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Our bundles fit in to this universal sequence,

1 π1(S, z) Mod(S \ {z}) Mod(S) 1

1 π1(S) ΓρG G 1

φ

ρ

where ΓρG is the pullback. If ρ is one to one we get ΓρG = φ−1(ρ(G)).

Proposition. (1) ΓρG contains no BS(p, q)) if and only if | ker ρ| < ∞
and ρ(G) is purely pseudo-Anosov.

(2) If G has a finite K(G, 1) then ΓρG has a finite K(ΓρG, 1).

The finite kernel statement is technically frustrating, but does not change
results up to quasi-isometry, so we restrict to injections. This gives the
reformulation of our question

Question (Gromov; Farb-Mosher). Suppose G ≤ Mod(S). If G is purely
pseudo Anosov, finietly generated (or finitely presented, K(G, 1) finite,. . . ),
is ΓG = φ−1(G) hyperbolic?

Theorem (Bestvina-Bromberg-Kent-Leininger). Suppose G ≤Mod(S). Then
ΓG is hyperbolic ifand only if G is purely pseudo Anosov, finietly generated,
and undistorted.

1. Some Background Notions

By analogy with Kleinian groups, Farb and Mosher define

Definition. G ≤ Mod(S) is convex cocompact if the action on T (S) has
a quasiconvex orbit in the Teichmüller metric.

Theorem (Farb-Mosher, Hammenstädt). G is convex cocompact if and only
if ΓG is hyperbolic.

Corollary. ΓG hyperbolic implies that G is finitely generated, purely pseudo
Anosov, and undistorted.

We remark that the theorem (BBKL) provides a converse and a Mod(S)
intrinsic charactarization of ΓG hyperbolicity. An alternative characteriza-
tion is given by Durham and Taylor, called stability.

2. The proof

2.1. Tools. The first of our tools is the curve graph C(S).

Theorem (Kent-Leininger, Hammenstädt). G ≤Mod(S) is convex cocom-
pact if and only if G→ C(S), the orbit map, is a quasi-isometric embedding.

We will also use M(S) the marking graph of S as a model of Mod(S).
M(S) is locally finite and Mod(S) acts properly discontinuously and co-
compactly by simplicial isometries, the orbit map is a quasi-isometry.
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The next tool is projections. Suppose Z ( Y ( S are essential subsur-
faces. There is a projection (due to Masur-Minsky) πZ(µ) ⊂ C(Z) for µ a
marking on Y . We can also define (due to Behrstock) πM(Z)(µ) ⊆M(Z).

Proposition. The diameters of πZ(µ) and πM(Z)(µ) are bounded.

Definition. Given µ1, µ2 ∈M(Y ),

dZ(µ1, µ2) = diam(πZ(µ1) ∪ πZ(µ2))

and dM(Z) is similar.

Projections are used to define a distance formula.

Theorem (Masur-Minsky).

dM(S)(µ1, µ2) �
∑
Y⊆S

[dY (µ1, µ2)]M

2.2. First Key Ingredient: Pigeonhole Proposition. Suppose G ≤
Mod(S) finitely generated, and µ is a marking. Given c > 0 there exists
an R > 0 with the following property. If g ∈ G, Z ( S, |g| > R and
dM(Z)(µ, gµ) ≥ c|g| then G contains a reducible element.

2.3. Sketch of a proof of the theorem. Suppose G ≤Mod(S) is finitely
generated, undistorted, purely pseudo Anosov, and torsion free. Suppose
µ ∈M(S).

Undistorted implies

|g| � dM(S(µ, gµ) �
∑
Y⊆S

[dY (µ, gµ)]A

We want an ε > 0 such that dS(µ, gµ) ≥ ε|g| for all g. So suppose not, that
for every ε > 0 there is some g ∈ G such that dS(µ, gµ) < ε|g|. For such g
there are subsurfaces Y1, . . . , Yk ( S such that

(1) dY (µ, gµ) ≥ A
(2) |g| �

∑k
i=1 dYi(µ, gµ)

From Bestvina-Bromberg-Fujiwara and Behrstock-Kleiner-Minsky-Mosher,
there exists a 0 < B < A and

(3) g = g1 · · · gk, |g| =
∑
|gi|, gi ∈ G

(4) dYj (µ, g1 · · · giµ) ≤ B if i < j
(5) dYj (gµ, g1 · · · giµ) ≤ B if i ≥ j

Using this we find a subsurface with linearly large marking projection of
some piece of g, producing a reducible element and a contradiction.
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