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Outline

1. Quasi-isometry and commensurability
2. Groups
» Right-angled Coxeter groups (RACGs)
» Geometric amalgams of free groups
3. Quasi-isometry classification of certain RACGs
with Pallavi Dani

4. Commensurability classification of certain RACGs and
geometric amalgams of free groups
with Pallavi Dani and Emily Stark



Quasi-isometry and commensurability

G, H finitely generated groups
Write G ~q, H if quasi-isometric

G and H are (abstractly) commensurable, denoted G ~ac H,
if 3 finite index subgroups G’ < G and H' < H with G' 2 H’

G~pc H = GNQ/H

Converse holds for some classes of groups e.g. fundamental groups
of hyperbolic 3-manifolds with boundary (Fraggerio)



RAAGs and RACGs

I" finite simplicial graph with vertex set S

The right-angled Artin group (RAAG) associated to I is
Ar = (S |st=ts <= s and t are adjacent in I')

The right-angled Coxeter group (RACG) associated to I is

Wi = (S |st=ts <= sand t are adjacent in I, and s> = 1Vs € S)



Examples of RACGs

M= e—— e = o
S t S

~+ @

> Wr1:<s,t152:t2zland st = ts) =2 G x G finite

» Wk, = (s, t | s> = t> = 1) = D, which is 2-ended



Examples of RACGs
" a 4-cycle

then
Wr = (s,t,u,v) = (s,u) X (t,v) = Do X Ds

is group generated by reflections in sides of square

1




Examples of RACGs

If I = b5-cycle, Wr is group generated by reflections in sides of
right-angled hyperbolic pentagon:

Similarly if [ is an n-cycle, n > 5.

(Thanks to Jon McCammond for the picture.)



Examples of RACGs

Wr can act on hyperbolic plane properly but not cocompactly
e.g. if [ is 3 vertices, no edges

Wr is virtually free



Relationship between RAAGs and RACGs

Theorem (Davis—Januszkiewicz)
Every RAAG is commensurable to a RACG.

The converse is not true:

> Ar hyperbolic <= T has no edges <= Ar free
but 3 1-ended hyperbolic RACGs

» By considering divergence, 3 infinitely many QI classes of Wr
which are not QI classes of any RAAG (Behrstock—Charney,
Abrams—Brady—-Dani-Duchin-Young, Dani-T)



Geometric amalgams of free groups

Some surface amalgams:

A geometric amalgams of free groups is the fundamental group of
a surface amalgam. Introduced by Lafont.

Consider universal covers.



Bowditch's JSJ tree

Bowditch's JSJ tree is a QI invariant for 1-ended hyperbolic groups
which are NOT cocompact Fuchsian.

G is cocompact Fuchsian if it acts geometrically on H?2.

Fact
Wr is cocompact Fuchsian <= W = Wr x Wrn where [ is
n-cycle, n > 5, and Wrn is finite.




Bowditch's JSJ tree
Bowditch's JSJ tree T¢ uses topological features of 9G:

» x € G is a local cut point of valence kK > 2 if 9 nbhd U of x
s.t. U\ {x} has k components.

» {x,y} C OG is a cut pair of valence k > 2 if x, y are local cut
points of valence k, and 9G \ {x,y} has k components.

Vertices of Tg:

» Type 1 (finite valence). Cut pairs in OG of valence > 3.
These account for all local cut points of valence > 3 in 0G.

» Type 2 (quadratically hanging). Equiv. classes in G of local
cut points of valence 2, with x ~ y if x =y or {x,y} is cut
pair of valence 2.
Equiv. classes ~ Cantor sets in OH?, with Type 1 vertices in
their closure.

» Type 3. These “fill in the gaps” to form a tree.

G ~q H = 3 type-preserving isomorphism Tg — Ty



Bowditch's JSJ tree

G ~ 0G induces G ~ Tg
Quotient is finite graph called the JSJ graph of G
Edge stabilisers are maximal 2-ended subgroups over which G splits

Induced graph of groups is the JSJ decomposition of G



Examples of JSJ decompositions
Geometric amalgams of free groups:

JSJ graphs: Type 1 vertices white, Type 2 vertices black

O 4

JSJ decompositions: Z on white vertices and all edges, free gps on
black vertices.



Visual construction of Bowditch's JSJ tree for certain W
We restrict to I triangle-free, and assume

> Wr is l-ended <= T is connected and has no separating
vertices or edges (Davis)

» Wt is hyperbolic <= T has no 4-cycles (Moussong)

» Wr not cocompact Fuchsian <= T is not an n-cycle, n>5

> Wr splits over a 2-ended subgroup <= [ has a cut pair of
vertices (Mihalik—Tschantz)

Examples
Generalised ©-graphs



Visual construction of Bowditch's JSJ tree for certain W
We restrict to I triangle-free, and assume

> Wr is l-ended <= T is connected and has no separating
vertices or edges (Davis)

» Wt is hyperbolic <= T has no 4-cycles (Moussong)

» Wr not cocompact Fuchsian <= T is not an n-cycle, n>5

> Wr splits over a 2-ended subgroup <= [ has a cut pair of
vertices (Mihalik—Tschantz)

Examples
Cycles of generalised ©-graphs



Visual construction of Bowditch's JSJ tree for certain W

Theorem (Dani-T 2016)

Assume [ is triangle-free and Wr is 1-ended, hyperbolic, not
cocompact Fuchsian, and splits over a 2-ended subgroup.

1. We give a “visual” construction of the JSJ decomposition
of Wr i.e. construct the JSJ graph and its vertex and edge
groups in terms of subsets of S given by explicit
graph-theoretic criteria.

2. We prove that for the subclass where I has no Ky minor,
Bowditch’s JSJ tree Tr = Ty has no Type 3 vertices.
Using part 2 and work of Gromov, Bowditch, Cashen:
Corollary
For ', as above with no K4 minors, the following are equivalent:
1. Wr ~q Wi
2. OWr ~ oW
3. 3 type-preserving isomorphism Tr — T



Special case: JSJ decomposition for [ € G

A vertex of I is essential if it has valence > 3, and I is 3-convex if
each path between essential vertices has at least 3 edges.

Write G for the class of graphs I so that:
» [ is triangle-free and 3-convex (simplifying assumptions)

» Wr is 1l-ended, hyperbolic, not cocompact Fuchsian, and
admits a splitting over 2-ended subgroup (Bowditch's JSJ tree
is a QI invariant and is nontrivial)

» [ has no K4 minor (Bowditch's JSJ tree is a complete QI
invariant).



Special case: JSJ decomposition for I € G
If I € G then the JSJ decomposition of W has:

> a Type 1 vertex of valence k > 3 for each essential cut pair
{a,b} C S of valence k > 3. The vertex group is (a, b).

» a Type 2 vertex for each maximal A C S s.t. elements of A
pairwise separate |I'|, with (A) infinite and not 2-ended.
This vertex has valence = # pairs in A giving Type 1 vertices.
The vertex group is (A).

» Edge between Type 1 vertex and Type 2 vertex <= their
stabilisers intersect.

a
Vi <aa ba 5i> <aa ba ui)
S1
r— ov2
- (a,b)
5 ov3
oy

b <a, b, t,'> <a, b, V,'>



Special case: JSJ decomposition for I € G
If I € G then the JSJ decomposition of W has:

» a Type 1 vertex of valence k > 3 for each essential cut pair
{a, b} C S of valence k > 3. The vertex group is (a, b).

» a Type 2 vertex for each maximal A C S s.t. elements of A
pairwise separate |I'|, with (A) infinite and not 2-ended.
This vertex has valence = # pairs in A giving Type 1 vertices.
The vertex group is (A).

> Edge between Type 1 vertex and Type 2 vertex <= their
stabilisers intersect.

a3



Commensurability results

Assume from now on that I' € G i.e. T is triangle-free and
3-convex, and Bowditch's JSJ tree is a complete QI invariant.

Theorem (Dani-Stark-T 2016)

We give explicit necessary and sufficient conditions for
commensurability of all Wi where T € G is either:

> a generalised ©-graph, or
> a cycle of generalised ©-graphs.

That is, we give the commensurability classification of all W with
I € G so that the JSJ graph of Wr is a tree of diameter < 4.



Previous results on commensurability for Coxeter groups

Theorem (Crisp—Paoluzzi 2008)

Form>n>1 let Wy, , be defined by:
a
S t1

Sm+ th+1

Then Wi ~ac Wiy < 2 =%,

We recover this result, and give commensurability invariants for all
generalised ©-graphs, not just the 3-convex ones, by doubling:

) Qo

The mapc+— 1, s— 0fors e S\ {c} gives
1— Wp ey = Wo = Z/2Z — 1



Crisp—Paoluzzi proof strategy
Wm,n is fundamental group of hyperbolic orbicomplex Oy, »

IR

Wimn ~ac Wi, == 3 torsion-free, finite-index G < W, p,
H < Wk7/ with G = H.

G and H are geometric amalgams of free groups e.g.

Theorem (Lafont 2007)

If X and X' are surface amalgams, any isomorphism
m1(X) — 71 (X’) is induced by a homeomorphism f : X — X".
Analyse this homeo to get Euler characteristic necessary conditions.



Topological rigidity

Key result used by Crisp—Paoluzzi: topological rigidity for surface
amalgams i.e.

Theorem (Lafont 2007)

If X and X' are surface amalgams, any isomorphism
m1(X) = m(X') is induced by a homeomorphism f : X — X.

For general Wi with I € G, the usual geometric realisation is the
Davis complex X i.e. Cayley graph with squares filled in.

Theorem (Stark 2016)

Topological rigidity does NOT hold for quotients of Xr:

there is a cycle of generalised ©-graphs I and torsion-free,
finite-index subgroups G, G' < Wr s.t. m1(Xr/G) = m1(Xr/G’)
but ¥r/G and Xr/G" are NOT homeomorphic.



RACGs and geometric amalgams of free groups

We construct a new geometric realisation of Wt for all I € G:
a piecewise hyperbolic orbicomplex Or with 71(Or) = W, s.t.
any torsion-free, finite-sheeted cover of O is a surface amalgam.

Construction of Or uses JSJ decomposition from Dani-T.

JSJ graphs Or



RACGs and geometric amalgams of free groups
We construct a new geometric realisation of Wi for all T € G:
a piecewise hyperbolic orbicomplex Or with m1(Or) = W, s.t.
any torsion-free, finite-sheeted cover of Or is a surface amalgam.

JSJ graphs Or



RACGs and geometric amalgams of free groups

Theorem (DST)

For all T € G, the group Wt has an index 16 subgroup which is a
geometric amalgam of free groups.

We construct a surface amalgam which 16-fold covers Or by tiling
surfaces with 2 boundary components “nicely” with 16 right-angled
hyperbolic polygons. Tilings are similar to those in Futer-T.

L=3 1 2 3 4 1 4 2 3

LOOTOTOFOTOFO+O] =




RACGs and geometric amalgams of free groups

Theorem (DST)

For all T € G, the group Wr has an index 16 subgroup which is a
geometric amalgam of free groups.

Using similar ideas, and well-known results on coverings of surfaces
with boundary, we also prove:
Theorem (DST)

If a geometric amalgam of free groups has JSJ graph a tree, it is
commensurable to some Wr (with T € G).

Corollary
Commensurability classification of geometric amalgams of free
groups with JSJ graph a tree of diameter < 4.

This generalises a result of Stark, who considered surface
amalgams obtained by gluing S, S’ along essential curve in each.



Commensurability invariants

Each induced subgraph A of [ has corresponding special
subgroup Wy = Wu = (A) where A is vertex set of A.

Our commensurability invariants are families of equations involving
the Euler characteristics of special subgroups:

#V(A) | #EN)
T2 T3

X(Wh) =1



Result for generalised ©-graphs

Theorem (DST)

Let [, be 3-convex generalised ©-graphs with branches
B1,...,Bn and By,. .., Bl respectively, ordered so that

X(Wg,) 2 - 2 x(Ws,)  and  x(Wg) =+ = x(Wp).
Then Wr ~ac Wy <= n=n"and 3K,K' € Z s.t. Vi

K x(Wg,) = K- x(Wg)



Result for generalised ©-graphs
Theorem (DST)

Let [, be 3-convex generalised ©-graphs with branches
B1,...,Bn and By,. .., Bl respectively, ordered so that

X(Wg,) 2 - 2 x(Ws,)  and  x(Wg) =+ = x(Wp).
Then Wr ~ac Wy <= the vectors

V= (X(Wﬂl)’ i 'vX(Wﬁn)) and v' = (X(WB{)’ s 7X(Wﬁ,'1/))

are commensurable.



Theorem (DST)

Let [, be 3-convex cycles of N, N’ generalised ©-graphs, s.t. the
central vertices in their JSJ decomp. have stabilisers W, Wa:.
Then Wi ~ac Wr iff at least one of the following holds:

1. The Euler char. vectors of the gen. ©-graphs in T and in T’
have the same commens. classes, and for each such commens.
class, containing {v; | i € I} and {v! | i" € I'},

X(Wa) D Vi=x(Wa) Y v
iel iel’

where Vi =} ; X(Wp,) = sum of entries of v;, similarly for v;.

2. All nontrivial gen. ©-graphs in T, have r > 2 branches, all
Euler char. vectors for T (resp. T') are commens., and w and
w' are commens., where w formed by putting entries of

(ZX Wﬁ:l ZX W5/2 ZX Wﬁlr (Wa))

in non-decreasing order, similarly for w'.



Necessary and sufficient conditions for commensurability

Suppose I, are both 3-convex generalised ©-graphs, or both
3-convex cycles of generalised ©-graphs.

Necessary conditions: Wy ~ac Wi = 3 surface amalgams

X — Or and X' — Or: with 71'1()() = 7['1(X,).

Analyse Lafont homeomorphism f : X — X’ to deduce information
on Euler characteristics of surfaces, hence of special subgroups.

Sufficient conditions: If our Euler characteristic conditions hold,
pass to our degree 16 covers, then construct common finite covers
of these.

For generalised ©-graphs, necessary conditions proof is adaptation
of Stark, sufficient conditions proof is similar to Crisp—Paoluzzi.

For cycles of generalised ©-graphs, both directions are delicate,
and make heavy use of I', I’ having similar structure.



Quasi-isometry vs commensurability

Using our commensurability classification and work of Dani—T and
Malone on JSJ trees:

Corollary

Every QI class of a group we consider contains infinitely many
abstract commensurability classes.

Compare to Huang's results for certain RAAGs:
Ar ~Ql Ar/ <~ Ar ~AC Ar/ <~ Ar = Ar/.



Questions

» Which geometric amalgams of free groups are commensurable
to right-angled Coxeter groups, and vice versa?

> Is there a finite list of “moves” on defining graphs so that
Wr ~ac Wrr <= T and I are related by a finite sequence
of such moves? Holds for generalised ©-graphs
(Crisp—Paoluzzi arguments), certain RAAGs (Huang).

» Is there a class of defining graphs so that for ', [’ in this class,
Wr ~q Wrr <= Wr ~ac Wr?



