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1+2=3

1. Subsurface projections and 3-manifolds

Consider a surface bundle over the circle

S M3

S1

Let f : S → S be the monodromy. If it is pseudo Anosov we have stable
and unstable foliations λ+, λ−. Suppose Y ⊂ S is an essential subsurface,
we get a pairing dY (λ+, λ−). To make dy precise, consider A(Y ) the curve
and arc complex of Y . Define

πY (λ) = [λ ∩ Y ]

the finitely many parallel classes of the essential intersections of λ with Y .

dY (λ+, λ−) = dA(Y )(πY (λ+), πY (λ−))

The idea from Brock-Canary-Minsky is that short curves correspond to large
projections. Precisely

∀s∃k : dY (λ+, λ−) > k ⇒ `M (∂Y ) < ε

∀k∃ε : `M (γ) < ε⇒ ∃Y : γ ⊂ ∂Y and dY (λ+, λ−) > k

Ugly secrets:

• Quantifiers are non-constructive
• This depends on the choice of fiber S.

Question. What happens as S changes.

Picture

Notes prepared by Edgar A. Bering IV.
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In S × R we see a tube ∂Y × (0, 1) which maps well into M .
Recall, If b1(M) > 1 then M has infinitely many fibrations.

H1(M) ∼= H2(M,∂M)

There is the Fried-Thurston cone on a face of the unit ball in the Thurston
nurm, integral points correspond to different fibrations.

There is also a suspension flow, coming from the vertical flow on S×R. In
a given face F the suspension flow is transverse to all fibers in the different
fibrations in the face. The laminations coming from the monodromy can also
be suspended into Λ+,Λ−, 2-laminations that are transverse to all fibers.
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Given such global objects Λ+,Λ− we can discuss dY (Λ+,Λ−) such that Y ⊆
S′ for any fiber S′ ∈ R+F .

Question. Is there an upper bound on dY (Λ+,Λ−) independent of the fiber?

Question. Fix a fiber F , vary S ∈ R+F . ARe all large projections actually
in F?

2. Veering Triangulations of M

Assume fibers are fully punctured (“essential”), that is, the singularities
of λ+, λ− are at punctures, so M is cusped.

Agol & Guéritaud give a consruction. Fix a fiber S′. Lift to S̃

Find a maximal foliated rectangle R ⊆ S̃. R produces an abstract tetrahe-
dron TR oriented so that the + edge goes over the − edge
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Such things exist, and have one singularity on each edge. This follows from
irreducibility. There are in fact infinitely many, non-disjoint such rectangles

Build X = ∪RTR/ ∼ where ∼ is “glue according to the picture”.

Exercises X is a 3-manifold, X → S̃ is covering where the fibers are lines.
τ̃ is a triangulation of S̃ ×R ∼= M̃ . π1(S) and the monodromy acts, both

simplicially, giving τ a triangulation of M .
Claim τ depends only on R+F equivalently only on the suspension flow.

Consider S̃ = M̃/suspension flow ∼= S̃′. We have the inclusion λ± ↪→
Λ̃±/suspension flow. Since Λ̃pm do not depend on the fiber we’re well-
defined.
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3. I+II=III

Lemma. Suppose Y ⊂ S ∈ R+F is essential non-annular (this assumption
is for simplicity). If dY (λ+, λ−) > 0 then Y is realized simplicially in a
section of τ .

Definition. A section of τ is a choice of simpicies in S × R like this

Note that sections are in S×R. Their image may not be an honest fiber.

Lemma. If dY (λ+, λ−) > 2 then Y has a simplicial “pocket” in S × R.
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UY is maximal joining two copies of Y as sections. The pocket UY gives two
triangulations U+, U− of Y and we have dY (λ+, U+) = 0 and dY (λ−, U−) =
0.

Lemma. If dY (λ+, λ−) > 8 then UY has a subpocket VY that embeds in M
and more.

Consequences of these lemmas.

Theorem. Fix M , fibered face R+F , τ . For all fibers S, Y ⊂ S

3|χ(Y )|(dY (λ+, λ−)− 8) ≤ |τ |

Theorem. With the same hypotheses. Let F and S be two fibers in R+F .
Suppose Y ⊂ S. Then either

(1) Y is isotopic along the flow to a subsurface of F
(2) dY (λ+, λ−) ≤ 3|χ(F )|+ 8

3.1. Some remarks about the proofs. Consider a surface with a scary
subsurface
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Pull it tight! Problem

These two arcs are isotopic.
So in the first lemma, if Y has positive projection, the tight surface is

embedded. Remains to show that Y is a section. In S̃ imagine we need σ
in a rectangle to cover a diagonal of Y . Not true.
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σ may not be an arc of τ but we can cover σ with a collection of maximal
foliated rectangles. Joining singularities gives a τ -hull of σ. Exercise this
τ -hull is nice.
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