FINDING GEODESICS IN THE CURVE COMPLEX NOTES FROM THE OCTOBER 2016 MSRI WORKSHOP ON MAPPING CLASS GROUPS AND OUTER AUTOMORPHISM GROUPS

MARK BELL

This work is joint with Richard Webb. Let S be a surface.

Definition. The curve complex C(S) of S is a simplicial complex whose vertices are isotopy classes of simple closed curves, and k curves span a simplex when they can be realized disjointly.

For sufficiently complex surfaces, $\mathcal{C}(S)$ is connected. This is an exercise with surgery.

Theorem (Bell-Webb). There exists an algorithm to compute a geodesic $[a,b] \subset C(S)$ and it is poly(d(a,b)) time. (Precisely $poly(\log i(a,\tau) + \log i(b,\tau))$) where τ is a fixed ideal triangulation.)

Theorem. There is a polynomial time algorithm to determine the Nielsen-Thurston type of a mapping class.

Proof. Proof of theorem 2 from theorem 1 Consider Mod(S) acting on $\mathcal{C}(S)$. If $\varphi \in Mod(S)$ is reducible there is a fixed multicurve m. Start with some curve c. Calculate the geodesic from c to $f^N(c)$ and let c' be the midpoint. By δ -hyperbolicity and the Bounded Geodesic Image theorem the midpoint c' is within 2 of m, so that $d(c', f^N(c')) \leq 4$.

Notes prepared by Edgar A. Bering IV.

In the case f is pseudo Anosov we have the following picture

and conclude that $d(c', f^N(c')) \gg 0$.

1. Some history of results like Theorem 1

 $\mathcal{C}(S)$ is locally infinite, which makes it challenging to approach algorithmically.

We will restrict our attention to adress this problem.

Definition (Masur-Minsky). A geodesic $a_0, \ldots, a_n \in \mathcal{C}(S)$ is tight if

$$a_i = \partial N(a_{i-1} \cup a_{i+1})$$

and a_i, a_j fill S when $|i - j| \ge 3$.

MARK BELL

Tight geodesics always exist, and by focusing on them we get a handle on the locally infinite nature of $\mathcal{C}(S)$.

Theorem. There are finitely many tight geodesics [a, b].

Theorem (Leasure, Shackelton, Watanabe, Webb). If a_0, \ldots, a_n is tight then $i(a_1, a_n) \leq 2^{|\chi(S)|n} \cot i(a_0, a_n)$.

This bound allows us to search for a_1 . There are finitely many possibilities, $a_1 \in A_1$, and A_1 is computable. For each point in a_1 we can repeat this.

All tight geodesics from a_0 to a_n must pass through these sets, so the problem is computable.

However, this naive approach is a priori searching an exponential graph. There are some optimization tricks to reduce the exponent but the problem is still exponential.

The idea is to pick a better guide through the A sets to avoid checking every tree branch. We would like a set $U \subseteq \mathcal{C}(S)$ with the properties that $a_0, a_n \in U$ and U is quasi-convex, polynomially sized.

How can we produce such a thing? The train-track splittings of Masur and Minsky. Take a splitting sequence $\tau_0 \to \cdots \to \tau_n$ where τ_0 has a_0 as a vertex cycle and τ_n has a_n as a vertex cycle. Let U be the set of the vertex cycles of all τ_i . Masur and Minsky show this is quasiconvex. Moreover, the work of Agol-Hass-Thurston shows that $|U| \leq poly(n)$.

Computing a tight geodesic with U. Use the A-tree construction to connect the points of U. These trees are all of depth L = 6K + 2 where K is the quasi-convexity constant of U, so of size $|A_1|^L$.

4

The result is a graph with $|A_1|^L \cdot |U| \sim poly(n)$ vertices. Path finding in such a graph is polynomial time.

Further, we claim there is a tight geodesic inside this graph.

We can find tight geodesics joining points of U and use quasi-convexity to stitch them together on the overlap.

Other applications of the algorithm.

• Can find an invariant curve system $m \subseteq \sigma(f)$ of the canonical fixed curve. The reducible construction above is pretty good

- But one can show that $m \subseteq \partial N(v \cup f^N(v))$ for some $v \in [c, f^N(c)]$.
- This can also be used to compute the asymptotic translation lengths of pseudo-Anosovs in $\mathcal{C}(S)$.