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Neural ontology is, or should be, the 
interdisciplinary study of the basic neural 

components of thought.

before digging into neurontology… 

 a reflection on what if anything AI 
and ML are teaching us about the 

brain 

 We can probably all agree that 
 AI has yet to live up to its promise

When will AI come? A metaanalysis of predictions  
Stuart Armstrong and Kaj Sotala (2012)



Exponential Growth in Computer Power/$

In narrow domains like chess, 
 computers are getting exponentially better

but in strong AI, there has been very little progress

SiriELIZA

“We wanted flying cars,  
instead we got 140 characters” 

—Peter Thiel



We wanted Rosie 
the Robot

instead we got 
Roomba

AI nearly died in 1973

The Lighthill Report

• said AI only worked in narrow 
domains


• unlikely to scale up

• would have limited applications

• basically led to an end of funding in 

British AI research

• “The First AI Winter”

Current systems are still narrow 

• Chess computers (that can’t do anything else) 
• Driverless cars (that can’t do anything else) 
• Language translators (that can’t answer 

questions about what they are translating) 
• etc.  

AI is still basically a collection of idiot savants

A diagnosis

•AI has fallen in love with statistics

•AI has fallen in love with Big Data

•AI has forgotten its roots



Consider 
 Google Translate 

stats + big data 
= state of the art
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ten years later, there are still a few bugs in the system

The Long Tail Problem

• Lots of corpus data for a few common examples, little data for 
less common examples  

• Common examples are easy for many systems 
• Rare examples are hard

understands complex syntax

novel answers 
 depending recent updates 

to the state of the world

logical 
reasoning

pragmatics 

2 years linguistic exposure;  
no direct access to annotated logical form



Going beyond the data

11 “Are we at onety-one?”

AI’s roots

• were partly in studying 
natural intelligence 

• how do brains work? 

• how do minds work? 

• such discussion is mostly 
absent for current ML work
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ters who gets them. Ecosystems tend to be 

owned by somebody, either privately or by 

the state (exceptions being deep oceans, 

the atmosphere, and Antarctica). Manage-

ment decisions tend to reflect the interests 

of the owners, and where services demand 

other forms of capital (such as agricultural 

infrastructure), the supply of services de-

pends on the availability of financial capital 

from owner, state, bank, donor, or investor. 

For example, in the Panama basin example 

discussed above ( 12), timber production and 

carbon sequestration increase or decrease 

together, but the two services have different 

beneficiaries in different locations. Land-

owners have a direct interest in the private 

benefits from either timber harvesting or 

livestock grazing, whereas carbon sequestra-

tion is a global public good. Choices about 

ecosystem management often involve such 

trade-offs between one service and another 

and between beneficiaries.

LOSERS AND WINNERS. Trade-offs among 

stakeholders in their access to ecosystem ser-

vice benefits is a particular problem where 

there are differences in wealth and power. 

In the example of the Phulchoki Forest (Ne-

pal) discussed above, community control of 

forest gave the local community the benefits 

of clean water, tourism, and harvested wild 

goods but restricted poor people’s access 

to forest products, particularly those from 

certain “untouchable” castes. This created 

hardship, illegal use, and impacts on other 

areas ( 13).

Patterns of winners and losers from eco-

system services (and associated payment 

schemes) reflect prevailing patterns of wealth 

and power. Unequal access to ecosystem ser-

vice benefits, including those experienced lo-

cally and at a distance, can lead to conflict, 

institutional failure, and ecosystem degra-

dation. Institutional transparency, access to 

information, and secure resource tenure are 

fundamental to equitable outcomes.

CONSERVATION/ECOSYSTEM SERVICES. 

The identification and valuation of ecosys-

tem services are valuable for sustainable 

environmental planning. Win-win outcomes 

are possible in cases where valuable ecosys-

tem services increase support for biodiver-

sity conservation. Although areas of high 

biodiversity and those providing ecosystem 

services do not always overlap, improved 

conservation planning could help identify 

opportunities for win-win outcomes ( 14). 

However, the ecosystem service approach is 

not itself a conservation measure. There is a 

risk that traditional conservation strategies 

oriented toward biodiversity may not be 

effective at protecting ecosystem services, 

and vice-versa. Analysis using political ecol-

ogy and ecological economics suggests that 

a monetary valuation of nature should be 

accepted only where it improves environ-

mental conditions and the socioeconomic 

conditions that support that improvement 

( 15).

The challenges described here suggest 

that considering conservation in economic 

terms will be beneficial for conservation 

when management for ecosystem services 

does not reduce biotic diversity or lead to 

substitution of artificial or novel ecosys-

tems, when effective market-based incen-

tives stimulate and sustain the conservation 

or restoration of biodiversity, and when the 

distribution of services among stakeholders 

favors high-diversity ecosystem states and 

is not undermined by inequality.

In a world run according to an economic 

calculus of value, the survival of biotic di-

versity depends on its price. Sometimes 

calculation of ecosystem service values will 

favor conservation; sometimes it will not. 

Conservationists must plan for both out-

comes, rather than hoping that recourse to 

economic valuation will automatically win 

the argument for biodiversity. Ultimately 

conservation is a political choice ( 16), and 

ecosystem service values are just one argu-

ment for the conservation of nature.   ■
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“…a monetary valuation of 

nature should be accepted 

only where it improves 

environmental [and] 

socioeconomic conditions…”

10.1126/science.1255997

          T
he human cerebral cortex is central 

to a wide array of cognitive functions, 

from vision to language, reasoning, 

decision-making, and motor control. 

Yet, nearly a century after the neuro-

anatomical organization of the cor-

tex was first defined, its basic logic remains 

unknown. One hypothesis is that cortical 

neurons form a single, massively repeated 

“canonical” circuit, characterized as a kind 

of a “nonlinear spatiotemporal filter with 

adaptive properties” ( 1). In this classic view, 

it was “assumed that these…properties are 

identical for all neocortical areas.” Nearly 

four decades later, there is still no consensus 

about whether such a canonical circuit ex-

ists, either in terms of its anatomical basis or 

its function. Likewise, there is little evidence 

that such uniform architectures can capture 

the diversity of cortical function in simple 

mammals, let alone characteristically hu-

man processes such as language and abstract 

thinking ( 2). Analogous software implemen-

tations in artificial intelligence (e.g., deep 

learning networks) have proven effective in 

certain pattern classification tasks, such as 

speech and image recognition, but likewise 

have made little inroads in areas such as rea-

soning and natural language understanding. 

Is the search for a single canonical cortical 

circuit misguided?

Although the cortex may appear, at a 

coarse level of anatomical analysis, to be 

largely uniform across its extent, it has 

been known since the seminal work of neu-

rologist Korbinian Brodmann a century 

ago that there are substantial differences 

between cortical areas. At a finer grain, 

the brain has hundreds of different neuron 

types, and individual synapses contain hun-

dreds of different proteins ( 3). Duplication 

and divergence shape brain evolution ( 4), 

just as they do in biology more generally.

What would it mean for the cortex to 

be diverse rather than uniform? One pos-
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What kinds of components 
 is the brain made of?

1. ∃ a neurally-realized way of representing 
symbols  

2. ∃ a neurally-realized way of representing 
variables  

3. ∃ a neurally-realized way of representing 
operations over variables  

4. ∃ a neurally-realized way of representing 
distinguishing types from tokens 

5. ∃ a neurally-realized way of representing 
ordered pairs (AB ≠ BA)  

6. ∃ a neurally-realized way of representing 
structured units (treelet C composed of 
elements A and B)  

7. ∃ a neurally-realized way of representing 
arbitrary trees  

one candidate neurocognitive ontology

Marcus, 2001, MIT Press



1. ∃ a neurally-realized way of representing 
symbols  

2. ∃ a neurally-realized way of representing 
variables  

3. ∃ a neurally-realized way of representing 
operations over variables  

4. ∃ a neurally-realized way of representing 
distinguishing types from tokens 

5. ∃ a neurally-realized way of representing 
ordered pairs (AB ≠ BA)  

6. ∃ a neurally-realized way of representing 
structured units (treelet C composed of 
elements A and B)  

7. ∃ a neurally-realized way of representing 
arbitrary trees  

at least one of my 2001 claims was probably wrong

Marcus, 2001, MIT Press
22

Parsing with treelets

? ? ? 

? 

Connections between tree fragments (treelets) 
are expensive, because the brain is poor at 

tracking > 4 short-term bindings

Some evidence that people don’t have a perfect stack

• We are good at remembering gist, poor at remembering verbatim 
structure (Jarvella, 1971). 

• Parsing is vulnerable to interference  
• It was the dancer that liked the fireman before the argument began 

• Center-embedding is hard, even for MIT undergraduates 
• The ancient manuscript that the graduate student who the new 

card catalog had confused a great deal was missing a page   
=??? 
The ancient manuscript that the graduate student who the new 
card catalog had confused a great deal was studying in the library 
was missing a page. 

• Elements of discarded parses linger  (While Anna dressed the baby 
slept… 

• We often get easily confused by intervening clauses (The keys to the 
cabinet is/are) 

• Linguistic illusions (More people have been to Russia than I have)



But even though we 
probably can’t 

veridically represent 
full trees, I stand by 

the other claims

especially the one about 
operations over variables 

1. ∃ a neurally-realized way of representing 
symbols  

2. ∃ a neurally-realized way of representing 
variables  

3. ∃ a neurally-realized way of representing 
operations over variables  

4. ∃ a neurally-realized way of representing 
distinguishing types from tokens 

5. ∃ a neurally-realized way of representing 
ordered pairs (AB ≠ BA)  

6. ∃ a neurally-realized way of representing 
structured units (treelet C composed of 
elements A and B)  

7. ∃ a neurally-realized way of representing 
arbitrary trees  

 variables and operations

variables [x, y] 
instances [7, eat, the happy 
coincidence] 
bindings [x=2, verb stem = eat; np = 
the happy coincidence] 
operators [+, concatenate] 
hence functions (f(x)=x; s->NP VP

(Marcus, 2001, MIT Press)

at the opposite extreme: a 
minimalist neurocognitive ontology

• ∃ nodes 

• ∃ connections 

• ∃ an activation function 
• nodes are grouped into layers 

and otherwise randomly 
interconnected 

• that’s all there is.

27

these are ultimately empirical questions

• Can one can capture the richness of human 
language and thought from a reduced set of 
neurocognitive primitives (e.g. the set involved in 
backprop networks, or LSTM’s, or recurrent nets + 
Hinton_Stacks)? 

• Do people behave empirically as if they are symbol-
manipulators?

28



 variables and operations

variables [x, y] 
instances [7, eat, the happy 
coincidence] 
bindings [x=2, verb stem = eat; np = 
the happy coincidence] 
operators [+, concatenate] 
hence functions (f(x)=x; s->NP VP

(Marcus, 2001, MIT Press)

operations over variables afford open-ended generalization

(Marcus, 2001, MIT Press)

A	rose	is	a	rose	
A	tulip	is	a	tulip	
A	lilac	is	a	lilac	
_____	
A	lily	is	a	____

0110	-	>	0110	
1100	->	1100	
1010	->	1010	
_____	
1111	->	____	

la	ta	ta	
ga	na	na	
_____	
wo	fe	wo  
	vs	wo	fe	fe

Marcus et al, 1999, Science) 
w 7-month-olds 

later replicated by Gervain et al, 2012 
w newborns

identity pose problems for 
backprop nets
8 4 2 1

8 4 2 1

Failure to generalize a universally quantified one-to-one 
mapping,  

(Marcus (1998; 2001 Chapter 3)

0110 - > 0110

1100 -> 1100

1010 -> 1010

_____

1111 -> ____ 

0110 -> 0110

1100 -> 1100

1010 -> 1010

_____

1111 -> 1110 

Same problem extended to infinitely 
many functions

• String reversal: 1110 -> 0111 

• Bit inversion: 0000 -> 1111 

• Sequence of words over time with repetition (A rose is a __)  

• f(x) = 2x, f(x) = 4x, etc 

• Universally quantified one-to-one mappings in general



Hidden units didn’t help
8 4 2 1

h1 h2

8 4 2 1

Marcus (1998; 2001 Chapter 3)

Training Space

PDP nets: good at generalizing within the space of training examples 
                poor at generalizing outside the space of training examples 

other networks: YMMV

Marcus (1998; 2001 Chapter 3)

1110
1010
0110

01010

1011011010
1111111111

01110	

1110011110

This does not mean that you couldn’t design a 
neural network to operate over variables

It just means that if you 
want to build a neural 
network that extrapolates 
in the right way, you will 
need something maps 
onto apparatus of 
symbol-manipulation

• A way of representing variables (x, y, 
stem, noun-phrase, etc.) 

• A way of representing instances (7, sing, 
the man in the parking lot) 

• A way of representing the instantiation of 
a given variable (x = 7, stem = sing, etc.) 

• A means for performing operations 
(add, store, concatenate, etc)

some neural  networks can be understood in this way

• Variables (x, y, stem, 
noun-phrase) 

• Instances (7, sing, the 
man in the parking lot) 

• A way of representing 
the instantiation of a 
given variable (x = 7, 
stem = sing, etc.)

Kriete, Noelle, Cohen, and O’Reilly’s 
Indirection Network (PNAS 2013), 
analyzed in terms of the claims of 

Marcus, 2001



and they do better on tasks of generalization

• Kriete et al’s results (see right 
panel, “Generative” task) 
confirm the key prediction of 
Marcus (2001, Chapter 3): 
systems that represent 
variables, instances, binding, 
and operations over 
variables significantly 
outperform systems that lack 
such mechanisms.

a classic view: the canonical cortical computation

“The neocortex .. can be understood as a cooperative 
network that acts as a nonlinear spatiotemporal filter with 
adaptive properties (memory) and that transforms afferent 
signal flow. It is assumed that these filter properties 
are identical for all neocortical areas.[the] functional 
role of a circumscribed cortical area depends 
exclusively on its position within a certain functional 
circuit and is defined by it.” 
 - Otto Creutzfeldt, 1979 

What Many People Are Looking For
“All parts of the neocortex [might] operate based on a common 
principle, with the cortical column being the unit of computation” 
- Vernon Mountcastle (1978) 

“Functionally heterogeneous cortical areas can be generated by 
only a few computational principles” with “the variability of 
the input signals [yielding] functional specialization”,  Wyss 
et al (2006) 

“The concept of a canonical circuit, like the concept of 
hierarchies of processing, offers a powerful unifying principle 
that links structural and functional levels of analysis across species 
and different areas of cortex.” 
— Douglas and Martin (2010) 

Five Reasons One Might 
 Take the Canonical Microcircuit View* Seriously

* some versions of the view focus on common circuitry, others on 
shared learning rules. for present purposes I will collapse the two. 



1. the cortex is surprisingly uniform between areas, and across species

I 2 3 ~- 5 
Fig. 1. The different cytoarchitectonic construction types of the 
cerebral neocortex as defined by yon Economo [17]. In the homoty- 
pical isocortex (2, 3, 4) the 6 layers can be easily recognized in 
the Nissl picture. Three major types are evident: the frontal (2), 
the parietal (3), and the polar type as found in the frontal and 
occipital pole (4). On both sides of these types of the homotypical 
isocortex, extremes are found in which the 6-layered structure is 
difficult to recognize in the Nissl picture. These heterotypical iso- 
cortical areas may either show extremely few small cells (agranular 
cortex as in area praecentralis, 1) or an extreme abundance of 
small cells (the granular or koniocortex as in area striata or other 
sensory cortices, 5). Whereas the two heterotypical cortical struc- 
tures are characteristic of the efferent (motor-, 1) and the afferent 
(sensory-, 5) cortical areas, respectively, the 6-Iayered isocortex 
is assumed to serve the commemorative and associative functions 
of the cortex 

This view may be exemplified by a few allusions to 
ideas of Constantin yon Economo (1876-1932) as 
expressed in his lectures [17]: "Meyner t  assumed (in 
1860), long before the discoveries of Fritsch and Hit- 
zig, that because of the different structure of  the corti- 
cal surface, the latter can virtually be broken up into 
single organs, to each of which may be assigned a 
different function according to its structure; and he 
foresaw that the exact determination of the areation 
of the cortical surface will lead us to a new, anatomi- 
cally well founded, organology of  the brain, which 
he brought in contrast with the then fashionable or- 
ganology of  Gall" ([17], p. 1, translated). 
Economo then describes the differences among the 
five types of neocortex (Fig. 1 ; homotypical:  frontal, 
parietal, and polar; heterotypical : granular and 
agranular) and divides the cortex into fields accord- 
ingly. The analysis remains fully descriptive, but Eco- 

nomo surmised-wi th  his t i m e - t h a t  the cytologic 
differences of the neurons in the various cortical areas 
constitute the morphologic basis for their different 
functions. 

In the following 100 pages, v. Economo describes the local varia- 
tions of the cortex, not spending more than one page, in toto, 
on the afferent input (of the koniocortex only, of course) and 
on some efferent connections of the temporal cortex; and maybe 
five lines each on the functional significance of the different lobes 
(frontal, temporal, parietal, occipital, central) as derived from clini- 
cal observations. In fact, the various "cortical organs" were to 
him (and to many colleagues of his time) virtually the seat of 
the highest functions of the brain. He writes: "As  we know, the 
koniocortex is the sensory cortex, i.e., that part into which flow, 
after being relayed in the diencephalon, the impulses (sic !) from 
the sense organs and the spinal cord, in order to be received and 
further apperceived.'" This is clearly meant in the philosophical 
tradition of Descartes, Leibniz, and Kant, probably in the form 
of  the then widely read psychology of Wundt, who defines apper- 
ception as the "single process, by which any psychic content (psy- 
chischer Inhalt) is brought to a clear understanding (Auffassung)" 
(and into consciousness), in contrast to perception, which is not 
accompanied by attention and consciousness ([64], p. 252). 
In this context, the general concept of cortical functions current 
at that time, must be recalled. It was, in principle, that expressed 
by Flechsig (1886, 1896), who divided the cortex into areas of 
afferent, efferent, and intercortical connections, i.e., sensory, mo- 
tor, and association areas. This terminology reveals the philosophy 
behind the concept, i.e., a hierarchy of mental processes from 
perception to apperception, association, judgement, and executive 
command, best expressed again by the "apperception psychology" 
of Wundt (1896) and the aphasia scheme of Wernicke (1874). In 
the following years, and simultaneously, the functionally white 
association areas were filled with more and more psychologically 
or philosophically defined functions, derived from observations 
after circumscribed cortical lesion and during electric stimulation 
on the operating table. 
Basic to this concept is the assumption that the actual morphology 
of a cortical area is specific to its function, or in other words 
t h a t - a t  some future t i m e - t h e  complete anatomic description of 
a "cortical organ," say the speech area, will be equivalent to its 
actual fnnction and, in this case, will explain speech. This view 
has, of course, often been challenged since then. However, despite 
the long and often vehement discussion between localizationism 
and holism (for further reference s. [8, 9]), modern thinking about 
the cortex still reflects to some extent these concepts either directly 
or indirectly, or by emphasizing findings that were unexpected 
in this context. The explicit model of cortical columns as basic 
functional units each being specialized for a certain function can 
be seen as a consequent extension of Meynert 's and Economo's 
Organologie to the microscopic level. 

I shall try to defend the thesis that the functional 
structure of all neocortical areas is fundamentally the 
same and that the morphologic differences between 
cortical areas are accidental. Also, the functional differ- 
ences of  the various cortical areas are a function of  
their different connections with afferent projection sys- 
tems and with efferent target structures but do not 
express differences of their functional structure. We 
shall not consider the various allocortical areas or 
the cerebellar cortex, which are indeed different not 
only in their afferent-efferent connections but also 

508 Naturwissensclaafteri 64, 507--517 (t977) © by Springer-Verlag 1977 

adapted from von Economo (1927)

2. Ostensible functional differences can sometimes be obtained 
through  parametric changes in a single underlying architecture

Kouh and Poggio (2008) X.-J. Wang (2013)

In our model, both working memory 
and decision making rely on slow 
reverberatory dynamics that gives rise 
to persistent activity and time 
integration, and inhibitory circuitry 
that leads to selectivity and winner-
take-all competition. … At a 
fundamental level, these studies point 
to a unified view of why and how 
“cognitive” cortical area can serve 
both internal representation (active 
working memory) and processing 
(decision, action selection, etc.)

3. The Apparent Interchangeability of Cortex

Sur et al’s studies of rerouting visual input to auditory cortex

4. The Apparent Success of Hierarchical Feature Detectors and 
Unsupervised Learning

Saxe et al (2011) Wyss et al (2006)



5. Parsimony

Epicycles Heliocentric universe

why stipulate a multiplicity of circuits, if one would suffice?

thus the quest to 
characterize a 

(single) “canonical 
microcircuit”

Douglas et al. (1989) Neural Computation

The Canonical Canonical Microcircuit

“the greatest single influence on 
the ways neuroscientists think 

about the brain during much of the 
second half of the twentieth 

century.” 

The Hubel-Wiesel tradition

very simple neural ontology: simple and complex cells, arranged in a hierarchy

significantly earlier than the ones in the other MTL areas (see
Supplemental Data and [12]).

The most striking anatomic dissociation occurred for the
sound and text responses (p < 0.01 and p < 1024, respectively).
No neuron in the parahippocampal cortex was activated by
any of the sound or text presentations, whereas about a
quarter of the responsive neurons in the amygdala and about
half of the responsive neurons in the hippocampus and ento-
rhinal cortex responded to sound and text.

Multimodal Invariance
We defined neurons with multimodal ‘‘triple invariance’’ as
those having visual invariance together with significant
responses to the spoken and written names of the same person
or object. Of the 79 responsive units, 17 showed triple invari-
ance according to this definition. In line with the hierarchical
organization shown in Figure 4A, between 35% and 40% of

the responsive neurons in the hippocampus and entorhinal
cortex had multimodal triple invariance. This was the case for
only 14% of the neurons in amygdala and for no neuron in the
parahippocampal cortex (see Table S1). Ten units (2 in hippo-
campus, 4 in entorhinal cortex, and 4 in amygdala) had invariant
responses involving 2 of the 3 modalities tested: 5 of these
responded invariantly to pictures and sound (but not to text),
4 responded invariantly to pictures and text (but not sound),
and 1 responded to a picture, the text, and sound presentations
of a spider but without visual invariance.

For the 17 units with triple invariance, in Figure 4B we display
the average normalized instantaneous firing rate curves for the
picture (for each neuron the average over the 3 pictures was
used), text, and sound presentations. The instantaneous firing
rates were calculated by convolving the spike trains with
a Gaussian kernel of 60 ms width and normalizing, for each
neuron, to the maximum response (to either picture, text, or

Figure 1. Example of a Neuron with Multimodal Responses to Oprah Winfrey

(A) A neuron in the hippocampus that responded selectively to pictures of the television host Oprah Winfrey (stimulus 40, 39, and 11), as well as to her written
(stimulus 56) and spoken (stimulus 73) name. To a lesser degree, the neuron also fired to Whoopi Goldberg. They were no responses to any other picture,
sound, or text presentations. For space reasons, only the largest 30 (out of 78) responses are displayed. In each case the raster plots for the six trials, peri-
stimulus time histograms (PSTH) and the corresponding pictures are shown. The vertical dotted lines mark picture onset and offset, 1 s apart.
(B) Median number of spikes (across trials) for all stimuli. Presentations of Oprah Winfrey are marked with red bars. Stimulus numbers corresponds to the
ones shown above each picture in (A). The gray horizontal line shows the 5 SD above the baseline threshold used for defining significant responses.

Current Biology Vol 19 No 15
2

Please cite this article in press as: Quian Quiroga et al., Explicit Encoding of Multimodal Percepts by Single Neurons in the Human
Brain, Current Biology (2009), doi:10.1016/j.cub.2009.06.060

Hubel and Wiesel 
(1959)

Quian-Quiroga et al. 
(2009)



And the impetus behind a wide 
range of models

Neocognitron  
Fukashima (1980)

Hierarchical  
temporal memory  
Hawkins (2004)

Deep learning  
e.g., Lee (2012)

Part II. Some reasons to doubt the canonical 
circuit view

1. 	 After 40 year, shere is no satisfactory account 
of what the canonical circuit might be, if there is 

one 

“One simplifying hypothesis that has existed since Cajal 
is that the neocortex consists of repeated copies of the 

same fundamental circuit. However, finding that 
fundamental circuit has proved elusive” - Douglas & 

Martin (2007) 
” 

“I still haven’t found what I am looking for” - Bono (1987)

2. The canonical circuit view offers 
no account of why cortical 

diversity is so pervasive 



Complexity in cortical areas and their connectivity

Markov et al. (2012)/adapted in van Essen (2013)

Felleman and van 
Essen (1991)

Complexity in how the six layers  
connect to each other and brain areas 

Solari & Stoner (2011) 
Cognitive Consilience

The division of “The mammalian neocortex … 
into only six histologically distinct layers belies 
an extraordinary diversity of neuronal 
subtypes“ Greig et al. (2013) Nature Neurosci

Complexity at the level of neuronal subtypes

march 5, 2015



“At least 410 different proteins have been identified in synaptic vesicles” 
O'Rourke et al. (2012) Nature Reviews Neuroscience 

  

Complexity at the level of the individual synapse

“Unfortunately, nature seems unaware of 
our intellectual need for convenience and 

unity, and very often takes delight in 
complication and diversity.” 

Santiago Ramón y Cajal (1906)

[I have] sometimes heard it said that the 
nervous system consists of huge numbers 

of random connections. Although its 
orderliness is indeed not always obvious, I 

nevertheless suspect that those who speak 
of random networks in the nervous system 

are not constrained by any previous 
exposure to neuroanatomy. 

 —David Hubel, Eye, Brain, and Vision 

3. Hierarchies of feature detectors 
can only get you so far



Nyugen et al 2014

Hierarchies of features

• Not on par with human performance - part of the 
solution, not the the full solution 

• Not wrong, but nor are they sufficient, neither for AI 
nor for neuroscience 

Part III: A conjecture
inspired by digital circuit design

The Conjecture

The cortex consists not of a single repeated element that 
performs a single computation, but a heteregenous set of 
basic circuit types (possibly evolved from a common origin) 

 



The inspiration

The FPGA - ostensibly uniform at macro level,  
but precisely configured at the micro level

Anatomy Computations Wiring
Canonical 

cortical 
microcircuits 

tuned by 
experience

Essentially uniform

Identical, differing 
only to the extent 

that they are tuned 
by different inputs

Tuned by 
experience

fMRI literature 
on functional 
specialization

Often implicitly 
presumed to be 
heterogeneous

Often implicitly 
presumed to be 
heterogeneous

Not specified

Cortex as an 
array of 

reconfigurable 
computational 

elements

Largely shared, but 
with important 

molecularly-guided 
fine-tuning for 

individual blocks

Tinkered variations 
on theme

Prewired by 
molecular cues, 

shaped by 
experience

Computation Algorithmic/  
representational realization Neural implementation(s) Brain location(s)

Rapid perceptual 
classification

Receptive fields, pooling and 
local contrast normalization 

58,61

Hierarchies of simple and complex 
cells62 Visual system

Complex 
spatiotemporal 

pattern recognition

Bayesian belief propagation 
19,63

Feedforward and feedback pathways in 
cortical hierarchy19 Sensory hierarchies

Learning efficient 
coding of inputs Sparse coding64 Thresholding and local competition65 Sensory and other 

systems

Working memory Continuous or discrete attractor 
states in networks66,67 Persistent activity in recurrent networks68 Prefrontal cortex

Decision making

Temporal-difference 
reinforcement learning 

algorithms69,70; actor-critic 
models71

Cortically implemented Bayesian 
inference networks combined w td 

reinforcement learning …
Prefrontal cortex

 Winner-take-all networks73 Recurrent networks coupled via lateral 
inhibition73 Prefrontal cortex

Gating of 
information flow

Context-dependent tuning of 
activity in recurrent network 

dynamics74

Recurrent neural networks implementing 
line attractors and selection vectors74 Prefrontal cortex

 Shifter circuits64,75
Divergent excitatory relays and input-

selective shunting inhibition in 
dendrites76

Visual system

Gain control Divisive normalization35
Shunting inhibition in networks or 

balanced background synaptic excitation 
and inhibition 77 

Common across many 
cortical areas

Sequencing of 
events over time 78

Feed-forward cascades; 

Serial working memories79 
Synfire chains80-82; Thalamo-cortico-

striatal loops83,84 
Common across many 

cortical areas

Representation 
and transformation 

of variables
Population coding 85

Time-varying firing rates of cosine-tuned 
neurons representing dot products with 

encoding vectors
Motor cortex

Variable binding Holographic reduced 
representations 56,86

Circular convolution of vectors 
represented by neural population codes

Cortical areas involved in 
sequential or symbolic 

processing
 Dynamic binding87,88 Neural synchronization89

Some apparently conflicting 
evidence 



Sur and collaborators’ “rewiring” 
experiments

Visual inputs to primary visual cortex (V1) were rerouted to the primary 
auditory cortex (A1), which in turn was shown to be capable of processing 
visual stimuli.  

But 

• Such results have only been demonstrated between primary sensory 
cortices 

• The “rewired” auditory cortex still retains some of its intrinsic properties, 
and the resulting “visual” system was not perfect 

• In the subsequent two decades, there appears not to have been any 
successful attempts to reroute visual inputs to other areas that seem 
more different (e.g., prefrontal cortex)

Some evidence that is consistent with our view

anatomical differences 
across cortex

Godlove et al 2014

“The neocortex displays a relatively 
homogeneous transcriptional pattern, but 
with distinct features associated selectively 
with primary sensorimotor cortices and 
with enriched frontal lobe expression”

Hawrylycz et al. (2012) Nature  
and Konopka et al (2012)

gene expression differences across cortex



There exist ways of configuring the microcircuitry of 
individual blocks in appropriately customized ways

Combinatorial logic of S5 L5 projection neurons  
Sorenson et al 2013, Cerebral Cortex

• Combinatorial genetic codes offer 
one way of specifying fine-grained 
molecular detail (e.g. Drosophila 
“stripes”) 

• New evidence suggests that 
Individual neuron types, e.g., 
mouse S1 layer 5 projection 
neurons, can have molecularly-
defined subclasses that project to 
different destinations (Sorenson et 
al, 2013) 

Ways of configuring the microcircuitry of individual 
blocks in appropriately customized ways (2)

Ijima et al. (2011) Cell

Fishell & Heintz (2013) Neuron

Aoto et al. (2013) Cell
Alternative splicing offers another mechanism, by which small 
molecular differences could lead to critical synaptic differences 

Frankland and Greene (PNAS)

“dog bites man” vs “man bites dog” 
MVPA in fMRI points to reliably separate “registers” for 
agent vs patient, consistent across subjects 
Conclusion “[this result] supports an intriguing 
possibility (Marcus, 2001): that the explicit 
representation of abstract semantic variables in distinct 
neural circuits plays a critical role in enabling human 
brains to compose complex ideas out of simpler 
ones.” 

!
!
!
Figure,2.!Experiment!2!design.!(A),Subjects!read!sentences!constructed!from!a!menu!of!five!verbs!
and!four!nouns,!with!one!noun!in!the!agent!role!and!another!in!the!patient!role.!(B)!For!each!trial,!
separate!pattern!classifiers!attempted!to!identify!the!agent!and!the!patient!based!on!activity!within!
subHregions!of!lmSTC.!(C)!Classifiers!were!trained!using!data!from!four!of!five!verbs!and!tested!on!
data!from!the!withheld!verb.!This!required!the!classifiers!to!identify!agents!and!patients!based!on!
patterns!that!are!reused!across!contexts.!
!
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!
!
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dog$
cat$
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blocked$
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man$
girl$
dog$
cat$
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man$$girl$$$dog$$cat$

to$whom$was$it$done?$
man$$girl$$$dog$$$cat$
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A!

the$dog$scratched$the$man$
the$dog$scratched$the$girl$
the$dog$scratched$the$cat$
….$
the$girl$bumped$the$cat$
the$man$bumped$the$cat$
….$
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…$
$

training$data$

test$data$

C!B!

$

$
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who$did$it?$

!
Figure,3.!(A)!Searchlight!analyses!identified!adjacent,!but!nonHoverlapping!subHregions!of!anterior!
lmSTC!that!reliably!encoded!information!about!agent!identity!(medial,!blue)!and!patient!identity!
(lateral,!red).!(B)!Decoding!accuracies!averaged!across!the!search!neighborhoods!comprising!these!
regions,!localized!within!each!subject!using!independent!data!from!other!subjects,!confirm!that!these!
adjacent!regions!differ!significantly!in!the!information!they!encode.!(C),Across!subjects,!medial!
portions!of!anterior!lmSTC!preferentially!encode!agent!information!while!lateral!portions!of!anterior!
lmSTC!preferentially!encode!patient!information.!!!
!
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•Is better AI really about the quantity and quality of data? Or 
the nature of the representations we extract from the data?  

•Why is there so much diversity in the brain? What does it tell 
us about the underlying algorithms? 

•How much do we need to enrich our computational ontology? 
MLPs vs LSTMS; stacks; ; FOPC? Are their probabilistic 
programs among our neurons, and if so how are they realized? 

•Is memory best understand as sets of vectors? Are their 
useful higher level constructs, eg akin to data structures in 
which binary bits are organized (jpgs, mp3s, linked lists, etc)? 

•How can we bridge between the language of nodes to the 
language of propositions, trees, and abstractions?

Some parallel questions, for 
biologically-inspired AI



Comparatively little attention has been paid in computational 
neuroscience to models that incorporate a rich set of basic 
computational circuit types (as opposed to only one or a few 
elementary operations)   

Yet such architectures are a natural choice - given our knowledge of 
the brain’s development and function  

The conjecture provides a conceptual framework for bridging 
between neural structures and computational function  

New tools mean that conjectures like ours may soon be testable 

But this is early days for our approach — and we would love help!!!

Summary

gary.marcus@nyu.edu
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