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Motivation In this talk we are interested in the generecity of pseudo-

Anosov elements in the mapping class group of a surface. There are various
notions of genericity, today we will focus on the question

Question. How generic are pseudo-Anosovs?

The lattice point counting problem gives our quantitative basis. Given a
lattice, count the number of lattice points in a ball of radius r. For example,
for Z2 acting on R2

|BR(s) ∩ Z2 · y| ∼ πR2

Where we use the notation A ∼ B if and only if lim A
B = 1.

Eskin and McMullen give asymptotics for lattices acting on symmetric
spaces. We will be talking about Mod(S), so recall

Definition. The Teichmüller space S of a surface of genus g with p punc-
tures is

T (S) = {marked hyperbolic structures on S}/isotopy

The mapping class group Γ = Mod(S) = Homeo+(S)/isotopy acts on
T (S) properly discontinuously, and by isometries with respect to the Te-
ichmüller metric.

Athreya-Bufetov-Eskin-Mirzakhani (ABEM) show that in T (S) we have

|BR(x) ∩ Γ · y| ∼ Λ(x)Λ(y)ehR

h · vol(T /Γ)

for any x, y ∈ T (S), where h = 6g − 6 + 2p = dim(T (S)) and Λ is the
Hubbard-Masur function. It turns out that Λ is constant. The volume is
the volume taken in the holonomy measure.

Notes prepared by Edgar A. Bering IV.
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Recall that the Nielsen-Thurston classification of Γ partitions Γ into

Γ = ΓpA pseudo-Anosov elements

∪ Γfo finite order elements

∪ Γred infinite order elements that fix a 1-manifold

so we would like to count each of these in pursuit of our question. Mahar
shows that

|BR(x) ∩ (Γfo ∪ Γred) · y|
|BR(x) ∩ Γ · y|

→ 0

which is to say “pseudo-Anosovs are generic”. So our question “How generic?”
becomes

Question. How fast is this convergence? (e.g. 1
R ,

1
logR , e

−R)

This was first asked by Mirzakhani.

Theorem (Dowdall-Masur). For all x, y ∈ T (S) there exists a K such that

|BR(x) ∩ Γfo · y|
K� e

hR
2

We use the notation A
K,C
� B when A ≤ KB + C and B ≤ KA + C.

Further
K� means

K,0
� .

Most of the remainder of the talk will focus on the proof. Before that,
some related work. We are working on

|BR(x) ∩ Γred · y|
K� e(h−1)R

and asymptotics

|BR(x) ∩ Γfo · y|
e

hR
2

∼ C(x, y)

Question. Count other sets: Dehn twists, multi-twists, conjugacy classes.

The remainder of the talk is organized along M. Feighn’s outline

(1) Statement
(2) Strategy/Goal
(3) Goal is hopeless
(4) Succeed Anyway

1. Strategy of the proof

Observe

• If the statement holds for some x, y then it holds for any x, y
• Γfo has finitely many conjugacy classes.
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The upshot of these observations is that we can choose ϕ0 ∈ Γfo, x = y =
x0 = Fix(ϕ0) and proceede as follows. Suppose ϕ ∈ [ϕ0] is such that
ϕ · x0 ∈ BR(x0). Our goal will be to find a nearby (≤ R

2 ) fixed point for ϕ.
The idea(/exercise) comes form hyperbolic geometry. If ϕ is a finite order

isometry of H2 the orbit ϕi(x0) has a unique barycenter b = ϕ(b). Slim
triangles implies that d(x0, b) ≤ 1

2d(x0, ϕx0) + C.
Suppose for a moment that we can do this in T (S). Say b is a thick fixed

point such that d(x0, b) ≤ R
2 + C, so that b is near f(x0) ∈ BR/2+C′(x0).

ABEM implies that there are at most e
hR
2 eC

′
such f(x0). Proper discon-

tinuity implies we can get a uniform bound on the number of ϕ′ ∈ Γ that

coarsely fix f(x0). This implies there are at most KeC
′
e

hR
2 such ϕ ∈ [ϕ0]

with ϕx0 ∈ Br(x0).
Now for an upper bound choose ϕ0 with trivial centralizer. Each fx0 ∈

BR/2(x0) gives us a distinct ϕ = fϕ0f
−1 such that d(x0, ϕ(x0)) ≤ R. ABEM

implies there are at least ehR/2 such f(x0).

1.1. How far away is the fixed set of ϕ? Our main tool is the Distance
Formula. Let V ⊆ S be an essential subsurface. Define

dV (x, y) = diamC(V )(πV (µx), πV (µy))

unless V is an annulus, in which case take the logarithm. Here µx and µy
are the shortest markings at the points x, y. From Masur-Minsky and Rafi
we know that there eists an M, ε,K,C such that for all ε-thick x, y we have

dT (x, y)
K,C
�
∑
V⊆S

[dV (x, y)]M

where

[·]M =

{
0, · < M
·, · ≥M

1.2. Applications. The linear conjugator problem. Masur and Minsky
show that there exists a k such that for all g ∈ ΓpA, f ∈ [g] implies
f = wgw−1 where |w| ≤ k(|f | + |g|). J. Tao achieves the same result for
g ∈ Γred ∪ Γfo. The technique for the finite-order part is to show that for
a fixed base marking µ0 there is a k such that each ϕ ∈ Γfo has a coarsely
fixed marking µ such that

d(µ0, µ) ≤ kd(µ0, ϕ(µ0)) + k

M. Durham shows there exist a K,C such that for x ∈ T and ϕ ∈
Γfo there exists a fixed point b such that dT (x0, b) ≤ KdT (x0, ϕx0) + C.

Durham’s result gives |BR(x) ∩ Γfo · y| ≤ ekhR, so we need k = 1/2.

2. Goal is hopeless

Suppose f is a partial pseudo-Anosov such that supp(f) = V1, and φ is
the finite order map exchanging V1 and V2. Then we have the following
situation



COUNTING LATTICE POINTS IN TEICHMULLER SPACE 5

To recap

Goal uses Example
Find fixed point ≤ R/2 away Fixed point too far away

ABEM implies at most ehR/2 such b ABEM feels like an over count.

3. Succeed Anyway. Count with more care.

Examine the distance formula. Morally, the lack of control on the number
of terms in the summation is the source of error.

Maybe, for any x, y we can find a collection Ω of subsurfaces such that |Ω|
is uniformly bounded, each V ⊆ S with dV (x, y) ≥M , and {Z ∈ Ω|V ⊆ Z}
has a unique supV = Z. This partitions the sum

dT (x, y)
K,C
�
∑
Z∈Ω

(
∑

supV =Z

dV (x, y))

Terms of this sum look like the distance formula in Z, so we have

�
∑
Z∈Ω

dT (Z)(x̂z, ŷz)

In each Z find x̂z, ŷz such that |dV (x, y)− dV (x̂z, ŷz)| is uniformly bounded.
Then

χ(x, y) =
∑
z∈Ω

hZdT (Z)(x̂z, ŷz) ≤ hSdT (x, y) + C

This new distance formula is the key innovation.

Proposition. For all x in the thick part

|{y ∈ Γ · x|χ(x, y) ≤ R}| ∼ eR

Using χ instead of distance we make the strategy work. For ϕ ∈ [ϕ0] can
find b = ϕb such that χ[x0, b] ≤ 1

2χ(x0, ϕx0) ≤ R/2 + C. The proposition

then implies there are at most ehR/2eC such points, as needed.
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