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Throughout the talk we will look at G finitely generated from the view-
point of isometric (non-linear) actions on Banach spaces.

Masur-Ulam: Every isometry of a Banach space is affine v 7→ Uv+ b with
U unitary.

Recall Property (T), it is equivalent to every action by isometries on a
Hilbert space has a global fixed point (FH).

Recall a-T-amenability, there exists a proper action on a Hilbert space
such that ∀v ∈ X, |g|S → +∞ =⇒ ||gv|| → ∞.

At present nothing is known forMod(Σ) a hyperbolic surface, Aut(Fn), Out(Fn)
with n ≥ 4.

1. Test cases to guide us

1.1. Lattices of isometries of symetric spaces of non-compact type.

Symmetric space: Hn
R Hn

C Hn
H Hn

O rk ≥ 2

Lattices: a-T-amenable (T)

1.2. Hyperbolic Groups. Random groups for density d ∈ (1/3, 1/2) are
hyperbolic and have (T). For density d < 1/6 are hyperbolic and a-T-
amenable.

2. Stronger (T)/weaker a-T-amenable

2.1. Strengthening 1. Consider affine actions on Hilbert space, not iso-
metric but uniformly bilipschitz. That is g ∈ G, for all v ∈ H v 7→ π(g)v+bg
and sup||π(g)|| < +∞.

Higher rank lattices have the fixed point property for these actions. (Bader-
Furman-Gelander-Monod, Shalom).

Conjecture (Shalom). Hyperbolic groups have proper actions of this type.
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2.2. Strengthening 2. Replace Hilbert space by Lp(X,µ) with p ∈ [1,∞).
Note that for all p (FLp)⇒ (T ).

a-T-amenable implies a-FLp-amenable. The converse is also true for p ∈
[1, 2] (Bader-Gelander-Monod).

For p � 2 FLp is strictly stronger than (T) and a-FLp-amenability is
strictly weaker than a-(T)-amenability.

According to Boudon, Boudon-Pajot, Yu, Nica. Every hyperbolic group
acts properly on some Lp if p > conformal dimension ∂∞G. In fact G
hyperbolic with (T) are a-FLp-amenable when p > cd(∂∞G.

Methods

• Yu uses Mineyev’s construction of “unitary tangent bundle” for hy-
perbolic groups.
• Nica uses conformal structure of ∂∞G (Mineyev)
• Boudon p > cd(∂inftyG) implies there exists d a metric on ∂∞G that

is quasiconformally equivalent to a visual metric and the Hausdorff
dimension of (∂∞G, d) < p. Boudon constructs a proper cocycle such
that for all u on ∂∞G Lipschitz there exists fu on G with fu ∈ `p(G).

Remark that FLp implies stronger rigidity results (Navas).
A way to measure “how strong a (T)-property a group has” is to consider

F(G) = {p ∈ [1,∞) : G has FLp}

when G has (T).
We know [1, 2] ⊆ F(G).

• F(G) is open (Fisher-Margulis, Drutu-M. Kapovich)
• If G is a higher-rank lattice, F(G) = [1,∞)
• If G is hyperbolic, F(G) ⊆ [1, cd(∂∞G)

Question (Boudon). Do there exist F(G) bounded containing [1, p0] when
p0 is large?

Question (Chatterji-Drutu-Haglund). Does there exist a connection be-
tween p(G) and cd(∂∞g)?

The first question is answered in the positive by Noor-Peres, who give a
sequence of hyperbolic groups answering it.

To approach question 2 the correct setting is random groups.

3. Triangular Model of Random Groups

Consider d ∈ (0, 1) the density parameter, m ∈ N for all m ∈ N we
can define Sm an abstract generating set |Sm| = m. Let Wm be the set of
words in S±m cyclically reduced of length 3. |Wm| = (2m)3 Pick R ⊆ Wm,
|R| = (2m)3d uniformly independently at random. The model M(m, d) is
G = 〈Sm|R〉.

A property P occurs asymptotically almost surely in this model if

P(Γ = 〈Sm|R〉 has P )→ 1
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For example

• d > 1/2 implies G ∼= 1 or Z/2Z aas
• d < 1/2 implies G is hyperbolic aas (Zuck)
• d > 1/3 implies G has (T) aas (Zuck). (Kotowok-K)
• d < 1/3 implies G is free aas (Autoniuk-Luczak, Swiatkowski)

Theorem (Drutu-Mackay). For all d > 1/3 there exists a C such that aas
G has FLp for

p ∈

[
1, c

(
logm

log logm

)1/2
]

Corollary. For all d ∈ (1/3, 1/2) there exists C, k depending on d such that
aas

c

(
logm

log logm

)1/2

≤ p(G) ≤ cd(∂∞G) ≤ K logm

This implies
cd(∂G)1/2−ε ≤ p(G) ≤ cd(∂G)

Remark all results are true for actions uniformly Lipschitz with constant

L ≤ 2
1
2p

4. Gromov Density Model

Fix a density d ∈ (0, 1) and an alphabet S with |S| = k. Consider W`

all reduced cyclically reduced words of length ` in S±. |W`| � (2k)`. Pick
R ⊆ W`, |R| = (2k)`d uniformly independently at random. The model is
G(k, d) = 〈S|R〉. We have a similar definition of aas as ` goes to infinity.

We know

• d > 1/2 then G = {1} or Z/2Z aas
• d < 1/2 then G is hyperbolic aas (Gromov, Ollivier)
• d > 1/3 then G has (T) aas (Zuck, Gromov, Ollivier)
• d < 1/6 then G is a-T-amenable aas (Ollivier, Wise)
• d < 5/24 then G does not have (T) (Mackay, Przytycki)

Theorem (Drutu-Mackay). For all p0 ∈ [1,+∞), for all K > 10 · 2p0 , d >
1/3 aas in the Gromov model G has FLp with p ∈ [1, p0].
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