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This is work joint with Michael Handel.
Our setting is ϕ ∈ Out(Fn). The broad goal is to undertand ϕ. The

specific goal of this talk is to shamelessly advertise CTs as a tool for doing
so.

1. Nielsen-Thurston theory, a review

Consider f ∈ Mod(S) where S is a surface. Thurston normal form: f is
in normal form if

There is a fixed 1 manifold M so that on each component S \M f is either
id or pseudo Anosov, and f is a multi-twist on M .

Definition. f is rotationless if it can be put into normal form. “No periodic
behavior”

Theorem (Thurston). There exists a K depending on S such that for all
f ∈Mod(S), fK is rotationless.

Normal form isn’t a perfect invariant, we want something stronger that
is an f invariant. Consider the action of a lift f̃ on H2

Notes prepared by Edgar A. Bering IV.
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For this lift, it extends to ∂H2 = S1. This is an invariant of f , depends on
the lift.

Idea Take all extensions of all lifts. Impractical. Finitely many have good
info.

Restrict to lifts that fix a given lift of a prong. We see from it 3 neutral
fixed points. |FixN (∂f̃)| = 3 and if we vary by deck transformations we get
the same number.

On an identiy component, pick a point and look at lifts
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We see a fixed cantor set |FixN (∂f̃)| =∞.
These lifts are interesting.

Definition. The principal lifts of f are those with at least 3 neutral boundary
fixed points.

Theorem (Thurston). For rotationless f ∈Mod(S)

(1) There are finitely many families of principal lifts.
(2) These fixed sets together with numerical data determine f ∈Mod(S).

This gives a complete invariant.

These indicate the invariant sets at infinity. The Dehn twists are recovered
by comparing two lifts on the boundary to get a translation parameter,
which is the numerical data.

2. A similar story for ϕ ∈ Out(Fn)

(1) There is an rotationless notion
(2) Principal lift Φ ∈ Aut(Fn) such that Φ ∈ φ and |FixN (∂Φ)| ≥ 3 (or

2 with a technical condition).
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Theorem (Recognition, Feighn-Handel). For all rotationless φ ∈ Out(Fn)

• Finitely many principal families Φ
• FixN (Φ) and numerical data determine ϕ
• ∃K depending on n such that for all ϕ ∈ Out(Fn), ϕK is rotationless.

We would like a normal form to make using this complete invariant fun
and easy.

2.1. Some examples. Our examples will be topological representatives.
Starting with G a rank n graph with a homotopy equivalence from Rn

the n petaled rose called the marking represent ϕ by f : G→ G a homotopy
equivalence taking vertices to vertices and edges to tight edge paths.

As is traditional we will suppress the marking.

2.1.1. Example 1.

Under iteration b 7→ ba 7→ ba2 · · · so b grows linearly under iteration.
Some features of a topological represnetative to locate

• Fixed edges

• Fixed directions E 7→ Eu
– Could be linear (u is fixed)
– Could be superlinear

• Nielsen paths. Some of which are indivisible

bab−1 7→ baa−1b−1 = bab−1

baib−1

The first of these is a basic nielsen paths.

Under iteration, fixed directions give eigenrays.
Construction of the invariant.
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• Start with fixed vertices and edges
• Add in basic indivisible Nielsen Paths
• Add in superlinear eigenrays

This is an image of Fix(Φ), providing a graph immersing into G identifying
the features.

2.1.2. Example 2.

• Fixed edges: a 7→ a
• Fixed directions: b 7→ b · · · linear and c 7→ c · · · superlinear.
• Same Nielsen paths as before.

These diagrams are called Stallings graphs. The hope is this captures the
invariant. These graphs have been studied by Goldstein, Turner, Gersten,
and Cooper.
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2.1.3. Example (BAD). Same graph as before

a 7→ a

b 7→ ba

c 7→ ca

Resulting Stallings graph

Warning bc−1 7→ baa−1c−1 = bc−1 is a fixed edge, but not an indivisible
Nielsen path, and is not carried by this picture.

3. CTs

CTs are topological representatives where “what you see is what you get”.

3.1. A brief history of topological representatives.

• Bestvina-Handel ’92
– Train tracks and Relative Train Tracks
– Solve the Scott conjecture: Rank(Fix(Φ)) ≤ n

• Bestvina-Feighn-Handel
– Improved relative Train Tracks
– Tits Alternative for Out(Fn)

• CTs Feighn-Handel
– Recognition Theorem
– CTs are algorithmic
– Can construct principal lift fixed data
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3.2. A final example. Consider the Stallings graph from Example 2.

Define the index of a Stallings graph Γ

i(Γ) =
∑
C

[(rk(C)− 1) +
1

2
|ends(C)|]

Here i(Γ) = 3
2 . This is i(ϕ) of Gabouriau-Jagon-Levitt-Lustig. GJLL show

i(ϕ) ≤ n− 1.
CTs give another proof of this from their hierarchical structure and also

tighter index estimates.
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