. The
commutant of M in B(L2(M)) is M′ = JMJ, where
J : L2(M)→ L2(M), x 7→ x∗. The trace on M′ is defined by
τ(JxJ) = τ(x) for x ∈M.
Every M-module H is given by a projection

P : L2(M)⊗ `2(N)→ H

which commutes with M. Can write P = (Pij)i ,j as matrix with
Pij ∈M′. The von Neumann dimension of the M-module H is

dimMH =
∑

i

τ(Pii ) .
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The harmonic cocycles as von Neumann module

Let (π,G ) be a factor representation, that is M = π(G )′ is a
factor. Assume also that B1(G , π) is closed in Z 1(G , π).

Theorem

(i) Case M is of type I∞ or of type II∞ : there exists
b ∈ Z 1(G , π) such that απ,b is irreducible if and only if the
commutant of M in B(Harµ(G , π)) is of type I∞ or II∞
respectively.
(ii) Case M is of type In for n ∈ N or of type II1 : there exists
b ∈ Z 1(G , π) such that απ,b is irreducible if and only if

dimMHarµ(G , π) ≥ 1.

(iii) Case M is of type III and Harµ(G , π) 6= {0} : there always
exists b ∈ Z 1(G , π) such that απ,b is irreducible.
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A wreath product example

Let Γ = G o Z be the wreath product of a finitely generated group
G with Z.
Let µ1 be an admissible probability measure on G , µ2 the uniform
distribution on the generators ±1 of Z and µ = (µ1 + µ2)/2. Let
(π,H) be a unitary representation of G , viewed as representation
of Γ. Then

Harµ(Γ, π) = Harµ1(G , π)⊕H

and the action of the von Neumann algebra π(Γ)′ = π(G )′ on
Harµ(G , µ) corresponds of π(G )′ on Harµ1(G , µ1) and on H.

Theorem

Assume that H1(G , π) = 0 (this is the case, for instance, when G
has Property (T). There exists an irreducible affine action of Γ
with linear part π if and only if the representation π is cyclic.
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