A NEW BOUNDARY FOR THE MAPPING CLASS GROUP NOTES FROM THE OCTOBER 2016 MSRI WORKSHOP ON MAPPING CLASS GROUPS AND OUTER AUTOMORPHISM GROUPS

MATTHEW DURHAM

This work is joint with Hagen and Sisto. Plan

- Some HHSes
- Gromov ∂
- Main Theorem
- Subgroup ∂
- Mod(S) and PML(S)
- Masur-Minsky Theory
- $\partial Mod(S)$
- (4) again
- Toward geometric finiteness

1. Some HHSes (Behrstock-Hagen-Sisto)

- Hyperbolic Spaces
- \mathbb{R}^n products of HHSes
- All cubical groups (BHS, Hagen-Suisse) (eg RAAGs and RACGs)
- $\pi_1(M^3)$ with M^3 closed and no Nil or Sol components (BHS)
- Mod(S) and T(S) with either the Teichmuller or Weil-Peterssen metrics. (Masur-Minsky, Brock, Rafi, Durham, Augab, Behrstock,...)

2. Gromov Boundary

Given X a delta hyperbolic space define $\partial_{gr}X$ to be asymptotic classes of geodesics based at a point.

Theorem (Gromov). If X is proper (eg a group) then $\partial_{gr}X$ is compact and metrizable.

Things you can do with ∂_{gr} :

- Classification of elements by dynamics on ∂_{gr}
- Analyse structure of subgroups
- $\partial_{qr}G$ is a model for the Poisson boundary four random walks
- Cannon-Thurston maps
- Geodesic flow spaces
- Patterson-Sullivan theory

Notes prepared by Edgar A. Bering IV.

3. Main Theorem

Theorem (Durham-Hagen-Sisto). For any HHS X there exists a bordification ∂X such that if X is proper then ∂X is compact and metrizable. If X has a group action the action extends continuously.

Examples. Hyperbolic groups recover the Gromov boundary. RA(A/C)Gs retopologizes the simplicial boundary.

Things we can do with ∂G

- Nielsen-Thurston like classification of elements
- "rank one" elements act with North-South dynamics on ∂G
- ∂G is a compact model for the Poisson boundary
- A Tits alternative
- A Rank-Rigidity theorem a la Caprace-Sageev
- Handel-Mosher Omnibus Subgroup Theorem

Theorem (Handel-Mosher, Durham-Hagen-Sisto). If G < Mod(S) let $A(G) = \bigcup_{g \in G} supp(g)$. Then there exists $g_0 \in G$ such that $supp(g_0) = A(G)$.

4. Boundaries of Subgroups

Let H < G be groups with "nice boundaries" $\partial H \partial G$. Natural questions

- (1) Does there exist an H equivariant continuous map $\partial H \rightarrow \partial G$?
- (2) Does there exist an H equivariant continuous extension of $i: H \to G$ to $\partial i: \partial H \to \partial G$? (These are called Cannon-Thurston maps).
- (3) Is the above map an embedding?

5. Mod(S) and PML(S)

Mod(S) acts on T(S) the Teichmüller space of S properly and by isometries but this action is not cocompact.

- Mod(S) is not quasi-isometric to T(S)
- Dehn twists are distorted

Thurston showed that PML(S) is a boundary, $Teich(S) \cup PML(S)$ is compact, and the Mod(S) action extends continuously.

But, Lenzhen showed that there are Teichmüller geodesics which limit to full simplices of PML(S).

6. MASUR-MINSKY THEORY

Consider $\mathcal{M}(S)$ the marking graph of S. This is quasi-isometric to Mod(S). Let

$$P_Y = \{\mu \in \mathcal{M}(S) | \partial Y \subset base(\mu)\}$$

for $Y \subset S$,

$$P_Y \cong \mathcal{M}(Y) \times \mathcal{M}(S \setminus Y) \times \prod_{\alpha \in \partial Y} \mathbb{Z}$$

This set P_Y quasi-isometrically embeds in $\mathcal{M}(S)$, is an infinite product region.

MATTHEW DURHAM

Therefore any "nice" boundary should see a simplicial join of boundaries of components of P_Y .

7.
$$\partial Mod(S)$$

Define $p \in \partial Mod(S)$ by its support supp(p) a collection of pairwise disjoint subsurfaces and a formal linear combination

$$p = \sum_{Y \in supp(p)} \alpha_Y \cdot \lambda_Y$$

such that $\sum \alpha_Y = 1$ and $\lambda_Y \in \partial \mathcal{C}(Y) \cong \mathcal{EL}(Y)$, where this isomorphism is due to Klarreich.

Theorem (Durham-Hagen-Sisto). There exists a topology on $\partial Mod(S)$ which makes $Mod(S) \cup \partial Mod(S)$ compact and metrizable.

- $\partial P_Y \hookrightarrow \partial Mod(S)$ embed
- $\partial \mathcal{C}(S) \hookrightarrow \partial Mod(S)$ is full measure in any lifting measure.
- Suppose $\mu_n \to p$ such that $supp(p) = \{Y_1, Y_2\}$. Fix $\mu \in \mathcal{M}(S)$ and suppose $p = \alpha_1 \lambda_1 + \alpha_2 \lambda_2$. Then

$$\lim_{n \to \infty} \frac{d_{Y_1}(\mu, \mu_n)}{d_{Y_2}(\mu, \mu_n)} = \frac{\alpha_1}{\alpha_2}$$

8. Subgroup ∂ revisited

Theorem (Durham-Hagen-Sisto). Let G < Mod(S) be any of the following

- (1) Mod(Y) for $Y \subseteq S$
- (2) Convex cocompact
- (3) A finite coarea Veech subgroup V
- (4) Leininger-Reid combinations of (3)

Then $i: G \to Mod(S)$ extends G equivariantly to an embedding $\partial i: \partial G \to \partial Mod(S)$.

Theorem (Leininger-Reid). There exists $H \to Mod(S)$ such that $H = \pi_1(S')$, S' closed and all but one non identity conjugacy class of elements is pseudo Anosov.

For (3) and (4) above the embedding does not extend to PML(S).

9. Towards Geometric Finiteness

Definition (Bowditch). Suppose M is a metrizable compactum. We say G acting on M is a convergence group action if the action of G on $M^{(3)}$ the space of distinc triples is properly discontinuous. The action is geometrically finite if every point in M is a conical end point or bounded parabolic point for the action of G.

The point of this definition is that it is very general.

 $\mathbf{4}$

Definition (Proposal). We say G < Mod(S) is geometrically finite if $\Lambda(G)$ is compact in $\partial Mod(S)$ and the G action on $\Lambda(G)$ is a geometrically finite convergence group action.

Question. Are Veech and Leininger-Reid subgroups geometrically finite?

Question. If G < Mod(S) is geometrically finite is E_G the surface group extension hierarchically hyperbolic?

Not all subgroups admit Cannon-Thurston maps

Theorem (Mousely). Let G < Mod(S) be a Koberda RAAG such that the supports of two generators don't fill. Then G does not admit a Cannon-Thurston map into $\partial Mod(S)$.