Amenability, Group C^{*}-algebras and Operator spaces (WEP and LLP for $C^*(G)$)

> Gilles Pisier Texas A&M University

- 4 国 米 3

a mills

 299

э

E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group C^* -algebras. Invent. Math. $\bf 112$ (1993) , 449–489.

化重复 化重变

 QQ

A C^{*}-algebra is a closed self-adjoint subalgebra

 $A \subset B(H)$

of the space of bounded operators on a Hilbert space H An **operator space** is a (closed) subspace $E \subset A$ of a C^* -algebra I will restrict to unital C^* -algebras The norm on the $*$ -algebra A satisfies

 $\forall x, y \in A \quad ||xy|| \leq ||x|| ||y|| \quad ||x|| = ||x^*|| \quad ||x^*x|| = ||x||^2$

Such norms are called C^{*}-norms After completion (or if A is already complete): there is a unique C^* -norm on A

イタメ イヨメ イヨメー

Then any such A can be written as

 $A = \overline{\text{span}}[\pi(G)]$

for some discrete group G and some unitary representation

 $\pi: G \to B(H)$

of G on H Typical operator space

$$
E = \overline{\operatorname{span}}[\pi(S)] \quad S \subset G
$$

Throughout I will restrict to discrete groups

A BAY A BA

Tensor products

On the algebraic tensor product (BEFORE completion)

 $A \otimes B$

there is a minimal and a maximal C^* -norm denoted by

 $\Vert \Vert_{\text{min}}$ and $\Vert \Vert_{\text{max}}$

and in general

 $\| \cdot \|$ min $\leq \neq \| \cdot \|$ max

C ∗ -norms

 $\forall x, y \in A \quad ||xy|| \le ||x||||y|| \quad ||x|| = ||x^*|| \quad ||x^*x|| = ||x||^2$

KORK ERKER ADAM DI SAGA

Let A, B be C^* -algebras

Definition

The pair (A, B) is said to be a nuclear pair if the minimal and maximal C^* -norms coincide on the algebraic tensor product $A \otimes B$, in other words

$$
A\otimes_{\sf min} B=A\otimes_{\sf max} B
$$

Definition

A C^* -algebra A is called nuclear if this holds for ANY B

- 4 国 8 14

 $A_1 = \overline{\text{span}}[\pi(G_1)] \subset B(H_1)$ $A_2 = \overline{\text{span}}[\pi(G_2)] \subset B(H_2)$ for some unitary rep. $\pi_j: \mathsf{G}_j \rightarrow B(\mathsf{H}_j)$ then

$$
A_1\otimes_{\text{min}} A_2=\overline{\text{span}}[(\pi_1\otimes\pi_2)(G_1\times G_2)]\subset B(H_1\otimes H_2)
$$

Let

$$
\Pi=\oplus_{\rho}\pi_1.\pi_2:G_1\times G_2\to\mathcal{H}=\oplus_{\rho}H_{\rho}
$$

over all pairs $p = (\pi_1, \pi_2)$ of unitary rep. on the same H_p with commuting ranges, then

$$
A_1\otimes_{\mathsf{max}}A_2=\overline{\operatorname{span}}[\Pi(\mathsf{G}_1\times \mathsf{G}_2)]\subset B(\mathcal{H})
$$

 $\langle \overline{AB} \rangle$ $\langle \overline{B} \rangle$

Let us denote

$$
C^*_{\pi}(G) = \overline{\operatorname{span}}[\pi(G)] \subset B(H_{\pi})
$$

The fundamental cases of interest are

 $\pi = \lambda_G$

left regular rep. leading to the reduced C^* -algebra of G

 $C^*_\lambda(\mathsf{G}) \subset B(\ell_2(\mathsf{G}))$

and

 $\pi = \pi_{II}$

universal representation leading to the full C^* -algebra of G

$$
C^*(G)\subset B(\mathcal{H})
$$

Allen Market Street

Our main interest will be

 $C^*(G)$

$$
\mathbb{C}[G] \subset C^*(G)
$$

\n
$$
\forall x = \sum_{g \in G} x(g)g \in \mathbb{C}[G]
$$

\n
$$
||x||_{C^*(G)} = \sup_{\pi \in \widehat{G}} || \sum_{g \in G} x(g)\pi(g)||
$$

\n
$$
\forall x = \sum_{g \in G} x(g) \otimes g \in M_k \otimes \mathbb{C}[G] \quad (x(g) \in M_k)
$$

\n
$$
||x||_{M_k(C^*(G))} = \sup_{\pi \in \widehat{G}} || \sum_{g \in G} x(g) \otimes \pi(g)||_{M_k(B(H_{\pi}))}
$$

メロメ メ部メ メミメ メミメ

目

Let G_1, G_2 discrete groups

$$
\mathcal{C}^*(\mathit{G}_1)\otimes_{\max}\mathcal{C}^*(\mathit{G}_2)\simeq \mathcal{C}^*(\mathit{G}_1\times \mathit{G}_2)
$$

$$
\mathcal{C}_{\lambda}^*(G_1) \otimes_{\min} \mathcal{C}_{\lambda}^*(G_2) \simeq \mathcal{C}_{\lambda}^*(G_1 \times G_2).
$$

$$
C^*(\mathit{G}_1) * C^*(\mathit{G}_2) \simeq C^*(\mathit{G}_1 * \mathit{G}_2)
$$

 $C^*(G) \subset C^*_\lambda(G) \otimes_{\max} C^*_\lambda(G).$ diagonal embedding $x \mapsto x \otimes x$

∢ 何 ▶ 《 手 》 《 手 》 …

 \sim \sim

 299

重

Basic classical fact : G is amenable $\Leftrightarrow\, \mathcal{C}_{\lambda}^{*}(G)$ is nuclear $\Leftrightarrow \,$ $\mathsf{C}^{*}(\mathsf{G})$ is nuclear $\Leftrightarrow C^*_{\lambda}(G)=C^*(G)$

点 \sim - 4 重 8 - 4 重 8

 \leftarrow

 299

э

The fundamental pair

 $\mathcal{B} = B(\ell_2)$

or more generally $B(H)$ for a general Hilbert space H

$$
\mathcal{C}=\mathcal{C}^*(\mathbb{F}_{\infty})
$$

or more generally $C^*(\mathbb{F})$ for a general free group $\mathbb F$

Theorem (Kirchberg,1990's)

The pair $(\mathcal{B}, \mathcal{C})$ is a nuclear pair.

Definition

- A is WEP if (A, C) is a nuclear pair.
- A is LLP if (A, B) is a nuclear pair

Fundamental examples : β is WEP and β is LLP

Theorem (Kirchberg,1990's)

If A is LLP and B WEP then (A, B) is a nu[cle](#page-10-0)[ar](#page-12-0) [p](#page-10-0)[ai](#page-11-0)[r.](#page-12-0)

Definition

A discrete group G is said to be WEP (resp. LLP) if its full C^* -algebra $C^*(G)$ is WEP (resp. LLP)

```
It is known that WEP \nightharpoonup LLP ([JP,1995])
```
Main Open problem (Kirchberg's conjecture)

<mark>LLP⇒WEP</mark>

Equivalently:

Is any free group WEP?

This (easily) reduces to \mathbb{F}_2 WEP passes to subgroups (but not to C^* -subalgebras) and is determined by countable subgroups

∢ロト ∢母ト ∢ヨト ∢ヨト

Kirchberg's conjecture is true IFF the Connes embedding problem has a positive answer, This would imply the conjecture that every group G is hyperlinear

A group is "hyperlinear" if the von Neumann algebra M_G generated by λ_G embeds in the ultraproduct of a family of matrix algebras, (note: sofic implies hyperlinear) More explicitly: G is hyperlinear iff $\forall S \subset G$ finite, $\forall \varepsilon > 0 \exists N < \infty \exists \psi : G \to U_N$

where
$$
U_N = \{N \times N - \text{unitary matrices}\}
$$

such that

$$
\forall s, t \in S \quad N^{-1} \text{tr} |\psi(s)\psi(t) - \psi(st)|^2 < \varepsilon,
$$

and

$$
|N^{-1}\mathrm{tr}(\psi(e))-1|<\varepsilon\quad\text{and}\quad\forall\,t\in\mathcal{S},\,t\neq e\quad|N^{-1}\mathrm{tr}(\psi(t))|<\varepsilon.
$$

∢何 ▶ イヨ ▶ イヨ ▶ │

```
{amenable} ⊂ hyperlinear
                 { residually finite} ⊂ hyperlinear
                  (Connes, S. Wassermann 1976)
More generally
               {residually amenable} ⊂ hyperlinear
or even
              {residually hyperlinear} ⊂ hyperlinear
```

```
Non residually finite example:
The Baumslag-Solitar group
BS(3, 2) = <a, b | ab<sup>3</sup>a<sup>-1</sup> = b<sup>2</sup> >is hyperlinear (Radulescu 2008)
```
Burnside groups ?

Alban Alba

 Ω

Characterization of LLP groups

Let A be a (unital) C^* -algebra A mapping $f: G \rightarrow A$ is called positive definite if $\forall n, \forall t_1, \cdots, t_n \in G$

> $[f(t_i^{-1}]$ $[\sum_{i}^{-1} t_{j}] \in M_{n}(A)_{+}$

Proposition (Ozawa, 2001)

Let B/K denote the Calkin algebra A group G is LLP iff any unital positive definite

 $f: G \rightarrow \mathcal{B}/\mathcal{K}$

admits a unital positive definite lifting

$$
\tilde{f}:G\to\mathcal{B}
$$

More generally:

Let $\varphi : G \to \mathbb{C}$ be a positive definite function. Assume $\forall S \subset G$ finite, $\forall \varepsilon > 0 \exists N < \infty \exists \psi : G \to U_N$ such that

$$
\forall s,t\in S \quad \mathcal{N}^{-1} \mathrm{tr} |\psi(s)\psi(t)-\psi(st)|^2<\varepsilon,
$$

and

$$
|\varphi(t)-N^{-1}\mathrm{tr}(\psi(t))|<\varepsilon.
$$

If G is LLP then this approximation can be made by restrictions to S of positive definite functions $\psi: G \rightarrow M_N$

Application (hyperlinear or sofic case):

$$
\varphi(t)=\left\{\begin{array}{ll} 1 & \text{ if t=1} \\ 0 & \text{ otherwise } \end{array}\right.
$$

Hyperlinear + LLP \Rightarrow a reinforcement of the hyperlinear approximation

イタメ イヨメ イヨメー

```
{amenable} ∪ { free groups} ⊂ {LLP}
```
[and similarly for WEP if Kirchberg's conjecture is correct...] It is not easy to produce examples or counterexamples....besides those !

LLP passes to subgroups and to free products of LLP groups (P. 1996)

Open problem: Is $\mathbb{F}_2 \times \mathbb{F}_2$ LLP ?

Problem Find more examples of groups either with or without LLP !

メター・メモ トラモー

Let $K: G \times G \rightarrow \mathbb{C}$ be a kernel. We still denote by $K:\mathbb{C}[G]\times\mathbb{C}[G]\to\mathbb{C}$ the associated sesquilinear form antilinear (resp. linear) in the first (resp. second) variable. Let

$$
\mathbb{C}[G]_+ = \{a \mid \exists x \in \mathbb{C}[G] \mid a = x^*x\}
$$

We will say that K is **bipositive** if there is a mapping $T: G \rightarrow H$ such that

\n- (i)
$$
K(x, y) = \langle T(x), T(y) \rangle
$$
 (*K* is positive semi-definite)
\n- (ii) $\begin{cases} K(1, 1) = 1 \\ K(a, b) \geq 0 \ \forall a, b \in \mathbb{C}[G]_+ \\ \text{Then } K \text{ defines a state } f \text{ on } \mathbb{C}[G] \text{ and hence on } C^*(G) \text{ simply by } \end{cases}$
\n

$$
f(x) = K(1,x) = \langle T(1), T(x) \rangle
$$

同 ▶ ヨ ヨ ▶ ヨ ヨ ▶

K is called "self-polar" (cf. Woronowicz, 1973) on G if in addition the state f on $\mathbb{C}[G]$ defined by $f(a) = K(1, a)$ is such that the functionals of the form $x \mapsto K(b, x)$ with $0 \le b \le 1$ are pointwise dense in the set of those f' such that $0 \le f' \le f$. Then K extends to a state on $\overline{C^*(G)}\otimes C^*(G)$ Any bipositive kernel is dominated by some selfpolar one Self-polar kernels are "maximal" in the following sense: any bipositive kernel \mathcal{K}' with $\mathcal{K}'(1,x) \leq \mathcal{K}(1,x)$ $\forall x$ must satisfy $K'(x, x) \le K(x, x) \,\forall x$.

(cf. Woronowicz, 1973)

オート オート オート

 Ω

Example 1 Let *h* be Hilbert-Schmidt on H_{π} with $tr(h^*h) = 1$. Then

$$
K(x,y)=\mathrm{tr}(\pi(x)^*h^*\pi(y)h)
$$

− − − − − − − − − − − − − − − − −−

is bipositive.

When dim $(H_\pi) < \infty$ we call these *matricial* bipositive kernels.

Example 2 (generalization) Assume $\pi(G) \subset M$ with (M, τ) semifinite von Neumann algebra with trace τ Let $h \in L_2(\tau)$ be a unit vector. Then

$$
K(x,y)=\tau(\pi(x)^*h^*\pi(y)h)
$$

is bipositive.

In particular
$$
K(x, y) = \langle x, y \rangle_{\ell_2(G)}
$$
 $\pi = \lambda_G, h = 1$

医细胞 医细胞 医心包

Theorem

The following are equivalent

- (i) G is WEP (i.e. $C^*(G)$ is WEP)
- (ii) Any self-polar kernel is a pointwise limit of matricial bipositive kernels
- (iii) For any bipositive kernel K there is a net of matricial bipositive kernels K_{α} such that

 $K \leq \lim_{\alpha} K_{\alpha}$ on $G \times G$.

An important result of Taka Ozawa about the special case of \mathbb{F}_{∞} : To show $G = \mathbb{F}_{\infty}$ is WEP (i.e. Kirchberg's conjecture) it suffices to show (iii) above on $S \times S$ where S is the set of generators of $G = \mathbb{F}_{\infty}$

By Grothendieck's inequality one can prove that

 \bullet (iii)' For any bipositive kernel K there is a net of matricial bipositive kernels K_{α} such that (!)

$$
K \leq (4/\pi) \lim_{\alpha} K_{\alpha} \text{ on } S \times S_{\text{max}} \longrightarrow \text{ for } \text{ }
$$

This is closely related to an unpublished result due to Haagerup:

Theorem (Haagerup)

A C[∗] -algebra A is WEP iff

$$
\forall n \forall x_1, \cdots, x_n \in A \quad \Vert \sum \bar{x}_j \otimes x_j \Vert_{\bar{A} \otimes_{\text{max}} A} = \Vert \sum \bar{x}_j \otimes x_j \Vert_{\bar{A} \otimes_{\text{min}} A}
$$

When $A = \mathcal{C}^*(G)$ and $x_j \in \mathbb{C}[G]$ if $\mathcal{T} = \sum \bar{x}_j \otimes x_j$ satisfies $\mathcal{T}^* = \mathcal{T}$ $\| \sum \bar{x}_j \otimes x_j \|_{\bar{A} \otimes_{\sf max} A} = \mathsf{sup} \{ \sum \mathcal{K}(\mathsf{x}_j, \mathsf{x}_j) \mid \mathcal{K} \text{ bipositive} \}$

$$
\|\sum \bar{x}_j\otimes x_j\|_{\bar{A}\otimes_{\text{min}} A}=\text{sup}\{\sum K(x_j,x_j)\mid K \text{ material bipositive}\}
$$

- ◆ イモ → → モ → ニ ヨ →

About property T

$$
\forall x \in \mathbb{C}[G] \quad ||x||_{\ell_2(G)} = (\sum\nolimits_G |x(t)|^2)^{1/2}
$$

Theorem

Assume either that G is WEP or that G is LLP and hyperlinear, then $\forall n \ \forall x_1, \dots, x_n \in \mathbb{C}[G]$

$$
(**)\quad \sum ||x_j||^2_{\ell_2(G)} \leq ||\sum \bar{x}_j \otimes x_j||_{\overline{C^*(G)} \otimes_{\min} C^*(G)}
$$

This (and the next theorem) are a reformulation Kirchberg's factorization property

(but formally more general)

Theorem (Kirchberg, 1994)

If G has property (T) and satisfies $(**)$ then G is residually finite

→ (何) → (日) → (日) →

Theorem

If G has property (T) and satisfies $(\ast \ast) \quad \sum \| \mathsf{x}_j \|^2_{\ell_2(\mathsf{G})} \leq \| \sum \bar{\mathsf{x}}_j \otimes \mathsf{x}_j \|_{\overline{\mathsf{C}^*(\mathsf{G})} \otimes_{\sf min} \mathsf{C}^*(\mathsf{G})}$ then G is residually finite

Proof.

By "Hahn-Banach" $(**)$ implies there are π_i 's and a net h_i Hilbert-Schmidt on H_{π_i} with $\text{tr}(h_i h_i^*) = 1$ such that for all $x \in \mathbb{C}[G]$

$$
(\dagger) \quad ||x||^2_{\ell_2(G)} \leq \lim_i \text{tr}(\pi_i(x)^* h_i \pi_i(x) h_i^*)
$$

 $\Rightarrow \forall g \in G \ \ 1 \leq \lim_i \text{tr}(\pi_i(g)^* h_i \pi_i(g) h_i^*)$

 $\Rightarrow \|\pi_i(g)^*h_i\pi_i(g) - h_i\|_{\mathcal{S}_2} \to 0$ (almost invariant vector)

By Property (T) we can assume $\pi_i(g)^*h_i\pi_i(g) - h_i = 0$ and hence that $\pi_i(x)^* h_i \pi_i(x) h_i^* = \pi_i(x)^* \pi_i(x) h_i h_i^*$, then (by spectral theory), we can assume that all the π_i 's are finite dimensional. Lastly (\dagger) (\dagger) (\dagger) is actually an equality, so the π_i 's [se](#page-23-0)[pa](#page-25-0)r[ate](#page-24-0) G Gilles Pisier \blacksquare Amenability, Group C^* -algebras and Operator spaces (WEP and

つへへ

Lastly (\dagger) is actually an equality, so the π_i 's separate G Indeed, (\dagger) is of the form

$$
\forall x \in \mathbb{C}[G] \quad K_1(x,x) \leq K_2(x,x)
$$

with equality on $G \times G$

This forces $K_1 = K_2$ In matrix language $0\leq [a_{ij}^1]\leq [a_{ij}^2]$ with equality on the diagonal implies $a^1 = a^2$. Since the finite dim. representations π_i 's separate G , Residual finiteness follows by Malcev's theorem (finitely generated linear groups are RF)

See the Bekka-delaHarpe-Valette book "On Kazhdan's property T" for much more on property T

CALCE AND A TENNIS

 Ω

Thom, 2010: \exists a property (T) group G that is hyperlinear but NOT residually finite

What precedes shows that $(**)$ fails and hence G fails both WEP and LLP

化重新润滑

 QQ

Note:

{amenable} ⊂ WEP ∩ LLP

イロメ イ団メ イモメ イモメー

 \Rightarrow

Let A be a C^* -algebra

A both WEP and LLP $\stackrel{?}{\Rightarrow}$ A nuclear

and if we specialize to $A = C^*(G)$ this becomes

G both WEP and $LLP \stackrel{?}{\Rightarrow} G$ amenable

A positive answer would be a very strong way to answer negatively Kirchberg's conjecture because his conjecture is equivalent to \mathbb{F}_2 (or F_{∞}) is WEP and we know by his Theorem that it is LLP Thus it seems more reasonable to reformulate the problem as: Problem: Does there exist a C^* -algebra A, or a group G, that is both WEP and LLP but NOT amenable.

∢ 何 ≯ ∢ 手 ≯ → (手 ≯) →

Partial progress

Proposition

Assume that $A\subset B(H)$ is a C * -algebra such that

- (i) The inclusion $A^{**} \subset B(H)^{**}$ admits a projection $P: B(H)^{**} \to A^{**}$ with $||P||_{cb} \leq 1$.
- \bullet (ii) The inclusion $A \otimes_{\min} \mathcal{B} \to B(H) \otimes_{\max} \mathcal{B}$ is of norm 1.

Then A is both WEP and LLP (and conversely).

Theorem

There is an operator space $A \subset B(H)$ satisfying (i) and (ii) that is not exact (and hence does not embed (completely isometrically) into any nuclear C[∗] -algebra).

Here $\forall v : E \rightarrow F$, $||v||_n = ||du_n \otimes v : M_n(E) \rightarrow M_n(F)||$.

 $\|v\|_{cb} = \sup \|v\|_{n}$

イロメ イ母メ イヨメ イヨメー

 Ω

Idea of construction

Theorem

Let $A \subset B(H)$ separable C^* -algebra (or operator space). TFAE

- (i) A is WEP (i.e. $\exists P : B(H)^{**} \to A^{**}$ with $||P||_{cb} \leq 1$).
- (i) There is $\varepsilon_n > 0$ with $\varepsilon_n \to 0$ and an increasing sequence of finite dim. subspaces $E_n \subset A$ with $\cup E_n = A$ such that $\forall n$ the inclusion $E_n \to E_{n+1}$ admits a factorization as

$$
E_n \stackrel{v_n}{\longrightarrow} \ell_\infty \otimes M_n \stackrel{w_n}{\longrightarrow} E_{n+1}
$$

with $||v||_p||w||_p < 1 + \varepsilon_n$.

 \bullet (ii) For any $\varepsilon_n > 0$ with $\varepsilon_n \to 0$ and any $X_k \subset X_{k+1} \subset ... \subset A$ with $\cup X_k=A$ there is a subsequence $E_n=X_{k(n)}$ satisfying (i).

Recall $\forall v : E \rightarrow F$, $||v||_n = ||dq_h \otimes v : M_n(E) \rightarrow M_n(F)||$, $||v||_{cb} = \sup ||v||_{n}$ We construct $\bar{E_n}$ inside $\mathcal{C} = \bar{C}^*(\mathbb{F}_{\infty})$ starting from $\bar{E_0} =$ the span of the generators that is not "exact" as op. [sp](#page-29-0)[ac](#page-31-0)[e.](#page-29-0)[..](#page-30-0) ORO

Some References

- N.P. Brown and N. Ozawa, C^{*}-algebras and finite-dimensional 暈 approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, Providence, RI, 2008.
- **START START** N. Ozawa, About the QWEP conjecture, Internat. J. Math. 15 (2004), 501–530.
- 暈 N. Ozawa, About the Connes embedding conjecture: algebraic approaches, Jpn. J. Math. 8 (2013), no. 1, 147–183.
- 暈 N. Ozawa, Tsirelson's problem and asymptotically commuting unitary matrices, J. Math. Phys. 54 (2013), no. 3, 032202, 8 pp.
- S. A. Thom, Examples of hyperlinear groups without factorization property, Groups Geom. Dyn. 4 (2010), no. 1, 195–208. Thank you !

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

 2990

 \equiv