Amenability, Group C^* -algebras and Operator spaces (WEP and LLP for $C^*(G)$)

> Gilles Pisier Texas A&M University

E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group $\rm C^*\mathchar`-algebras.$ Invent. Math. **112** (1993), 449–489.

(E)

A C*-algebra is a closed self-adjoint subalgebra

 $A \subset B(H)$

of the space of bounded operators on a Hilbert space HAn **operator space** is a (closed) subspace $E \subset A$ of a C^* -algebra I will restrict to unital C^* -algebras The norm on the *-algebra A satisfies

 $\forall x, y \in A \quad ||xy|| \le ||x|| ||y|| \quad ||x|| = ||x^*|| \quad ||x^*x|| = ||x||^2$

Such norms are called C^* -norms After completion (or if A is already complete): there is a unique C^* -norm on A Then any such A can be written as

 $A = \overline{\operatorname{span}}[\pi(G)]$

for some discrete group G and some unitary representation

 $\pi: G \to B(H)$

of G on H Typical operator space

$$E = \overline{\operatorname{span}}[\pi(S)] \quad S \subset G$$

Throughout I will restrict to discrete groups

Tensor products

On the *algebraic* tensor product (BEFORE completion)

 $A\otimes B$

there is a minimal and a maximal C^* -norm denoted by

 $\| \|_{\min}$ and $\| \|_{\max}$

and in general

 $\| \ \|_{\min} \leq_{\neq} \| \ \|_{\max}$

C*-norms

 $\forall x, y \in A \quad ||xy|| \le ||x|| ||y|| \quad ||x|| = ||x^*|| \quad ||x^*x|| = ||x||^2$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let A, B be C^* -algebras

Definition

The pair (A, B) is said to be a nuclear pair if the minimal and maximal C^* -norms coincide on the *algebraic* tensor product $A \otimes B$, in other words

$$A \otimes_{\min} B = A \otimes_{\max} B$$

Definition

A C^* -algebra A is called nuclear if this holds for ANY B

→ Ξ →

 $A_1 = \overline{\operatorname{span}}[\pi(G_1)] \subset B(H_1)$ $A_2 = \overline{\operatorname{span}}[\pi(G_2)] \subset B(H_2)$ for some unitary rep. $\pi_j : G_j \to B(H_j)$ then

 $A_1 \otimes_{\min} A_2 = \overline{\operatorname{span}}[(\pi_1 \otimes \pi_2)(G_1 \times G_2)] \subset B(H_1 \otimes H_2)$

Let

$$\Pi = \oplus_p \pi_1 . \pi_2 : G_1 \times G_2 \to \mathcal{H} = \oplus_p H_p$$

over all pairs $p = (\pi_1, \pi_2)$ of unitary rep. on the same H_p with commuting ranges, then

$$A_1 \otimes_{\max} A_2 = \overline{\operatorname{span}}[\Pi(G_1 \times G_2)] \subset B(\mathcal{H})$$

▲冊 ▲ 国 ▶ ▲ 国 ▶ → 国 → の Q ()

Let us denote

$$C^*_{\pi}(G) = \overline{\operatorname{span}}[\pi(G)] \subset B(H_{\pi})$$

The fundamental cases of interest are

$$\pi = \lambda_G$$

left regular rep. leading to the reduced C^* -algebra of G

 $C^*_\lambda(G) \subset B(\ell_2(G))$

and

 $\pi = \pi U$

universal representation leading to the full C^* -algebra of G

$$C^*(G) \subset B(\mathcal{H})$$

Our main interest will be

 $C^*(G)$

$$\mathbb{C}[G] \subset C^*(G)$$

$$\forall x = \sum_{g \in G} x(g)g \in \mathbb{C}[G]$$

$$\|x\|_{C^*(G)} = \sup_{\pi \in \widehat{G}} \|\sum_{g \in G} x(g)\pi(g)\|$$

$$\forall x = \sum_{g \in G} x(g) \otimes g \in M_k \otimes \mathbb{C}[G] \quad (x(g) \in M_k)$$

$$\|x\|_{M_k(C^*(G))} = \sup_{\pi \in \widehat{G}} \|\sum_{g \in G} x(g) \otimes \pi(g)\|_{M_k(B(H_\pi))}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

Let G_1, G_2 discrete groups

$$C^*(G_1)\otimes_{\max} C^*(G_2)\simeq C^*(G_1 imes G_2)$$

$$\mathcal{C}^*_\lambda(\mathcal{G}_1) \otimes_{\min} \mathcal{C}^*_\lambda(\mathcal{G}_2) \simeq \mathcal{C}^*_\lambda(\mathcal{G}_1 imes \mathcal{G}_2).$$

$$C^*(G_1) * C^*(G_2) \simeq C^*(G_1 * G_2)$$

 $C^*(G) \subset C^*_{\lambda}(G) \otimes_{\max} C^*_{\lambda}(G).$ diagonal embedding $x \mapsto x \otimes x$

伺 と く ヨ と く ヨ と …

3

Basic classical fact : *G* is **amenable** $\Leftrightarrow C^*_{\lambda}(G)$ is nuclear $\Leftrightarrow C^*(G)$ is nuclear $\Leftrightarrow C^*_{\lambda}(G) = C^*(G)$

< ∃ >

- ∢ ⊒ →

э

The fundamental pair

 $\mathcal{B} = B(\ell_2)$

or more generally B(H) for a general Hilbert space H

$$\mathcal{C} = \mathcal{C}^*(\mathbb{F}_\infty)$$

or more generally $C^*(\mathbb{F})$ for a general free group \mathbb{F}

Theorem (Kirchberg,1990's)

The pair $(\mathcal{B}, \mathcal{C})$ is a nuclear pair.

Definition

- A is WEP if (A, C) is a nuclear pair.
- A is LLP if (A, B) is a nuclear pair

Fundamental examples : ${\mathcal B}$ is WEP and ${\mathcal C}$ is LLP

Theorem (Kirchberg,1990's)

If A is LLP and B WEP then (A, B) is a nuclear pair.

Gilles Pisier

Amenability, Group C^* -algebras and Operator spaces (WEP and

Definition

A discrete group G is said to be WEP (resp. LLP) if its *full* C^* -algebra $C^*(G)$ is WEP (resp. LLP)

It is known that $WEP \neq LLP$ ([JP,1995])

Main Open problem (Kirchberg's conjecture)

 $LLP \stackrel{?}{\Rightarrow} WEP$

Equivalently:

Is any free group WEP ?

This (easily) reduces to \mathbb{F}_2 WEP passes to subgroups (but not to C^* -subalgebras) and is determined by countable subgroups

(人間) (人) (人) (人) (人) (人)

Kirchberg's conjecture is true IFF the Connes embedding problem has a positive answer, **This would imply the conjecture that every group** *G* **is hyperlinear**

A group is "hyperlinear" if the von Neumann algebra M_G generated by λ_G embeds in the ultraproduct of a family of matrix algebras, (note: sofic implies hyperlinear) **More explicitly:** G is hyperlinear iff $\forall S \subset G$ finite, $\forall \varepsilon > 0 \exists N < \infty \exists \psi : G \rightarrow U_N$

where
$$U_N = \{N \times N - unitary matrices\}$$

such that

$$\forall s, t \in S \quad N^{-1} \mathrm{tr} |\psi(s)\psi(t) - \psi(st)|^2 < \varepsilon,$$

and

$$|N^{-1}\mathrm{tr}(\psi(e))-1|$$

```
\{amenable\} \subset hyperlinear \\ \{ residually finite \} \subset hyperlinear \\ (Connes, S. Wassermann 1976) \\ More generally \\ \{ residually amenable \} \subset hyperlinear \\ or even \\ \{ residually hyperlinear \} \subset hyperlinear \\ \} \in hyperlinear \\ \} \{ hyperlinear \\ \} \in hyperlinear \\ \} \in hyperlinear \\ \} \in hyperlinear \\ \} \{ hyperlinear \\ \} \{ hyperlinear \\ \} \in hyperlinear \\ \} \{ hyperlinear \\ \}
```

```
{\text{residually hyperlinear}} \subset {\text{hyperlinear}}
```

Non residually finite example: The Baumslag-Solitar group $BS(3,2) = \langle a, b | ab^3a^{-1} = b^2 \rangle$ is hyperlinear (Radulescu 2008)

Burnside groups ?

Characterization of LLP groups

Let A be a (unital) C*-algebra A mapping $f : G \rightarrow A$ is called positive definite if $\forall n, \forall t_1, \cdots, t_n \in G$

 $[f(t_i^{-1}t_j)] \in M_n(A)_+$

Proposition (Ozawa, 2001)

Let \mathcal{B}/\mathcal{K} denote the Calkin algebra A group G is LLP iff any unital positive definite

 $f: G \to \mathcal{B}/\mathcal{K}$

admits a unital positive definite lifting

$$\tilde{f}: G \to \mathcal{B}$$

More generally:

Let $\varphi : G \to \mathbb{C}$ be a positive definite function. Assume $\forall S \subset G$ finite, $\forall \varepsilon > 0 \ \exists N < \infty \ \exists \psi : \ G \to U_N$ such that

$$orall s,t\in S \quad N^{-1}{
m tr}|\psi(s)\psi(t)-\psi(st)|^2$$

and

$$|\varphi(t) - N^{-1} \operatorname{tr}(\psi(t))| < \varepsilon.$$

If G is LLP then this approximation can be made by restrictions to S of positive definite functions ψ : $G \rightarrow M_N$

Application (hyperlinear or sofic case):

$$arphi(t) = \left\{egin{array}{cc} 1 & ext{if t=1} \ 0 & ext{otherwise} \end{array}
ight.$$

Hyperlinear + LLP \Rightarrow a reinforcement of the hyperlinear approximation

高 とう きょう く ほ とう ほう

```
\{amenable\} \cup \{ free groups \} \subset \{LLP\}
```

[and similarly for WEP if Kirchberg's conjecture is correct...] It is not easy to produce examples or counterexamples....besides those !

LLP passes to subgroups and to free products of LLP groups (P. 1996)

Open problem: Is $\mathbb{F}_2 \times \mathbb{F}_2$ LLP ?

Problem Find more examples of groups either with or without LLP !

伺 ト イ ヨ ト イ ヨ ト

Let $K : G \times G \to \mathbb{C}$ be a kernel. We still denote by $K : \mathbb{C}[G] \times \mathbb{C}[G] \to \mathbb{C}$ the associated sesquilinear form antilinear (resp. linear) in the first (resp. second) variable. Let

$$\mathbb{C}[G]_+ = \{ a \mid \exists x \in \mathbb{C}[G] \mid a = x^* x \}$$

We will say that K is **bipositive** if there is a mapping $T : G \to H$ such that

(i)
$$K(x, y) = \langle T(x), T(y) \rangle$$
 (K is positive semi-definite)
(ii)
$$\begin{cases} K(1,1) = 1 \\ K(a,b) \ge 0 \ \forall a, b \in \mathbb{C}[G]_+ \end{cases}$$
Then K defines a state f on $\mathbb{C}[G]$ and hence on $C^*(G)$ simply by

$$f(x) = K(1, x) = \langle T(1), T(x) \rangle$$

(*) *) *) *)

K is called **"self-polar"** (cf. Woronowicz, 1973) on *G* if in addition the state *f* on $\mathbb{C}[G]$ defined by f(a) = K(1, a) is such that the functionals of the form $x \mapsto K(b, x)$ with $0 \le b \le 1$ are pointwise dense in the set of those *f'* such that $0 \le f' \le f$. Then *K* extends to a state on $\overline{C^*(G)} \otimes C^*(G)$ Any bipositive kernel is dominated by some selfpolar one Self-polar kernels are "maximal" in the following sense: any bipositive kernel *K'* with $K'(1, x) \le K(1, x) \ \forall x$ must satisfy $K'(x, x) \le K(x, x) \ \forall x$.

(cf. Woronowicz, 1973)

- A IB N A IB N

Example 1 Let *h* be Hilbert-Schmidt on H_{π} with $tr(h^*h) = 1$. Then

$$K(x,y) = \operatorname{tr}(\pi(x)^* h^* \pi(y) h)$$

is bipositive.

When dim $(H_{\pi}) < \infty$ we call these *matricial* bipositive kernels.

Example 2 (generalization) Assume $\pi(G) \subset M$ with (M, τ) semifinite von Neumann algebra with trace τ Let $h \in L_2(\tau)$ be a unit vector. Then

$$K(x,y) = \tau(\pi(x)^*h^*\pi(y)h)$$

is bipositive.

In particular
$$K(x,y) = \langle x,y
angle_{\ell_2(G)}$$
 $\pi = \lambda_G, h = 1$

Theorem

The following are equivalent

- (i) G is WEP (i.e. $C^*(G)$ is WEP)
- (ii) Any self-polar kernel is a pointwise limit of matricial bipositive kernels
- (iii) For any bipositive kernel K there is a net of matricial bipositive kernels K_α such that

 $K \leq \lim_{\alpha} K_{\alpha} \text{ on } G \times G.$

An important result of Taka Ozawa about the special case of \mathbb{F}_{∞} : To show $G = \mathbb{F}_{\infty}$ is WEP (i.e. Kirchberg's conjecture) it suffices to show (iii) above on $S \times S$ where S is the set of generators of $G = \mathbb{F}_{\infty}$

By Grothendieck's inequality one can prove that

 (iii)' For any bipositive kernel K there is a net of matricial bipositive kernels K_α such that (!)

$$K \leq (4/\pi) \lim_{\alpha} K_{\alpha}$$
 on $S \times S_{\alpha}$, as $s \in \mathbb{R}$

This is closely related to an unpublished result due to Haagerup:

Theorem (Haagerup)

A C*-algebra A is WEP iff

$$\forall n \forall x_1, \cdots, x_n \in A \quad \|\sum \bar{x}_j \otimes x_j\|_{\bar{\mathcal{A}} \otimes_{\max} \mathcal{A}} = \|\sum \bar{x}_j \otimes x_j\|_{\bar{\mathcal{A}} \otimes_{\min} \mathcal{A}}$$

When $A = C^*(G)$ and $x_j \in \mathbb{C}[G]$ if $T = \sum \bar{x}_j \otimes x_j$ satisfies $T^* = T$ $\|\sum \bar{x}_j \otimes x_j\|_{\bar{A} \otimes_{\max} A} = \sup\{\sum K(x_j, x_j) \mid K \text{ bipositive}\}$

$$\|\sum \bar{x}_j \otimes x_j\|_{\bar{\mathcal{A}} \otimes_{\min} \mathcal{A}} = \sup\{\sum K(x_j, x_j) \mid K \text{ matricial bipositive}\}$$

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

About property T

$$\forall x \in \mathbb{C}[G] \quad \|x\|_{\ell_2(G)} = (\sum_G |x(t)|^2)^{1/2}$$

Theorem

Assume either that G is WEP or that G is LLP and hyperlinear, then $\forall n \ \forall x_1, \dots, x_n \in \mathbb{C}[G]$

$$(**) \quad \sum \|x_j\|_{\ell_2(G)}^2 \leq \|\sum \bar{x}_j \otimes x_j\|_{\overline{C^*(G)} \otimes_{\min} C^*(G)}$$

This (and the next theorem) are a reformulation **Kirchberg's factorization property** (but formally more general)

(but formally more general)

Theorem (Kirchberg, 1994)

If G has property (T) and satisfies (**) then G is residually finite

A B + A B +

Theorem

If G has property (T) and satisfies $(**) \quad \sum ||x_j||^2_{\ell_2(G)} \le ||\sum \bar{x}_j \otimes x_j||_{\overline{C^*(G)} \otimes_{\min} C^*(G)}$ then G is residually finite

Proof.

By "Hahn-Banach" (**) implies there are π_i 's and a net h_i Hilbert-Schmidt on H_{π_i} with $\operatorname{tr}(h_i h_i^*) = 1$ such that for all $x \in \mathbb{C}[G]$

(†)
$$||x||^2_{\ell_2(G)} \leq \lim_i \operatorname{tr}(\pi_i(x)^* h_i \pi_i(x) h_i^*)$$

 $\Rightarrow \forall g \in G \ 1 \leq \lim_{i} \operatorname{tr}(\pi_i(g)^* h_i \pi_i(g) h_i^*)$

 $\Rightarrow \|\pi_i(g)^* h_i \pi_i(g) - h_i\|_{S_2} \to 0$ (almost invariant vector)

By Property (T) we can assume $\pi_i(g)^*h_i\pi_i(g) - h_i = 0$ and hence that $\pi_i(x)^*h_i\pi_i(x)h_i^* = \pi_i(x)^*\pi_i(x)h_ih_i^*$, then (by spectral theory), we can assume that all the π_i 's are finite dimensional. Lastly (†) is actually an equality, so the π_i 's separate G Lastly (†) is actually an equality, so the π_i 's separate G Indeed, (†) is of the form

$$\forall x \in \mathbb{C}[G] \quad K_1(x,x) \leq K_2(x,x)$$

with equality on $G \times G$

This forces $K_1 = K_2$ In matrix language $0 \le [a_{ij}^1] \le [a_{ij}^2]$ with equality on the diagonal implies $a^1 = a^2$. Since the finite dim. representations π_i 's separate G, Residual finiteness follows by Malcev's theorem (finitely generated linear groups are RF)

See the Bekka-delaHarpe-Valette book "On Kazhdan's property T" for much more on property T Thom, 2010: \exists a property (T) group *G* that is hyperlinear but *NOT* residually finite

What precedes shows that (**) fails and hence G fails both WEP and LLP

Note:

$\{\textit{amenable}\} \subset \textit{WEP} \cap \textit{LLP}$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Let A be a C^* -algebra

A both WEP and LLP $\stackrel{?}{\Rightarrow}$ A nuclear

and if we specialize to $A = C^*(G)$ this becomes

G both WEP and $LLP \stackrel{?}{\Rightarrow} G$ amenable

A positive answer would be a very strong way to answer negatively Kirchberg's conjecture because his conjecture is equivalent to \mathbb{F}_2 (or F_∞) is WEP and we know by his Theorem that it is LLP Thus it seems more reasonable to reformulate the problem as: **Problem: Does there exist a** C^* -algebra A, or a group G, that is both WEP and LLP but NOT amenable.

A B + A B +

Partial progress

Proposition

Assume that $A \subset B(H)$ is a C^* -algebra such that

- (i) The inclusion $A^{**} \subset B(H)^{**}$ admits a projection $P: B(H)^{**} \rightarrow A^{**}$ with $\|P\|_{cb} \leq 1$.
- (ii) The inclusion $A \otimes_{\min} \mathcal{B} \to B(H) \otimes_{\max} \mathcal{B}$ is of norm 1.

Then A is both WEP and LLP (and conversely).

Theorem

There is an operator space $A \subset B(H)$ satisfying (i) and (ii) that is not exact (and hence does not embed (completely isometrically) into any nuclear C^* -algebra).

Here $\forall v : E \to F$, $\|v\|_n = \|Id_{M_n} \otimes v : M_n(E) \to M_n(F)\|$.

 $\|v\|_{cb} = \sup \|v\|_n$

イロト 不得 トイヨト イヨト 二日

Idea of construction

Theorem

Let $A \subset B(H)$ separable C*-algebra (or operator space). TFAE

- (i) A is WEP (i.e. $\exists P : B(H)^{**} \rightarrow A^{**}$ with $\|P\|_{cb} \leq 1$).
- (i) There is ε_n > 0 with ε_n → 0 and an increasing sequence of finite dim. subspaces E_n ⊂ A with UE_n = A such that ∀n the inclusion E_n → E_{n+1} admits a factorization as

$$E_n \xrightarrow{v_n} \ell_\infty \otimes M_n \xrightarrow{w_n} E_{n+1}$$

with $\|v\|_{n} \|w\|_{n} < 1 + \varepsilon_{n}$.

• (ii) For any $\varepsilon_n > 0$ with $\varepsilon_n \to 0$ and any $X_k \subset X_{k+1} \subset ... \subset A$ with $\overline{\bigcup X_k} = A$ there is a subsequence $E_n = X_{k(n)}$ satisfying (i).

Recall $\forall v : E \to F$, $\|v\|_n = \|Id_{M_n} \otimes v : M_n(E) \to M_n(F)\|$, $\|v\|_{cb} = \sup \|v\|_n$ We construct E_n inside $\mathcal{C} = C^*(\mathbb{F}_\infty)$ starting from E_0 = the span of the generators that is not "exact" as op. space.

Some References

- N.P. Brown and N. Ozawa, C*-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, Providence, RI, 2008.
- N. Ozawa, About the QWEP conjecture, *Internat. J. Math.* **15** (2004), 501–530.
- N. Ozawa, About the Connes embedding conjecture: algebraic approaches, Jpn. J. Math. 8 (2013), no. 1, 147–183.
- N. Ozawa, Tsirelson's problem and asymptotically commuting unitary matrices, J. Math. Phys. 54 (2013), no. 3, 032202, 8 pp.
- A. Thom, Examples of hyperlinear groups without factorization property, *Groups Geom. Dyn.* 4 (2010), no. 1, 195–208.
 Thank you !