
Amenability,
Group C ∗-algebras

and
Operator spaces

(WEP and LLP for C ∗(G ))

Gilles Pisier
Texas A&M University

Gilles Pisier Amenability, Group C∗-algebras and Operator spaces (WEP and LLP for C∗(G))



Main Source...

E. Kirchberg, On nonsemisplit extensions, tensor products and
exactness of group C∗-algebras. Invent. Math. 112 (1993),
449–489.
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C ∗-algebras

A C ∗-algebra is a closed self-adjoint subalgebra

A ⊂ B(H)

of the space of bounded operators on a Hilbert space H
An operator space is a (closed) subspace E ⊂ A of a C ∗-algebra
I will restrict to unital C ∗-algebras
The norm on the ∗-algebra A satisfies

∀x , y ∈ A ‖xy‖ ≤ ‖x‖‖y‖ ‖x‖ = ‖x∗‖ ‖x∗x‖ = ‖x‖2

Such norms are called C ∗-norms
After completion (or if A is already complete):

there is a unique C ∗-norm on A
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Then any such A can be written as

A = span[π(G )]

for some discrete group G and some unitary representation

π : G → B(H)

of G on H
Typical operator space

E = span[π(S)] S ⊂ G

Throughout I will restrict to discrete groups
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Tensor products

On the algebraic tensor product (BEFORE completion)

A⊗ B

there is a minimal and a maximal C ∗-norm denoted by

‖ ‖min and ‖ ‖max

and in general
‖ ‖min ≤6= ‖ ‖max

C ∗-norms

∀x , y ∈ A ‖xy‖ ≤ ‖x‖‖y‖ ‖x‖ = ‖x∗‖ ‖x∗x‖ = ‖x‖2
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Nuclear pairs

Let A,B be C ∗-algebras

Definition

The pair (A,B) is said to be a nuclear pair if the minimal and
maximal C ∗-norms coincide on the algebraic tensor product A⊗ B,
in other words

A⊗min B = A⊗max B

Definition

A C ∗-algebra A is called nuclear if this holds for ANY B
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Let

A1 = span[π(G1)] ⊂ B(H1) A2 = span[π(G2)] ⊂ B(H2)

for some unitary rep. πj : Gj → B(Hj) then

A1 ⊗min A2 = span[(π1 ⊗ π2)(G1 × G2)] ⊂ B(H1 ⊗ H2)

Let
Π = ⊕pπ1.π2 : G1 × G2 → H = ⊕pHp

over all pairs p = (π1, π2) of unitary rep. on the same Hp with
commuting ranges, then

A1 ⊗max A2 = span[Π(G1 × G2)] ⊂ B(H)
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Let us denote

C ∗π(G ) = span[π(G )] ⊂ B(Hπ)

The fundamental cases of interest are

π = λG

left regular rep.
leading to the reduced C ∗-algebra of G

C ∗λ(G ) ⊂ B(`2(G ))

and

π = πU

universal representation leading to the full C ∗-algebra of G

C ∗(G ) ⊂ B(H)
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Our main interest will be
C ∗(G )

C[G ] ⊂ C ∗(G )

∀x =
∑

g∈G
x(g)g ∈ C[G ]

‖x‖C∗(G) = sup
π∈Ĝ ‖

∑
g∈G

x(g)π(g)‖

∀x =
∑

g∈G
x(g)⊗ g ∈ Mk ⊗ C[G ] (x(g) ∈ Mk)

‖x‖Mk (C∗(G)) = sup
π∈Ĝ ‖

∑
g∈G

x(g)⊗ π(g)‖Mk (B(Hπ))

Gilles Pisier Amenability, Group C∗-algebras and Operator spaces (WEP and LLP for C∗(G))



Let G1,G2 discrete groups

C ∗(G1)⊗max C ∗(G2) ' C ∗(G1 × G2)

C ∗λ(G1)⊗min C ∗λ(G2) ' C ∗λ(G1 × G2).

C ∗(G1) ∗ C ∗(G2) ' C ∗(G1 ∗ G2)

C ∗(G ) ⊂ C ∗λ(G )⊗max C ∗λ(G ).

diagonal embedding x 7→ x ⊗ x
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Basic classical fact :
G is amenable
⇔ C ∗λ(G ) is nuclear
⇔ C ∗(G ) is nuclear
⇔ C ∗λ(G ) = C ∗(G )
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The fundamental pair

B = B(`2)

or more generally B(H) for a general Hilbert space H

C = C ∗(F∞)

or more generally C ∗(F) for a general free group F

Theorem (Kirchberg,1990’s)

The pair (B, C) is a nuclear pair.

Definition

• A is WEP if (A, C) is a nuclear pair.
• A is LLP if (A,B) is a nuclear pair

Fundamental examples : B is WEP and C is LLP

Theorem (Kirchberg,1990’s)

If A is LLP and B WEP then (A,B) is a nuclear pair.
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Definition

A discrete group G is said to be WEP (resp. LLP) if its full
C ∗-algebra C ∗(G ) is WEP (resp. LLP)

It is known that WEP 6⇒ LLP ([JP,1995])

Main Open problem (Kirchberg’s conjecture)

LLP
?⇒WEP

Equivalently:

Is any free group WEP ?

This (easily) reduces to F2

WEP passes to subgroups (but not to C ∗-subalgebras) and is
determined by countable subgroups
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Kirchberg’s conjecture is true IFF
the Connes embedding problem has a positive answer,
This would imply the conjecture that
every group G is hyperlinear
A group is “hyperlinear” if the von Neumann algebra MG

generated by λG embeds in the ultraproduct of a family of matrix
algebras, (note: sofic implies hyperlinear) More explicitly:
G is hyperlinear iff ∀S ⊂ G finite, ∀ε > 0 ∃N <∞ ∃ψ : G → UN

where UN = {N × N − unitary matrices}

such that

∀s, t ∈ S N−1tr|ψ(s)ψ(t)− ψ(st)|2 < ε,

and

|N−1tr(ψ(e))− 1| < ε and ∀t ∈ S , t 6= e |N−1tr(ψ(t))| < ε.
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Examples ?

{amenable} ⊂ hyperlinear
{ residually finite} ⊂ hyperlinear
(Connes, S. Wassermann 1976)

More generally
{residually amenable} ⊂ hyperlinear

or even
{residually hyperlinear} ⊂ hyperlinear

Non residually finite example:
The Baumslag-Solitar group
BS(3, 2) =< a, b | ab3a−1 = b2 >
is hyperlinear (Radulescu 2008)

Burnside groups ?
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Characterization of LLP groups

Let A be a (unital) C ∗-algebra
A mapping f : G → A is called positive definite if
∀n, ∀t1, · · · , tn ∈ G

[f (t−1
i tj)] ∈ Mn(A)+

Proposition (Ozawa, 2001)

Let B/K denote the Calkin algebra
A group G is LLP iff any unital positive definite

f : G → B/K

admits a unital positive definite lifting

f̃ : G → B
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More generally:
Let ϕ : G → C be a positive definite function.
Assume ∀S ⊂ G finite, ∀ε > 0 ∃N <∞ ∃ψ : G → UN such that

∀s, t ∈ S N−1tr|ψ(s)ψ(t)− ψ(st)|2 < ε,

and
|ϕ(t)− N−1tr(ψ(t))| < ε.

If G is LLP then this approximation can be made by restrictions to
S of positive definite functions ψ : G → MN

Application (hyperlinear or sofic case):

ϕ(t) =

{
1 if t=1
0 otherwise

Hyperlinear + LLP ⇒ a reinforcement of the hyperlinear
approximation
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Examples ?

{amenable} ∪ { free groups} ⊂ {LLP}

[and similarly for WEP if Kirchberg’s conjecture is correct...]
It is not easy to produce examples or counterexamples....besides
those !

LLP passes to subgroups
and to free products of LLP groups (P. 1996)

Open problem: Is F2 × F2 LLP ?

Problem Find more examples of groups
either with or without LLP !
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Characterization of WEP groups

Let K : G × G → C be a kernel. We still denote by
K : C[G ]× C[G ]→ C the associated sesquilinear form antilinear
(resp. linear) in the first (resp. second) variable. Let

C[G ]+ = {a | ∃x ∈ C[G ] a = x∗x}

We will say that K is bipositive if there is a mapping T : G → H
such that
(i) K (x , y) = 〈T (x),T (y)〉 (K is positive semi-definite)

(ii)

{
K (1, 1) = 1

K (a, b) ≥ 0 ∀a, b ∈ C[G ]+
Then K defines a state f on C[G ] and hence on C ∗(G ) simply by

f (x) = K (1, x) = 〈T (1),T (x)〉
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K is called “self-polar” (cf. Woronowicz, 1973) on G if in
addition the state f on C[G ] defined by f (a) = K (1, a) is such
that the functionals of the form x 7→ K (b, x) with 0 ≤ b ≤ 1 are
pointwise dense in the set of those f ′ such that 0 ≤ f ′ ≤ f .
Then K extends to a state on C ∗(G )⊗ C ∗(G )
Any bipositive kernel is dominated by some selfpolar one
Self-polar kernels are “maximal” in the following sense:
any bipositive kernel K ′ with K ′(1, x) ≤ K (1, x) ∀x

must satisfy K ′(x , x) ≤ K (x , x) ∀x .
(cf. Woronowicz, 1973)
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Example 1 Let h be Hilbert-Schmidt on Hπ with tr(h∗h) = 1.
Then

K (x , y) = tr(π(x)∗h∗π(y)h)

is bipositive.
When dim(Hπ) <∞ we call these matricial bipositive kernels.

−−−−−−−−−−−−−−−−−−

Example 2 (generalization) Assume π(G ) ⊂ M with (M, τ)
semifinite von Neumann algebra with trace τ
Let h ∈ L2(τ) be a unit vector. Then

K (x , y) = τ(π(x)∗h∗π(y)h)

is bipositive.
In particular K (x , y) = 〈x , y〉`2(G) π = λG , h = 1
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Theorem

The following are equivalent

(i) G is WEP (i.e. C ∗(G ) is WEP)

(ii) Any self-polar kernel is a pointwise limit of matricial
bipositive kernels

(iii) For any bipositive kernel K there is a net of matricial
bipositive kernels Kα such that

K ≤ limα Kα on G × G .

An important result of Taka Ozawa about the special case of F∞:
To show G = F∞ is WEP (i.e. Kirchberg’s conjecture) it suffices
to show (iii) above on S × S where S is the set of generators of
G = F∞
By Grothendieck’s inequality one can prove that

(iii)’ For any bipositive kernel K there is a net of matricial
bipositive kernels Kα such that (!)

K ≤ (4/π) limα Kα on S × S
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This is closely related to an unpublished result due to Haagerup:

Theorem (Haagerup)

A C ∗-algebra A is WEP iff

∀n∀x1, · · · , xn ∈ A ‖
∑

x̄j ⊗ xj‖Ā⊗maxA
= ‖

∑
x̄j ⊗ xj‖Ā⊗minA

When A = C ∗(G ) and xj ∈ C[G ] if T =
∑

x̄j ⊗ xj satisfies T ∗ = T

‖
∑

x̄j ⊗ xj‖Ā⊗maxA
= sup{

∑
K (xj , xj) | K bipositive}

‖
∑

x̄j ⊗ xj‖Ā⊗minA
= sup{

∑
K (xj , xj) | K matricial bipositive}
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About property T

∀x ∈ C[G ] ‖x‖`2(G) = (
∑

G
|x(t)|2)1/2

Theorem

Assume either that G is WEP
or that G is LLP and hyperlinear, then ∀n ∀x1, · · · , xn ∈ C[G ]

(∗∗)
∑
‖xj‖2

`2(G) ≤ ‖
∑

x̄j ⊗ xj‖C∗(G)⊗minC∗(G)

This (and the next theorem) are a reformulation
Kirchberg’s factorization property
(but formally more general)

Theorem (Kirchberg, 1994)

If G has property (T) and satisfies (**) then G is residually finite
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Theorem

If G has property (T) and satisfies
(∗∗)

∑
‖xj‖2

`2(G) ≤ ‖
∑

x̄j ⊗ xj‖C∗(G)⊗minC∗(G)

then G is residually finite

Proof.

By “Hahn-Banach” (∗∗) implies there are πi ’s and a net hi

Hilbert-Schmidt on Hπi with tr(hih
∗
i ) = 1 such that for all

x ∈ C[G ]

(†) ‖x‖2
`2(G) ≤ limi tr(πi (x)∗hiπi (x)h∗i )

⇒ ∀g ∈ G 1 ≤ limi tr(πi (g)∗hiπi (g)h∗i )

⇒ ‖πi (g)∗hiπi (g)− hi‖S2 → 0 (almost invariant vector)

By Property (T) we can assume πi (g)∗hiπi (g)− hi = 0 and hence
that πi (x)∗hiπi (x)h∗i = πi (x)∗πi (x)hih

∗
i , then (by spectral theory),

we can assume that all the πi ’s are finite dimensional.
Lastly (†) is actually an equality, so the πi ’s separate G
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Lastly (†) is actually an equality, so the πi ’s separate G
Indeed, (†) is of the form

∀x ∈ C[G ] K1(x , x) ≤ K2(x , x)

with equality on G × G
This forces K1 = K2

In matrix language 0 ≤ [a1
ij ] ≤ [a2

ij ] with equality on the diagonal

implies a1 = a2.
Since the finite dim. representations πi ’s separate G ,
Residual finiteness follows by Malcev’s theorem
(finitely generated linear groups are RF)

See the Bekka-delaHarpe-Valette book
“On Kazhdan’s property T”
for much more on property T
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Andreas Thom’s example

Thom, 2010:
∃ a property (T) group G that is
hyperlinear but NOT residually finite

What precedes shows that (∗∗) fails and hence G fails both WEP
and LLP
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Note:
{amenable} ⊂WEP ∩ LLP
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A final open Problem

Let A be a C ∗-algebra

A both WEP and LLP
?⇒A nuclear

and if we specialize to A = C ∗(G ) this becomes

G both WEP and LLP
?⇒G amenable

A positive answer would be a very strong way to answer negatively
Kirchberg’s conjecture
because his conjecture is equivalent to F2 (or F∞) is WEP and we
know by his Theorem that it is LLP
Thus it seems more reasonable to reformulate the problem as:
Problem: Does there exist a C ∗-algebra A, or a group G ,
that is both WEP and LLP but NOT amenable.
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Partial progress

Proposition

Assume that A ⊂ B(H) is a C ∗-algebra such that

(i) The inclusion A∗∗ ⊂ B(H)∗∗ admits a projection
P : B(H)∗∗ → A∗∗ with ‖P‖cb ≤ 1.

(ii) The inclusion A⊗min B → B(H)⊗max B is of norm 1.

Then A is both WEP and LLP (and conversely).

Theorem

There is an operator space A ⊂ B(H) satisfying (i) and (ii) that is
not exact (and hence does not embed (completely isometrically)
into any nuclear C ∗-algebra).

Here ∀v : E → F , ‖v‖n = ‖IdMn ⊗ v : Mn(E )→ Mn(F )‖.

‖v‖cb = sup ‖v‖n
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Idea of construction

Theorem

Let A ⊂ B(H) separable C ∗-algebra (or operator space). TFAE

(i) A is WEP (i.e. ∃P : B(H)∗∗ → A∗∗ with ‖P‖cb ≤ 1).

(i) There is εn > 0 with εn → 0 and an increasing sequence of
finite dim. subspaces En ⊂ A with ∪En = A such that ∀n the
inclusion En → En+1 admits a factorization as

En
vn−→`∞ ⊗Mn

wn−→En+1

with ‖v‖n‖w‖n < 1 + εn.

(ii) For any εn > 0 with εn → 0 and any Xk ⊂ Xk+1 ⊂ ... ⊂ A
with ∪Xk = A there is a subsequence En = Xk(n) satisfying (i).

Recall ∀v : E → F , ‖v‖n = ‖IdMn ⊗ v : Mn(E )→ Mn(F )‖,
‖v‖cb = sup ‖v‖n

We construct En inside C = C ∗(F∞) starting from E0 = the span
of the generators that is not “exact” as op. space...
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Thank you !
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