Strong boundedness and distortion in transformation groups

Kathryn Mann UC Berkeley

Joint work with F. Le Roux (Inst. Math. Jussieu)

Theorem (Higman–Neumann-Neumann) Γ countable group. There is a finitely generated group *H* (generated by two elements) with $\Gamma \subset H$. Higman embedding theorem: Γ countable group. There is a finitely generated group Hwith $\Gamma \subset H$.

Relative version: Fix an (uncountable) group G. (e.g. Lie group, automorphism group, homeomorphism group) Let $\Gamma \subset G$ be countable. Is there a finitely generated $H \subset G$ with $\Gamma \subset H$?

Examples of G where the answer is always positive?

PROBLEM 111: SCHREIER

Does there exist an uncountable group with the property that every countable sequence of elements of this group is contained in a subgroup which has a finite number of generators? In particular, do the groups S_{∞} and the group of all homeomorphisms of the interval have this property?

(circa 1935)

111) Problemat. Schreiee. Dry istnieje grupa niepnelicralne o tej własuwie, że kardy ciąg przedinalny elementów tej grupy zawarty jest w podgrupie o skońcronej ilośni two: rayour W srerejohusini, ang wousnosi to positiche gruppe Soo, Marb grupa homeoniorfizius odainka.

Answers

Theorem (implicit in Sabbagh (1975) using Scott (1951)) *Groups with this property exist.*

Theorem (Galvin, 1995) S_{∞} has this property.

Theorem (Le Roux – M., 2016) Homeo(1) has this property. So does $Homeo_0(M)$ and $Diff_0(M)$ for any manifold M.

... and in many cases, this is a consequence of something stronger

Related concepts

Serre's (FA): i) G doesn't split, ii) doesn't have a \mathbb{Z} quotient, and iii) G finitely generated.

Related concepts

Serre's (FA):
i) G doesn't split, ii) doesn't have a Z quotient, and
iii) G not a countable increasing union of proper subgroups implied by Schreier's property

(proof of contrapositive)

```
Suppose G = \bigcup G_n, with G_0 \subsetneq G_1 \subsetneq G_2 \subsetneq ...
choose g_i \in G_{i+1} \setminus G_i.
\{g_n\} not in any f.g. subgroup. \Box
```

First examples by Koppelberg–Tits '74. Many recent examples, starting with Bergman '04.

Related concepts

Definition

 $\begin{array}{l} G \text{ has strong boundedness if every length function } G \to [0,\infty) \text{ is} \\ \text{bounded.} \qquad \qquad \ell(g^{-1}) = \ell(g), \ \ell(id) = 0, \ \ell(gh) \leq \ell(g) + \ell(h) \end{array}$

 \Leftrightarrow any isometric action of G on a metric space has bounded orbits.

Definition

G has *strong distortion* if $\exists M$ and sequence $w_n \to \infty$ such that, for any $\{g_n\} \subset G$, have *M*-element set $S \subset G$ generating this sequence, and $|g_n|_S < w_n$.

 $\Rightarrow \mathsf{subgroup}\ \mathsf{distortion}$

For examples see [1], [4]

Distortion in transformation groups

Distortion of $G \subset \text{Diff}(M) \leftrightarrow \text{dynamics of action of } G$.

Distortion in transformation groups

• fixed points (Franks–Handel 2006):

 $f \in \text{Diff}(\Sigma)$, preserves μ , and distorted in some f.g. subgroup. Then supp $(\mu) \subset \text{fix}(f)$.

- growth of derivatives (Calegari-Freedman)
 f(x) = x, ||Df_x|| > 0 i.e. has eigenvalue of norm ≠ 1
 ⇒ ⟨f⟩ not distorted in any f.g. subgroup. of Diff(M), M compact
 ℓ(f) := ||Df|| is unbounded length function on Diff(M)
- "stretch" $\ell(f) := \sup_{x,y \in \tilde{M}} |d(\tilde{f}(x), \tilde{f}(y)) d(x, y)|$

unbounded on Homeo(M) if $\pi_1(M)$ infinite.

• Much more... Polterovich [11], Hurtado [8], Gromov [5], etc.

Our results

Theorem (Le Roux – M.) Diff^r(\mathbb{R}^n) has strong distortion. $r \neq n+1$ Given sequence g_n , can build S with |S| = 17 and $|g_n|_S \leq 50n + 24$. surely non optimal!

Open question: Minimum |S|? Obstruction to |S| = 2?

Theorem false for:

- $r \geq 1$, M compact,
- r = 0, $\pi_1(M)$ infinite

but...

Our results

Theorem (Le Roux – M.)

M compact, or homeomorphic to interior of compact manifold. Given $g_n \subset \text{Diff}^r(M)$, can build finite *S* that generates all g_n (no control on word length).

Consequences:

1. Can do G.G.T. for countable subgroups (by including in f.g. subgroup).

Remark: G.G.T. / large-scale geometric concepts make sense in $Homeo_0(M)$ by [Mann-Rosendal 15]

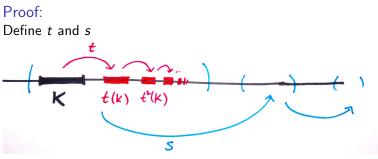
2. These groups are all topologically f.g., have countable dense subgroup.

3. "natural" examples of groups with Schreier's property

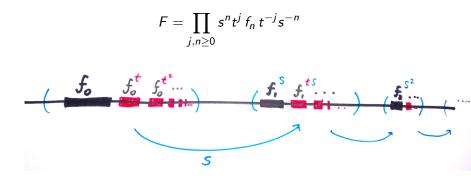
Proving strong distortion

Easy case: $G = \text{Diff}^{0}(\mathbb{R})$. ($\cong \text{Homeo}(I)$, Schrier's question)

Classical trick (G. Fisher '60) $\{f_n\}$ supported in $K \text{ compact} \subset \mathbb{R} \Rightarrow$ generated by s, t, F.



Now define F consisting of (conjugate) copies of f_n



Check: $F \circ (tF^{-1}t^{-1}) = f_0$.

Make f_n by conjugating by power of s first: $f_n = [F^{s^{-n}}, t]$

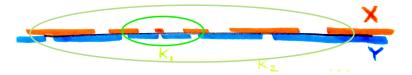
Proving strong distortion

Lemma

Given $\{f_n\}$ sequence in Homeo₊(\mathbb{R}). Can find X, Y $\subset \mathbb{R}$ (unions of disjoint intervals) such that

 $f_n = g_n h_n k_n$

 $\operatorname{supp}(g_n) \subset X$, $\operatorname{supp}(h_n) \subset Y$ and $\operatorname{supp}(k_n)$ compact.



idea of proof: $I \cup f(I) \subset J \Rightarrow$ can find g agreeing with f on I and identity outside neighborhood of J.

Proving strong distortion

Lemma

Given $\{f_n\}$ sequence. Can find X, $Y \subset \mathbb{R}$ (unions of disjoint intervals) such that

 $f_n = g_n h_n k_n$

 $\operatorname{supp}(g_n) \subset X$, $\operatorname{supp}(h_n) \subset Y$ and $\operatorname{supp}(k_n)$ compact.

Now use classical trick three times:

1. Find d so that $d^n k_n d^{-n}$ supported in [0, 1]. \rightsquigarrow classical trick. $|d^n k_n d^{-n}|_S \le 4n + 4.$

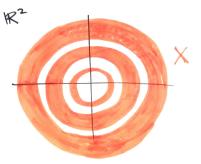
2. Trick works for X rather than K, so $g_n = [G^{s^{-n}}, t]$ for some $s, t, G, \Rightarrow g_n$ has length 4n + 4 in finite set.

3. Same for Y, h_n .

 \Box distortion for Homeo₀(\mathbb{R})

Other (less easy) cases

• Homeo₀(\mathbb{R}^n), Diff₀(\mathbb{R}^n) can also do $f_n = g_n h_n k_n$



...but need to use annulus theorem in higher dimensions.

More difficulty for Diff₀(ℝⁿ)
 (classical trick doesn't produce diffeomorphisms)

$\operatorname{Diff}_0^r(\mathbb{R}^n)$ and $\operatorname{Diff}_0^r(M)$ case

Tools:

- Simplicity of $\text{Diff}_{c}^{r}(M)$, $r \neq \dim(M) + 1$.
- Fragmentation: f close to identity \Rightarrow product of diffeomorphisms supported on elements of open cover

Related: Fragmentation norm

• Replacement of classical trick using idea inspired by Avila + Construction of Burago-Ivanov-Polterovich + technical work

Open questions:

• Is Homeo($\mathbb{R}P^2$) strongly bounded? If not, is there a natural length function on this group?

Is it strongly bounded as a *topological group* (all *continuous* length functions bounded?)

• Schreier's property for other groups?

Major motivating problem:

• Characterize length functions on Diff(M) up to QI. Is there a maximal word metric? (known for Homeo(M) by [10]). Properties of / examples of sequences $\{f_n\} \subset \text{Diff}(M)$ with linear (or subexponential, etc...) growth w.r.t. all finite generating sets?

Some references

- G. Bergman, *Generating infinite symmetric groups*, Bul. LMS 38.3 (2006), 429-440. (also contains many references to examples of others)
- D. Burago, S. Ivanov, L. Polterovich, Conjugation-invariant norms on groups of geometric origin, Adv. Studies in Pure Math. 52, Groups of Diffeomorphisms (2008) 221-250.
- [3] D. Calegari and M. H. Freedman, Distortion in transformation groups, With an appendix by Yves de Cornulier. Geom. Topol. 10 (2006), 267-293.
- Y. de Cornulier, Strongly bounded groups and infinite powers of finite groups, Communications in Algebra. 34.7 (2006) 2337-2345.
- [5] G. D'Ambra, M. Gromov, Lectures on transformations groups: geometry and dynamics, in Surveys in Differential Geometry, supplement to J. Diff. Geom., 1, (1991) 19-112.
- J. Franks, M. Handel, Distortion elements in group actions on surfaces, Duke Math. J. 131.3 (2006), 441-468.
- [7] F. Galvin, Generating countable sets of permutations, J. London Math. Soc. 51.2 (1995), 230-242.
- [8] S. Hurtado, Continuity of discrete homomorphisms of diffeomorphism groups, Geometry & Topology 19 (2015) 2117–2154.
- [9] F. Le Roux, K. Mann Strong distortion in transformation groups arXiv:1610.06720 [math.DS] 2016
- [10] K. Mann, C. Rosendal, The large-scale geometry of homeomorphism groups, Preprint. arXiv:1607.02106
- L. Polterovich Growth of maps, distortion in groups and symplectic geometry Invent. Math. 150 (2002) 655-686
- [12] G. Sabbagh, Sur les groupes que ne sont pas réunion d'une suite croissante de sous-groupes propres, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), A763–A766