Our bundles fit in to this universal sequence,

where Γ_G^{ρ} is the pullback. If ρ is one to one we get $\Gamma_G^{\rho} = \phi^{-1}(\rho(G))$.

- **Proposition.** (1) Γ_G^{ρ} contains no BS(p,q)) if and only if $|\ker \rho| < \infty$ and $\rho(G)$ is purely pseudo-Anosov.
 - (2) If G has a finite K(G,1) then Γ_G^{ρ} has a finite $K(\Gamma_G^{\rho},1)$.

The finite kernel statement is technically frustrating, but does not change results up to quasi-isometry, so we restrict to injections. This gives the reformulation of our question

Question (Gromov; Farb-Mosher). Suppose $G \leq Mod(S)$. If G is purely pseudo Anosov, finitely generated (or finitely presented, K(G, 1) finite,...), is $\Gamma_G = \phi^{-1}(G)$ hyperbolic?

Theorem (Bestvina-Bromberg-Kent-Leininger). Suppose $G \leq Mod(S)$. Then Γ_G is hyperbolic if and only if G is purely pseudo Anosov, finitly generated, and undistorted.

1. Some Background Notions

By analogy with Kleinian groups, Farb and Mosher define

Definition. $G \leq Mod(S)$ is convex cocompact if the action on $\mathcal{T}(S)$ has a quasiconvex orbit in the Teichmüller metric.

Theorem (Farb-Mosher, Hammenstädt). *G* is convex cocompact if and only if Γ_G is hyperbolic.

Corollary. Γ_G hyperbolic implies that G is finitely generated, purely pseudo Anosov, and undistorted.

We remark that the theorem (BBKL) provides a converse and a Mod(S) intrinsic characterization of Γ_G hyperbolicity. An alternative characterization is given by Durham and Taylor, called stability.

2. The proof

2.1. Tools. The first of our tools is the curve graph $\mathcal{C}(S)$.

Theorem (Kent-Leininger, Hammenstädt). $G \leq Mod(S)$ is convex cocompact if and only if $G \to C(S)$, the orbit map, is a quasi-isometric embedding.

We will also use $\mathcal{M}(S)$ the marking graph of S as a model of Mod(S). $\mathcal{M}(S)$ is locally finite and Mod(S) acts properly discontinuously and cocompactly by simplicial isometries, the orbit map is a quasi-isometry.

CHRIS LEININGER

The next tool is projections. Suppose $Z \subseteq Y \subseteq S$ are essential subsurfaces. There is a projection (due to Masur-Minsky) $\pi_Z(\mu) \subset \mathcal{C}(Z)$ for μ a marking on Y. We can also define (due to Behrstock) $\pi_{\mathcal{M}(Z)}(\mu) \subseteq \mathcal{M}(Z)$.

Proposition. The diameters of $\pi_Z(\mu)$ and $\pi_{\mathcal{M}(Z)}(\mu)$ are bounded.

Definition. Given $\mu_1, \mu_2 \in \mathcal{M}(Y)$,

$$d_Z(\mu_1, \mu_2) = diam(\pi_Z(\mu_1) \cup \pi_Z(\mu_2))$$

and $d_{\mathcal{M}(Z)}$ is similar.

Projections are used to define a distance formula.

Theorem (Masur-Minsky).

$$d_{\mathcal{M}(S)}(\mu_1,\mu_2) \asymp \sum_{Y \subseteq S} [d_Y(\mu_1,\mu_2)]_M$$

2.2. First Key Ingredient: Pigeonhole Proposition. Suppose $G \leq$ Mod(S) finitely generated, and μ is a marking. Given c > 0 there exists an R > 0 with the following property. If $g \in G, Z \subsetneq S, |g| > R$ and $d_{\mathcal{M}(Z)}(\mu, g\mu) \geq c|g|$ then G contains a reducible element.

2.3. Sketch of a proof of the theorem. Suppose $G \leq Mod(S)$ is finitely generated, undistorted, purely pseudo Anosov, and torsion free. Suppose $\mu \in \mathcal{M}(S).$

Undistorted implies

$$|g| \asymp d_{\mathcal{M}(S}(\mu, g\mu) \asymp \sum_{Y \subseteq S} [d_Y(\mu, g\mu)]_A$$

We want an $\epsilon > 0$ such that $d_S(\mu, g\mu) \ge \epsilon |g|$ for all g. So suppose not, that for every $\epsilon > 0$ there is some $g \in G$ such that $d_S(\mu, g\mu) < \epsilon |g|$. For such g there are subsurfaces $Y_1, \ldots, Y_k \subsetneq S$ such that

- (1) $d_Y(\mu, g\mu) \ge A$ (2) $|g| \asymp \sum_{i=1}^k d_{Y_i}(\mu, g\mu)$

From Bestvina-Bromberg-Fujiwara and Behrstock-Kleiner-Minsky-Mosher, there exists a 0 < B < A and

- (3) $g = g_1 \cdots g_k, \ |g| = \sum |g_i|, \ g_i \in G$ (4) $d_{Y_j}(\mu, g_1 \cdots g_i \mu) \le B$ if i < j
- (5) $d_{Y_i}(g\mu, g_1 \cdots g_i\mu) \leq B$ if $i \geq j$

Using this we find a subsurface with linearly large marking projection of some piece of q, producing a reducible element and a contradiction.

4