WORD-HYPERBOLIC SURFACE BUNDLES 3

Our bundles fit in to this universal sequence,

1 —— (S, 2) —— Mod(S\ {z}) —2— Mod(S) —— 1
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where 'Y, is the pullback. If p is one to one we get I'?, = ¢~ (p(G)).

Proposition. (1) T% contains no BS(p,q)) if and only if |ker p| < oo
and p(QG) is purely pseudo-Anosov.
(2) If G has a finite K(G,1) then I'Y, has a finite K(T'%,,1).

The finite kernel statement is technically frustrating, but does not change
results up to quasi-isometry, so we restrict to injections. This gives the
reformulation of our question

Question (Gromov; Farb-Mosher). Suppose G < Mod(S). If G is purely
pseudo Anosov, finietly generated (or finitely presented, K(G,1) finite,. .. ),
is Tq = ¢~ 1(G) hyperbolic?

Theorem (Bestvina-Bromberg-Kent-Leininger). Suppose G < Mod(S). Then
T'q is hyperbolic ifand only if G is purely pseudo Anosov, finietly generated,
and undistorted.

1. SOME BACKGROUND NOTIONS

By analogy with Kleinian groups, Farb and Mosher define

Definition. G < Mod(S) is convex cocompact if the action on T(S) has
a quasiconvex orbit in the Teichmiller metric.

Theorem (Farb-Mosher, Hammenstadt). G is convex cocompact if and only
if U is hyperbolic.

Corollary. I'¢ hyperbolic implies that G is finitely generated, purely pseudo
Anosov, and undistorted.

We remark that the theorem (BBKL) provides a converse and a Mod(S)
intrinsic charactarization of I'¢ hyperbolicity. An alternative characteriza-
tion is given by Durham and Taylor, called stability.

2. THE PROOF

2.1. Tools. The first of our tools is the curve graph C(S).

Theorem (Kent-Leininger, Hammenstadt). G < Mod(S) is convex cocom-
pact if and only if G — C(S), the orbit map, is a quasi-isometric embedding.

We will also use M(S) the marking graph of S as a model of Mod(S).
M(S) is locally finite and Mod(S) acts properly discontinuously and co-
compactly by simplicial isometries, the orbit map is a quasi-isometry.



4 CHRIS LEININGER

The next tool is projections. Suppose Z C Y C S are essential subsur-
faces. There is a projection (due to Masur-Minsky) 7z () C C(Z) for p a
marking on Y. We can also define (due to Behrstock) 7 (z) (1) € M(Z).

Proposition. The diameters of mz(p) and maqz) (1) are bounded.
Definition. Given p1, p2 € M(Y),
dz(p, p2) = diam(mz () Unz(pz))

and dyy(z) is similar.
Projections are used to define a distance formula.

Theorem (Masur-Minsky).

dps) (i1, p2) =< D [dy (p, p12)
YCS

2.2. First Key Ingredient: Pigeonhole Proposition. Suppose G <
Mod(S) finitely generated, and p is a marking. Given ¢ > 0 there exists
an R > 0 with the following property. If ¢ € G, Z C S, |g| > R and
da(z) (1, gp) > clg| then G contains a reducible element.

2.3. Sketch of a proof of the theorem. Suppose G < Mod(S) is finitely
generated, undistorted, purely pseudo Anosov, and torsion free. Suppose
we M(S).

Undistorted implies

9] = dpqs (i g1) =< Y [dy (1, g1)] 4
YCS
We want an € > 0 such that dg(u, gi) > €|g| for all g. So suppose not, that
for every € > 0 there is some g € G such that dg(u, gu) < €|g|. For such g
there are subsurfaces Yi,...,Y; C S such that

(1) dy(p,gp) > A

(2) lgl = D20y dv; (1, gp)
From Bestvina-Bromberg-Fujiwara and Behrstock-Kleiner-Minsky-Mosher,
there exists a 0 < B < A and

(3) g=91"9k 9l =219, 9 € G

(4) dy,(u,91---gin) < Bifi < j

(5) dy,(gi,g1---gin) < Bifi > j
Using this we find a subsurface with linearly large marking projection of
some piece of g, producing a reducible element and a contradiction.
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