GEOMETRY OF HYPERBOLIC GROUPS AND FIX POINT PROPERTIES NOTES FROM THE OCTOBER 2016 MSRI WORKSHOP ON MAPPING CLASS GROUPS AND OUTER AUTOMORPHISM GROUPS

CORNELIA DRUTU

Throughout the talk we will look at G finitely generated from the viewpoint of isometric (non-linear) actions on Banach spaces.

Masur-Ulam: Every isometry of a Banach space is affine $v \mapsto Uv + b$ with U unitary.

Recall Property (T), it is equivalent to every action by isometries on a Hilbert space has a global fixed point (FH).

Recall a-T-amenability, there exists a proper action on a Hilbert space such that $\forall v \in X, |g|_S \to +\infty \implies ||gv|| \to \infty$.

At present nothing is known for $Mod(\Sigma)$ a hyperbolic surface, $Aut(F_n), Out(F_n)$ with $n \ge 4$.

1. Test cases to guide us

1.1. Lattices of isometries of symetric spaces of non-compact type.

Symmetric space:	$\mathbb{H}^n_{\mathbb{R}}$	$\mathbb{H}^n_\mathbb{C}$	$\mathbb{H}^n_{\mathbb{H}}$	$\mathbb{H}^n_\mathbb{O}$	$\mathrm{rk} \geq 2$
Lattices:	a-T-amenable		(T)		

1.2. Hyperbolic Groups. Random groups for density $d \in (1/3, 1/2)$ are hyperbolic and have (T). For density d < 1/6 are hyperbolic and a-T-amenable.

2. Stronger (T)/Weaker A-T-Amenable

2.1. Strengthening 1. Consider affine actions on Hilbert space, not isometric but uniformly bilipschitz. That is $g \in G$, for all $v \in H$ $v \mapsto \pi(g)v + b_g$ and $sup||\pi(g)|| < +\infty$.

Higher rank lattices have the fixed point property for these actions. (Bader-Furman-Gelander-Monod, Shalom).

Conjecture (Shalom). Hyperbolic groups have proper actions of this type.

Notes prepared by Edgar A. Bering IV.

2.2. Strengthening 2. Replace Hilbert space by $L^p(X, \mu)$ with $p \in [1, \infty)$. Note that for all $p(FL^p) \Rightarrow (T)$.

a-T-amenable implies a- FL^p -amenable. The converse is also true for $p \in [1, 2]$ (Bader-Gelander-Monod).

For $p \gg 2 FL^p$ is strictly stronger than (T) and a- FL^p -amenability is strictly weaker than a-(T)-amenability.

According to Boudon, Boudon-Pajot, Yu, Nica. Every hyperbolic group acts properly on some L^p if $p > \text{conformal dimension } \partial_{\infty}G$. In fact Ghyperbolic with (T) are a- FL^p -amenable when $p > cd(\partial_{\infty}G)$.

Methods

- Yu uses Mineyev's construction of "unitary tangent bundle" for hyperbolic groups.
- Nica uses conformal structure of $\partial_{\infty} G$ (Mineyev)
- Boudon $p > cd(\partial_i nftyG)$ implies there exists d a metric on $\partial_{\infty}G$ that is quasiconformally equivalent to a visual metric and the Hausdorff dimension of $(\partial_{\infty}G, d) < p$. Boudon constructs a proper cocycle such that for all u on $\partial_{\infty}G$ Lipschitz there exists f_u on G with $f_u \in \ell_p(G)$.

Remark that FL^p implies stronger rigidity results (Navas).

A way to measure "how strong a (T)-property a group has" is to consider

$$\mathcal{F}(G) = \{ p \in [1, \infty) : G \text{ has } FL^p \}$$

when G has (T).

We know $[1,2] \subseteq \mathcal{F}(G)$.

- $\mathcal{F}(G)$ is open (Fisher-Margulis, Drutu-M. Kapovich)
- If G is a higher-rank lattice, $\mathcal{F}(G) = [1, \infty)$
- If G is hyperbolic, $\mathcal{F}(G) \subseteq [1, cd(\partial_{\infty}G)]$

Question (Boudon). Do there exist $\mathcal{F}(G)$ bounded containing $[1, p_0]$ when p_0 is large?

Question (Chatterji-Drutu-Haglund). Does there exist a connection between p(G) and $cd(\partial_{\infty}g)$?

The first question is answered in the positive by Noor-Peres, who give a sequence of hyperbolic groups answering it.

To approach question 2 the correct setting is random groups.

3. TRIANGULAR MODEL OF RANDOM GROUPS

Consider $d \in (0,1)$ the density parameter, $m \in \mathbb{N}$ for all $m \in \mathbb{N}$ we can define S_m an abstract generating set $|S_m| = m$. Let W_m be the set of words in S_m^{\pm} cyclically reduced of length 3. $|W_m| = (2m)^3$ Pick $R \subseteq W_m$, $|R| = (2m)^{3d}$ uniformly independently at random. The model $\mathcal{M}(m, d)$ is $G = \langle S_m | R \rangle$.

A property P occurs asymptotically almost surely in this model if

$$\mathbb{P}(\Gamma = \langle S_m | R \rangle \text{ has } P) \to 1$$

CORNELIA DRUTU

For example

- d > 1/2 implies $G \cong 1$ or $\mathbb{Z}/2\mathbb{Z}$ aas
- d < 1/2 implies G is hyperbolic aas (Zuck)
- d > 1/3 implies G has (T) aas (Zuck). (Kotowok-K)
- d < 1/3 implies G is free aas (Autoniuk-Luczak, Swiatkowski)

Theorem (Drutu-Mackay). For all d > 1/3 there exists a C such that aas G has FL^p for

$$p \in \left[1, c\left(\frac{\log m}{\log\log m}\right)^{1/2}\right]$$

Corollary. For all $d \in (1/3, 1/2)$ there exists C, k depending on d such that aas

$$c\left(\frac{\log m}{\log\log m}\right)^{1/2} \le p(G) \le cd(\partial_{\infty}G) \le K\log m$$

This implies

$$cd(\partial G)^{1/2-\epsilon} \le p(G) \le cd(\partial G)$$

Remark all results are true for actions uniformly Lipschitz with constant $L \leq 2^{\frac{1}{2p}}$

4. Gromov Density Model

Fix a density $d \in (0,1)$ and an alphabet S with |S| = k. Consider W_{ℓ} all reduced cyclically reduced words of length ℓ in S^{\pm} . $|W_{\ell}| \asymp (2k)^{\ell}$. Pick $R \subseteq W_{\ell}, |R| = (2k)^{\ell d}$ uniformly independently at random. The model is $\mathcal{G}(k,d) = \langle S|R \rangle$. We have a similar definition of aas as ℓ goes to infinity. We know

- d > 1/2 then $G = \{1\}$ or $\mathbb{Z}/2\mathbb{Z}$ aas
- d < 1/2 then G is hyperbolic as (Gromov, Ollivier)
- d > 1/3 then G has (T) aas (Zuck, Gromov, Ollivier)
- d < 1/6 then G is a-T-amenable as (Ollivier, Wise)
- d < 5/24 then G does not have (T) (Mackay, Przytycki)

Theorem (Drutu-Mackay). For all $p_0 \in [1, +\infty)$, for all $K > 10 \cdot 2^{p_0}, d > 1/3$ aas in the Gromov model G has FL^p with $p \in [1, p_0]$.

4