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This work is joint with Richard Webb.
Let S be a surface.

Definition. The curve complex C(S) of S is a simplicial complex whose
vertices are isotopy classes of simple closed curves, and k curves span a
simplex when they can be realized disjointly.

For sufficiently complex surfaces, C(S) is connected. This is an exercise
with surgery.

Theorem (Bell-Webb). There exists an algorithm to compute a geodesic
[a, b] ⊂ C(S) and it is poly(d(a, b)) time. (Precisely poly(log i(a, τ)+log i(b, τ))
where τ is a fixed ideal triangulation.)

Theorem. There is a polynomial time algorithm to determine the Nielsen-
Thurston type of a mapping class.

Proof. Proof of theorem 2 from theorem 1 Consider Mod(S) acting on C(S).
If ϕ ∈ Mod(S) is reducible there is a fixed multicurve m. Start with some
curve c. Calculate the geodesic from c to fN (c) and let c′ be the midpoint.
By δ-hyperbolicity and the Bounded Geodesic Image theorem the midpoint
c′ is within 2 of m, so that d(c′, fN (c′)) ≤ 4.

Notes prepared by Edgar A. Bering IV.

2



FINDING GEODESICS IN THE CURVE COMPLEX 3

In the case f is pseudo Anosov we have the following picture

and conclude that d(c′, fN (c′))� 0. �

1. Some history of results like Theorem 1

C(S) is locally infinite, which makes it challenging to approach algorith-
mically.

We will restrict our attention to adress this problem.

Definition (Masur-Minsky). A geodesic a0, . . . , an ∈ C(S) is tight if

ai = ∂N(ai−1 ∪ ai+1)

and ai, aj fill S when |i− j| ≥ 3.
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Tight geodesics always exist, and by focusing on them we get a handle on
the locally infinte nature of C(S).

Theorem. There are finitely many tight geodesics [a, b].

Theorem (Leasure, Shackelton, Watanabe, Webb). If a0, . . . , an is tight

then i(a1, an) ≤ 2|χ(S)|n cot i(a0, an).

This bound allows us to search for a1. There are finitely many possibil-
ities, a1 ∈ A1, and A1 is computable. For each point in a1 we can repeat
this.

All tight geodesics from a0 to an must pass through these sets, so the problem
is computable.

However, this naive approach is a priori searching an exponential graph.
There are some optimization tricks to reduce the exponent but the problem
is still exponential.

The idea is to pick a better guide through the A sets to avoid checking
every tree branch. We would like a set U ⊆ C(S) with the properties that
a0, an ∈ U and U is quasi-convex, polynomially sized.

How can we produce such a thing? The train-track splittings of Masur
and Minsky. Take a splitting sequence τ0 → · · · → τn where τ0 has a0 as a
vertex cycle and τn has an as a vertex cycle. Let U be the set of the vertex
cycles of all τi. Masur and Minsky show this is quasiconvex. Moreover, the
work of Agol-Hass-Thurston shows that |U | ≤ poly(n).

Computing a tight geodesic with U . Use the A-tree construction to con-
nect the points of U . These trees are all of depth L = 6K + 2 where K is
the quasi-convexity constant of U , so of size |A1|L.
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The result is a graph with |A1|L · |U | ∼ poly(n) vertices. Path finding in
such a graph is polynomial time.

Further, we claim there is a tight geodesic inside this graph.

We can find tight geodesics joining points of U and use quasi-convexity to
stitch them together on the overlap.

Other applications of the algorithm.

• Can find an invariant curve system m ⊆ σ(f) of the canonical fixed
curve. The reducible construction above is pretty good

• But one can show that m ⊆ ∂N(v ∪ fN (v)) for some v ∈ [c, fN (c)].
• This can also be used to compute the asymptotic translation lengths

of pseudo-Anosovs in C(S).
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