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Analogous to the story of hyperbolic surface group extensions we will be
studying hyperbolic free group extensions for Fn, n ≥ 3.

We have

1 Fn Aut(Fn) Out(Fn) 1

1 Fn EΓ = ρ−1(Γ) Γ 1

ρ

analogous to the Birman exact sequence.

Definition. An automorphism f ∈ Out(Fn) is atoroidal if

∀α : fK(α) = α⇒ K = 0

where α ranges over conjugacy classes.

Definition. Fn denotes the free factor graph of Fn. This graph has as
vertices conjugacy classes of free factors, with an edge (A,B) if A ≤ B or
B ≤ A.

Out(Fn) acts on Fn.

Theorem (Dowdall-Taylor). Suppose Γfg ≤ Out(Fn). If Γ is purely atoroidal
and the orbit map Γ→ Fn is a quasi-isometric embedding then EΓ is hyper-
bolic.

Question. What do these hyperbolic groups look like?

Informally and in brief they are “like” hyperbolic surface extensions.

1. Remarks on the Theorem

1.1. The converse is NOT true.

Definition. φ ∈ Out(Fn) is fully irreducible (iwip) if

∀[A] ∈ F\ : φk([A]) = [A]⇒ k = 0

Notes prepared by Edgar A. Bering IV.
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Bestvina-Feighn show that φ is iwip if and only if φ acts loxodromically
on Fn.

Let φ ∈ Out(F3) be an atoroidal iwip, say a 7→ abc, b 7→ bab, c 7→ cabc.
Take two graph representatives of φ on a rose, call them φL and φR on the
left and right roses of the figure

Define Φ = φLφR. The group

E〈Φ〉 = F6 oΦ Z = (F3 oφ Z) ∗Z (F3 oφ Z)

The mapping torus has a bicollared neighborhood of the lift of x, which gives
the cyclic splitting. By the Bestvina-Feighn combination theorem E〈Φ〉 is
hyperbolic.

Theorem (Brinkman). Fn oφ Z is hyperbolic if and only if φ is atoroidal.

1.2. A perfect Out(Fn) graph.

Question. Does there exist an Out(Fn) graph Xhyp that is hyperbolic such
that φ is X-loxodromic if and only if φ is atoroidal.

The answer is no. Again returning to our example. Suppose we had such
a space Xhyp. Since Φ = φLφR = φRφL and φL, φR not atoroidal, φL, φR
are not X loxodromic. Suppose that they are elliptic,

The distance d(x,Φk(x)) does not grow with k, so Φ is not loxodromic. The
parabolic case is an exercise.

1.3. Toroidal iwips. There are iwip φ ∈ Out(Fn) that are not atoroidal.
Bestvina-Handel show that in this case there exists a punctured surface

S with π1(S) = Fn and f : S → S pseudo Anosov such that f∗ = φ.

2. The cosurface graph

Cnonsep(S) ↪→ Fn for each S with π1(S) = Fn has infinite diameter, each
non-separating curve gives a free factor.
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Definition. The intersection graph studied by Kapovich-Lustig and Mann-
Reynolds.

Is the same as

Definition. The co-surface graph of Fn, cSn is the graph with vertices prim-
itive conjugacy classes, and an edge (α, β) if there exists S once punctured
with π1(S) = Fn such that both α and β are simple closed curves on S.

Facts about cSn
• There is a Lipschitz map Fn → cSn (A 7→ α ∈ A)
• It is infinite diameter (Kapovich and Lustig)
• Hyperbolic (Mann and Reynolds)
• ∂cSn ⊆ ∂Fn (Dowdall and Taylor)
• φ is loxodromic on cSn if and only if φ is iwip atoroidal.

Theorem (Dowdall-Taylor). Γ ≤ Out(Fn) a finitely generated subgroup.

Γ
qi
↪→ Fn and Γ is purely atoroidal if and only if Γ

qi
↪→ cSn, where both maps

are the orbit maps.

Corollary. Γ
qi
↪→ cSn implies EΓ is hyperbolic.

3. Width

The notion of width was introduced by Kent and Leininger for hyperbolic
surface group etensions. Consider f : S → S and the mapping torus

For α ⊆ S a curve let α∗ be a geodesic representative in S × R. Define
width(α) = diam(pR(α∗)). For arbitrary curves the width is unbounded.
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However, Kent-Leininger prove

sup
α s.c.c.

width(α) <∞

And a more general statement for hyperbolic surface group extensions.
Now in Fn we have the sequence

1→ Fn → G
ρ→ Γ→ 1

with G hyperbolic. If a ∈ Fn let a∗ = [a−, a+] ⊆ G and define width(a) =
diamΓ(ρ(α∗)).

Theorem. When Γ ≤ Out(Fn), Γ
qi
↪→ cSn if and only if

sup
a primitive

width(a) <∞

This theorem is an answer to our question “What do they look like?”.
Lets return to the example GΦ = F6 oΦ Z, Φ = φLφR.

Consider αK = φ−KL φKR (α). Then width(αK)→∞.

4. A three manifold theorem

Theorem (Souto). f : S → S closed g ≥ 2

rank(π1(Mfn)) = 2g + 1

n� 1.

The key fact in the proof is due to Scott and Swarup: If Γ < π1(S) is
finitely generated and infinite index then Γ is quasi-convex in π1(Mf ).

• This fact generalizes to all hyperbolic extensions, by Dowdall-Kent-
Leininger
• Generalized to bounded width hyperbolic extensions of Fn (Dowdall-

Taylor, Mj-Rafi)
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Theorem. Suppose
1→ Fn → EΓ → Γ→ 1

Hyperbolic bounded width. If g1, . . . , gk ∈ Γ are infinite order with distinct
endpoints. Set ∆m = 〈gm1 , . . . , gmk 〉. For m� 1,

rank(E∆m) = n+ k

Corollary.
rank(Fn oφm Z) = n+ 1

for m� 1 when φ is iwip and atoroidal.
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