Glueing together copies of amenable groups

Kate Juschenko

Northwestern University

Joint with Harald Helfgott

An introduction to sofic groups

Hamming distance on S(n): $d(\sigma_1, \sigma_2) = |\{i : \sigma_1(i) \neq \sigma_2(i)\}|$.

Definition (Weiss)

A group Γ is sofic (Hebrew: סופי) if for every finite set $F \subseteq \Gamma$, $e \in \Gamma$ and every $\epsilon > 0$ there exist $n \in \mathbb{N}$ and a map $\phi : F \to S(n)$ such that the following conditions hold:

$$\bullet \ \phi(e) = id_n,$$

- ► $d(\phi(gh), \phi(g)\phi(h)) < \epsilon$ for all g, h, such that $gh \in F$,
- φ(g) does not have fixed points, i.e. d(φ(g), e) = 1, for
 every g ∈ F \{e}.

We will call such a ϕ an (F, ϵ)-approximation of Γ .

Hamming distance on S(n): $d(\sigma_1, \sigma_2) = \frac{1}{2} |\{i : \sigma_1(i) \neq \sigma_2(i)\}|.$

Definition (Gromov)

An edge colored graph G = (V, E) is *initially subamenable* (or sofic) if for every $r \in \mathbb{N}$, $\varepsilon > 0$ and for every ball $B_r(G)$ of radius r in G there exists an edge-colored finite graph G' = (E', V') and a finite set W in V' such that

- 1. *G'* is *r*-locally isometric to *G*. That is all *r*-balls $B_r(G', w)$ around every point $w \in W$ are isomorphic (as colored graphs) to $B_r(G)$.
- 2. *W* is (1ε) -large with respect to *V*, i.e. $|W| > (1 \varepsilon)|V|$.

Properties of sofic groups

- A subgroup of a sofic group is sofic.
- A group is sofic if and only if all finitely generated subgroups are sofic.
- A direct product of sofic groups is again sofic.
- A direct limit of sofic groups is sofic.

Examples

- Finite groups;
- residually finite groups;
- amenable group;
- initially subamenable, i.e., for every finite set *F* in Γ there is an injective map φ from *F* to an amenable group such that if *x*, *y* and *xy* are in *F* then φ(*xy*) = φ(*x*)φ(*y*);
- sofic-by-amenable groups, i.e., Γ has a sofic normal subgroup N such that Γ/N is amenable;
- free products of sofic groups amalgamated over amenable subgroup.

In the perfect world where all groups are sofic... the following are true:

Connes' embedding problem:

Every II_1 -factor embeds into \mathcal{R}^{ω}

Kaplanski's direct finiteness conjecture:

Let *K* be a field and Γ be a group (can be assumed finitely generated). Does the equality ab = e implies ba = e for every *a*, *b* in *K*[Γ]?

Fuglede-Kadison determinant conjecture: In det(Λ) \geq 0 for every positive $\Lambda \in M_d(\mathbb{Z}\Gamma) \subset M_d(L\Gamma)$.

Let *N* be a von Neumann algebra with a faithful normal trace τ . The spectral density function associated to a positive operator $\Delta \in N$ is a function $F_{\Delta} : \mathbb{R}_+ \to \mathbb{R}_+$ defined by

 $F_{\Delta}(\lambda) = \tau(\chi_{[0,\lambda]}(\Delta)).$

Fuglede-Kadison determinant defined by

$$\ln \det_{N}(\Delta) = \begin{cases} \int_{0+}^{+\infty} \ln(\lambda) dF_{\Delta}(\lambda), \text{ if the integral converges,} \\ -\infty, \text{ otherwise.} \end{cases}$$

Definition

A discrete group *G* is *surjunctive* if, for every $k \in \mathbb{N}$, if one considers the left shift action $G \curvearrowright \{1, \ldots, k\}^G$ then every continuous *G*-equivariant injective map from $\{1, \ldots, k\}^G$ to itself is surjective.

Gottschalk's surjunctivity:

Is every countable discrete group surjunctive?

Does there exists a non-sofic group?

Higman group

 H_4 is the group generated by elements a_1 , a_2 , a_3 , a_4 subject to the following relations:

Composed from Baumslag-Solitar group

$$BS(1,2) = \langle a, b : b^{-1}ab = a^2 \rangle$$

Why Higman group?

Theorem (Higman)

Every homomorphism of H₄ into a finite group is trivial.

Consider the following semidirect product:

$$H_4 \rtimes \mathbb{Z}/4\mathbb{Z}$$

by letting $\mathbb{Z}/4\mathbb{Z}$ act on H_4 as follows: we choose a generator t of $\mathbb{Z}/4\mathbb{Z}$, and we let $t(a_i) = a_{i+1}$ for i = 1, 2, 3, $t(a_4) = a_1$.

$$H_4 \rtimes \mathbb{Z}/4\mathbb{Z} = \langle a, t : b^{-1}ab = a^2, b = t^{-1}at \rangle.$$

Simplified argument of Higman:

|a| = |b| = n, $b^{-n}ab^n = a^{2^n}$, thus *n* divides $2^n - 1$ which is a contradiction.

Let *G* be a group. An invariant length function is a map $I: G \rightarrow [0, 1]$ such that I(g) = 0 if and only if g = e, and

 $I(gh) \le I(g) + I(h), I(g^{-1}) = I(g), \text{ and } I(gh) = I(hg),$

for all $g, h \in G$. It is called *commutator contractive* if

 $l([g,h]) \leq 4l(g)l(h)$, for all $g,h \in G$.

Hamming metric is not commutator contractive. Example of commutator contractive metric: $\frac{1}{2}||1 - g||, g \in U(H)$.

Theorem (A. Thom, '10)

Higman's group does not embed into a metric ultraproduct of finite groups with a commutator-contractive invariant length function.

Higman group is SQ-universal, i.e., every countable group can be embedded in one of its quotient groups.

Theorem (Helfgott-Juschenko)

Higman group H_4 is sofic then for any $\epsilon > 0$, there is an p and a bijection $f : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ such that

$$f(x+1) = 2f(x)$$
 (1)

for at least $(1 - \epsilon)n$ elements x of $\mathbb{Z}/p\mathbb{Z}$ and

$$f(f(f(x))) = x$$
 (2)

for all $x \in \mathbb{Z}/p\mathbb{Z}$.

Sofic approximations of amenable groups

Let G be an amenable group generated by a finite symmetric set S, and

$$e \in F_1 \subset F_2 \subset \ldots \subset F_k \subset \ldots \subset G$$

such that $|sF_j\Delta F_j| \le |F_j|/j$ for all $s \in S$ and all $j \ge 1$. In addition, we assume that given any $\eta > 0$ we have

$$|(F_{j-1}^{-1}F_j)\setminus F_j|\leq \eta|F_j|$$

for all j > 1, simply by replacing $\{F_j\}_{j \ge 1}$ by a subsequence.

Lemma (Analog of Ornstein-Wiess, Kerr-Li)

For any $\epsilon, \kappa > 0$, there are $k \ge 1$ and $\lambda_1, \ldots, \lambda_k \in (0, 1]$ with $1 - \epsilon \le \lambda_1 + \cdots + \lambda_k \le 1$ such that the following holds. For any infinite sequence of finite subsets

$$e \in F_1 \subset F_2 \subset \ldots \subset F_k \subset \ldots \subset G$$

satisfying the above for $\eta = 1$, there are $\delta > 0$, $N \ge 1$ and a finite set $S \subset G$ such that, if $\phi : S \to Sym(n)$ is an (S, δ, n) -sofic approximation with $n \ge N$, there exist $C_1, \ldots, C_k \subset \{1, \ldots, n\}$ such that

- 1. the sets $\phi(F_1)C_1, \ldots, \phi(F_k)C_k$ are pairwise disjoint,
- 2. for every $1 \le j \le k$ and every $c \in C_j$, the map $s \mapsto \phi(s)c$ from F_j to $\phi(F_j)c \subset \{1, \ldots, n\}$ is injective,

Følner sets of BS(1,2): $F_n = \{b^i a^j : 0 \le i \le n, 0 \le j \le 2^n\}$

Lemma (Rokhlin)

Let T be a measure-preserving ergodic transformation on \mathbb{R}/\mathbb{Z} . Then, for any k > 0 and any $\epsilon > 0$, there exists a measurable set E such that $\mu(T^{-i}(E) \cap T^{-j}(E)) = 0$ for all $0 \le i < j < k$ and $\mu(\cup_{0 \le i < k} T^{-i}(E)) > 1 - \epsilon$.

It is sufficient to prove that we can re-numerate *m* disjoint copies of F_n so that the action of ϕ will have the form

$$\phi(a)(x) = x + 1 \mod n, \quad \phi(b)(x) = x/2 \mod n$$

at $(1 - \epsilon)$ -every $x \in \{0, ..., n - 1\}$ Apply Rohklin lemma to $T : x \mapsto 2x$.

Obs: If $I \subset [0, n)$ is a (closed-open) subinterval, then $T^{-1}(I)$ is a union of two disjoint subintervals I/2 and I + n/2

Theorem (Helfgott-Juschenko)

Higman group H_4 is sofic then for any $\epsilon > 0$, there is an p and a bijection $f : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ such that

$$f(x+1) = 2f(x)$$
 (3)

for at least $(1 - \epsilon)n$ elements x of $\mathbb{Z}/p\mathbb{Z}$ and

$$f(f(f(f(x)))) = x$$
 (4)

for all $x \in \mathbb{Z}/p\mathbb{Z}$.

Using methods of p-adic analysis of Holdman-Robinson we obtained:

Theorem

Let a bijection $f:\mathbb{Z}/3^r\mathbb{Z}\mapsto\mathbb{Z}/3^r\mathbb{Z},\,r\geq 1$ be given. Then

either $f(x+1) \neq 2f(x)$ or $f(f(f(x))) \neq x$ (5)

for at least $3^{r/4-1}$ values of $x \in \mathbb{Z}/3^r\mathbb{Z}$.

Thank you!