# FIBRATIONS, SUBSURFACE PROJECTIONS, AND VEERING TRIANGULATIONS NOTES FROM THE OCTOBER 2016 MSRI WORKSHOP ON MAPPING CLASS GROUPS AND OUTER AUTOMORPHISM GROUPS

#### YAIR MINSKY

This work is Joint with Sam Taylor. An outline

(1) Motivation

(2) Veering Triangulations

1 + 2 = 3

### 1. Subsurface projections and 3-manifolds

Consider a surface bundle over the circle

$$\begin{array}{ccc} S & \longrightarrow & M^3 \\ & & \downarrow \\ & & S^1 \end{array}$$

Let  $f: S \to S$  be the monodromy. If it is pseudo Anosov we have stable and unstable foliations  $\lambda^+, \lambda^-$ . Suppose  $Y \subset S$  is an essential subsurface, we get a pairing  $d_Y(\lambda^+, \lambda^-)$ . To make  $d_y$  precise, consider A(Y) the curve and arc complex of Y. Define

$$\pi_Y(\lambda) = [\lambda \cap Y]$$

the finitely many parallel classes of the essential intersections of  $\lambda$  with Y.

$$d_Y(\lambda^+, \lambda^-) = d_{A(Y)}(\pi_Y(\lambda^+), \pi_Y(\lambda^-))$$

The idea from Brock-Canary-Minsky is that short curves correspond to large projections. Precisely

$$\forall s \exists k : d_Y(\lambda^+, \lambda^-) > k \Rightarrow \ell_M(\partial Y) < \epsilon$$
$$\forall k \exists \epsilon : \ell_M(\gamma) < \epsilon \Rightarrow \exists Y : \gamma \subset \partial Y \text{ and } d_Y(\lambda^+, \lambda^-) > k$$

Ugly secrets:

- Quantifiers are non-constructive
- This depends on the choice of fiber S.

Question. What happens as S changes.

Picture

Notes prepared by Edgar A. Bering IV.



In  $S \times \mathbb{R}$  we see a tube  $\partial Y \times (0, 1)$  which maps well into M. Recall, If  $b_1(M) > 1$  then M has infinitely many fibrations.

 $H^1(M) \cong H_2(M, \partial M)$ 



There is the Fried-Thurston cone on a face of the unit ball in the Thurston nurm, integral points correspond to different fibrations.

There is also a suspension flow, coming from the vertical flow on  $S \times \mathbb{R}$ . In a given face F the suspension flow is transverse to all fibers in the different fibrations in the face. The laminations coming from the monodromy can also be suspended into  $\Lambda^+, \Lambda^-$ , 2-laminations that are transverse to *all* fibers.



4



Given such global objects  $\Lambda^+, \Lambda^-$  we can discuss  $d_Y(\Lambda^+, \Lambda^-)$  such that  $Y \subseteq S'$  for any fiber  $S' \in \mathbb{R}_+ F$ .

**Question.** Is there an upper bound on  $d_Y(\Lambda^+, \Lambda^-)$  independent of the fiber? **Question.** Fix a fiber F, vary  $S \in \mathbb{R}_+F$ . ARe all large projections actually in F?

## 2. Veering Triangulations of ${\cal M}$

Assume fibers are *fully punctured* ("essential"), that is, the singularities of  $\lambda^+$ ,  $\lambda^-$  are at punctures, so M is cusped.



Agol & Guéritaud give a construction. Fix a fiber S'. Lift to  $\tilde{S}$ 



Find a maximal foliated rectangle  $R \subseteq \tilde{S}$ . R produces an abstract tetrahedron  $T_R$  oriented so that the + edge goes over the - edge

FIBRATIONS, SUBSURFACE PROJECTIONS, AND VEERING TRIANGULATIONS 5



Such things exist, and have one singularity on each edge. This follows from irreducibility. There are in fact infinitely many, non-disjoint such rectangles



Build  $X = \bigcup_R T_R / \sim$  where  $\sim$  is "glue according to the picture".

*Exercises* X is a 3-manifold,  $X \to \tilde{S}$  is covering where the fibers are lines.  $\tilde{\tau}$  is a triangulation of  $\tilde{S} \times R \cong \tilde{M}$ .  $\pi_1(S)$  and the monodromy acts, both simplicially, giving  $\tau$  a triangulation of M.

Claim  $\tau$  depends only on  $\mathbb{R}_+F$  equivalently only on the suspension flow. Consider  $\tilde{S} = \tilde{M}$ /suspension flow  $\cong \tilde{S}'$ . We have the inclusion  $\lambda^{\pm} \hookrightarrow \tilde{\Lambda}^{\pm}$ /suspension flow. Since  $\tilde{\Lambda}^{pm}$  do not depend on the fiber we're well-defined.

#### YAIR MINSKY

### 3. I+II=III

**Lemma.** Suppose  $Y \subset S \in \mathbb{R}_+F$  is essential non-annular (this assumption is for simplicity). If  $d_Y(\lambda^+, \lambda^-) > 0$  then Y is realized simplicially in a section of  $\tau$ .

**Definition.** A section of  $\tau$  is a choice of simplicies in  $S \times \mathbb{R}$  like this



Note that sections are in  $S \times \mathbb{R}$ . Their image may not be an honest fiber.

**Lemma.** If  $d_Y(\lambda^+, \lambda^-) > 2$  then Y has a simplicial "pocket" in  $S \times \mathbb{R}$ .



 $U_Y$  is maximal joining two copies of Y as sections. The pocket  $U_Y$  gives two triangulations  $U^+, U^-$  of Y and we have  $d_Y(\lambda^+, U^+) = 0$  and  $d_Y(\lambda^-, U^-) = 0$ .

**Lemma.** If  $d_Y(\lambda^+, \lambda^-) > 8$  then  $U_Y$  has a subpocket  $V_Y$  that embeds in M and more.

Consequences of these lemmas.

**Theorem.** Fix M, fibered face  $\mathbb{R}_+F$ ,  $\tau$ . For all fibers S,  $Y \subset S$ 

$$3|\chi(Y)|(d_Y(\lambda^+,\lambda^-)-8) \le |\tau|$$

**Theorem.** With the same hypotheses. Let F and S be two fibers in  $\mathbb{R}_+F$ . Suppose  $Y \subset S$ . Then either

(1) Y is isotopic along the flow to a subsurface of F (2)  $d_Y(\lambda^+, \lambda^-) \leq 3|\chi(F)| + 8$ 

3.1. Some remarks about the proofs. Consider a surface with a scary subsurface

YAIR MINSKY



Pull it tight! Problem



These two arcs are isotopic.

So in the first lemma, if Y has positive projection, the tight surface is embedded. Remains to show that Y is a section. In  $\tilde{S}$  imagine we need  $\sigma$  in a rectangle to cover a diagonal of Y. Not true.



 $\sigma$  may not be an arc of  $\tau$  but we can cover  $\sigma$  with a collection of maximal foliated rectangles. Joining singularities gives a  $\tau$ -hull of  $\sigma$ . Exercise this  $\tau$ -hull is nice.