The atoms of neural ComDUtation Ontology is the philosophical study of
the nature of being, becoming, existence, or
ity. as well as the basic categories of

being and their relations. Traditionally
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Neural ontology is, or should be, the

CEO and Founder interdisciplinary study of the basic neural
Geometric Intelligence, Inc. components of thought.

We can probably all agree that
Al has yet to live up to its promise

before digging into neurontology... o Experts

Non-experts

a reflection on what if anything Al
and ML are teaching us about the
brain

[Figure 1: Median estimate for human-level Al, graphed against date of predictio

When will Al come? A metaanalysis of predictions
Stuart Armstrong and Kaj Sotala (2012)




Exponential Growth in Computer Power/$
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Figure 15: Elo ratings of the best program on SSDF at the end of each year. Data from Wikipedia (2013).

In narrow domains like chess,
computers are getting exponentially better

MIPS per $1000

wamon

“We wanted flying cars,
instead we got 140 characters”
—Peter Thiel

but in strong Al, there has been very little progress




,\ We wanted Rosie

instead we got
Roomba

Current systems are still narrow

» Chess computers (that can’t do anything else)
* Driverless cars (that can’t do anything else)

* Language translators (that can’t answer
questions about what they are translating)

* etc.

Al is still basically a collection of idiot savants

Al nearly died in 1973

The Lighthill Report
Artificial Intelligence

- said Al only worked in narrow
domains

- unlikely to scale up

- would have limited applications

- basically led to an end of funding in
British Al research

+ “The First Al Winter”

A diagnosis

Al has fallen in love with statistics
Al has fallen in love with Big Data
Al has forgotten its roots




ten years later, there are still a few bugs in the system
Google
Minimum loss decision rule; MAP decision rule
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The Long Tail Problem

+ Lots of corpus data for a few common examples, little data for
less common examples

- Common examples are easy for many systems :
- Rare examples are hard novel answers

. he did this ALL BY HIMSELF, the
dependmg recent upda plates and forks etc.

to the state of the world




Al’s roots

Going beyond the data

* were partly in studying
natural intelligence

* how do brains work?
* how do minds work?

“Are we at onety-one?”

» such discussion is mostly
absent for current ML work

one candidate neurocognitive ontology

The atoms 3 a neurally-realized way of representing

Ofneurtﬂlt_ ; N | symbols

computation M 1 . .

n‘lfu‘ s 3 a neurally-realized way of representin
y Yy

set of elementary, reusable ~ b

computations? !

= variables
PPT——— g S Wi 3 a neurally-realized way of representing

nature should be accepted
::,",:;,';:::;;:':,:'r,z:x;;? _ s K operations over variables

R ‘ 3 a neurally-realized way of representing
distinguishing types from tokens

3 a neurally-realized way of representing

ordered pairs (AB # BA)
3 a neurally-realized way of representing

The Algeb.r;a‘ic Miad structured units (treelet C composed of
elements A and B)

3 i ’ i ’ f i ;
Marcus, 2001, MIT Press arhitrary trees

Gary F. Marcus




at least one of my 2001 claims was probably

. 3 a neurally-realized way of representing
symbols

. J a neurally-realized way of representing
variables

. 3 a neurally-realized way of representing

operations over variables
. 3 aneurally-realized way of representing

distinguishing types from tokens Birdsong, Speech, and
. 3 a neurally-realized way of representing SAngusEe

ordered pairs (AB # BA)
. d a neurally-realized way of representing

|2

" |
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The Alge

braic Mind structured units (treelet C composed of
elements A and B)

Gary F. Marcus ) _3 i B i .
Marcus, 2001, MIT Press arbitrary-trees

Some evidence that people don't have a perfect stack

We are good at remembering gist, poor at remembering verbatim
structure (Jarvella, 1971).
Parsing is vulnerable to interference
* |t was the dancer that liked the fireman before the argument began
Center-embedding is hard, even
The ancient manuscript that
card catalog had confused a
—222
Det N The ancient manuscript that
the fireman
card catalog had confused a |
was missing a page.
Elements of discarded parses lin

. lept...
nn N n tree fragments (treel N . )
Connections between tree fragments (treelets) We often get easily confused by

are expensive, because the brain is poor at cabinet is/are)
tracking > 4 short-term bindings Linguistic illusions (More peoplé




But even though we

probably cant

veridically represent

fu

Il trees, | stand by
the other claims

especially the one about
operations over variables

. a neurally-realized way of representing

symbols

. J a neurally-realized way of representing

variables

. J a neurally-realized way of representing

operations over variables

. J a neurally-realized way of representing

distinguishing types from tokens

. a neurally-realized way of representing

ordered pairs (AB # BA)

. J aneurally-realized way of representing

structured units (treelet C composed of
elements A and B)

. Faneuralh-realizedway-ofrepresenting

arbitrary-trees

at the opposite extreme: a
minimalist neurocognitive ontology

e J nodes

e 3 connections

e 3 an activation function

nodes are grouped into layers
and otherwise randomly
interconnected

that’s all there is.

Gary F. Marcus

these are ultimately empirical questions

Can one can capture the richness of human
language and thought from a reduced set of
neurocognitive primitives (e.g. the set involved in
backprop networks, or LSTM’s, or recurrent nets +
Hinton_Stacks)?

Do people behave empirically as if they are symbol-
manipulators?




operations over variables afford open-ended generalization

variables and operations

variables [x, Y]

. Aroseisarose | 0110->0110 | |latata
instances [7, eat, the happy Atulipisatulip 1100->1100 | ganana
coincidence] Alilacis alilac | 1010->1010

bindings [x=2, verb stem = eat; np = Ry Lo — ———

the happy coincidence] ; @ A Aliyisa__ | 1111->_
operators [+, concatenate] The Algehralc Mind

hence functions (f(x)=x; s->NP VP

wo fe wo
vs wo fe fe

Marcus et al, 1999, Science)
w 7-month-olds
later replicated by Gervain et al, 2012
w newborns

Gary F. Marcus

(Marcus, 2001, MIT Press) (Marcus, 2001, MIT Press)

identity pose problems for
backprop nets

Same problem extended to infinitely

many functions
String reversal: 1110 -> 0111

0110-> 0110
1100 -> 1100
1010 -> 1010

1111 ->

Failure to generalize a universally quantified one-to-one

8 4 2 1
2
8 4 2 1

mapping,

(Marcus (1998; 2001 Chapter 3)

0110 -> 0110
1100 -> 1100
1010 -> 1010

1111 > 111

Bit inversion: 0000 -> 1111
Sequence of words over time with repetition (A roseisa __)
f(x) = 2x, f(x) = 4x, etc

Universally quantified one-to-one mappings in general




Hidden units didn’t help Training Space

8 4 2 1

01010
% 1010
11114 1110011110 S1HH08 \ 1111
<\ 10

- e 11010 601181

0111
% PDP nets: good at generalizing within the space of training examples

8 4 2 1 poor at generalizing the space of training examples

other networks: YMMV
Marcus (1998; 2001 Chapter 3)

Marcus (1998; 2001 Chapter 3)

This does not mean that you couldn’t design a

: some neural networks can be understood in this way
neural network to operate over variables

Variables (x, y, stem,

. . * A way of representing variables (x, y, noun-phrase)
= |t Just means that if you stem, noun-phrase, etc.) A Store New Input

want to build a neural - g
t k h | * A way of representing instances (7, sing, lnStanceS (7’ Sm.g’ the
network that extrapolates the man in the parking lof) man in the parking lot)
in the right way, you will
: * A way of representing the instantiation of ;
need something maps & given veriable (x = 7, stemn = sing, 6(C) A way of representing -
Onto apparatus Of the instantiation of a Basal Ganglia
symbol-manipulation * Ameans for performing operations given variable (x = 7, Kriete, Noelle, Cohen, and O’Reilly’s
(add, store, concatenate, eto) stem = sing, etc.) Indirection Network (PNAS 201 3),
analyzed in terms of the claims of
Marcus, 2001




and they do better on tasks of generalization

SRN
Basic PBWM

Output Gating a classic view: the canonical cortical computation

Indirection

100

» Kriete et al’s results (see right
panel, “Generative” task)
confirm the key prediction of
Marcus (2001, Chapter 3):
systems that represent
variables, instances, binding,

80

“The neocortex .. can be understood as a cooperative
network that acts as a nonlinear spatiotemporal filter with
adaptive properties (memory) and that transforms afferent
signal flow. It is assumed that these filter properties

_ are identical for all neocortical areas.[the] functional
and operations over role of a circumscribed cortical area depends
variables significantly exclusively on its position within a certain functional
outperform systems that lack — circuit and is defined by it.”

such mechanisms. Standard  Anti-Correlation Generative - Otto Creutzfeldt, 1979

60

Average Accuracy
40

What Many People Are Looking For

“All parts of the neocortex [might] operate based on a common
principle, with the cortical column being the unit of computation”

- Vernon Mountcastle (1978) FIVG ReaSOﬂS Oﬂe M/ght
“Functionally heterogeneous cortical areas can be generated by Take the CaﬂOﬂICBJ M|CrOC|rCU|t V|eW* Se”OUSly

only a few computational principles” with “the variability of
the input signals [yielding] functional specialization”, Wyss
et al (2006)

“The concept of a canonical circuit, like the concept of
hierarchies of processing, offers a powerful unifying principle
that links structural and functional levels of analysis across species

and different areas of cortex.”
— Douglas and Martin (2010)

* some versions of the view focus on common circuitry, others on
shared learning rules. for present purposes | will collapse the two.




2. Ostensible functional differences can sometimes be obtained
1. the cortex is surprisingly uniform between areas, and across species through parametric changes in a single underlying architecture

LETTER s—— Cotraunicated by Bartiet Mel

A Canonical Neural Circuit for Cortical Nonlinear Operations

Minjoon Kouh Xiao-Jing Wang

In our model, both working memory
and decision making rely on slow

A few distinct cortical operations have been postulated over the past . . .

few years, suggested by experimental data on nonlinear neural response reverberatory dynamics that gives rise

across different areas in the cortex. Among these, the energy model pro-

poses the summation of quadrature pairs following a squarirg noalin- to persistent activity and time

earity in order 1o explain phase invariance of complex VI cells. The

iy model assumes 4 g2 i diviityn uki- integration, and inhibitory circuitry

biton to explain sigmol onse profiles within a pool of neurons.

Ike operation hypothesizes a bell-shaped response tuned to that leads to Selectivity and winner-

imal pattem of activation of the presynaptic inputs. A max-

e,
: e . B like operation assumes the selection and transmission of the most active _ i

1 CylochTome oxidase * € response amang 2 set of neural inputs. We propose that these distinct take-all competition. ... Ata
Nissl stain : 4 neural operations can be computed by the same canomical ircultry, in-

volving divisive Sou i o i fundamental level, these studies point
ferent parameter values within the circuit. Hence, this canonical clrcuit tO a Uniﬂed VieW of Why and hOW
) “cog rtical area can serve
adapted from von Economo (1927) Kouh and Poggio (2008) both% efngv) (s% $ (active
working memory) and processing
(decision, action selection, etc.)

4. The Apparent Success of Hierarchical Feature Detectors and

3. The Apparent Interchangeability of Cortex Unsupervised Learning

Unsupervised learning models of primary cortical oronJaceass PLOS movoer

Receptive flelds and recoptiv fleld plasticity A Model of the Ventral Visual System Based
on Temporal Stability and Local Memory

Asdrew Save, Mascesh Bhund, Ritvik Modur, Bipln Seresh, Andeew Y. Ng O Y B M e A Vi
Deganmess of Compeser Science o Wy vor Kooig" ", Pund 1. M. 1. Verschure'

Sundord

The Cerebral cortex s & remarkably Romogeneous KIUCTUre SWORSTIng & rather Qener COMPULITIONal mackinery.
Indeed, under & variety of conditions, function stiributed 10 specislized areas cas be suppected by other regiens.
However, & host of studbes have laid out an ever moce dutatied map of functisnal cortical areas. Thi leaves w5 with the
pztie of whether different cortical areas are intrinsically specialised, o whether they differ mostly by their pesition in

Sob
are sudective for incressingy complex configurations of kocal festures, 43 observed in Migher vivual areas. The last stage
of the model displays place fields as observed in entorhinal cortex and Nppocampus. The results svgpest that
functionaly heterogeneous cortical aress can be gemerated by ony 4 few computations! priscioles 4nd NghiGht the
Impaortance of the variabiity of the input signais in forming functonal specisization

Sur et al’s studies of rerouting visual input to auditory cortex Saxe et al (2011) Wyss et al (2006)




5. Parsimony

Epicycles Heliocentric universe

why stipulate a multiplicity of circuits, if one would suffice?

The Canonical Canonical Microcircuit

featural hierarchy

“the greatest single influence on
the ways neuroscientists think Nypercomplex / ;\
about the brain during much of the *-

second half of the twentieth
century.” simplecells

complex cells

The Hubel-Wiesel tradition

very simple neural ontology: simple and complex cells, arranged in a hierarchy

thus the quest to
characterize a
(single) “canonical
microcircuit”

Hubel and Wiesel
(1959)

A Canonical Microcircuit for Neocortex

Rodney J. Douglas

Douglas et al. (1989) Neural Computatio

Quian-Quiroga et al.
(2009)




And the impetus behind a wide
range of models

object parts
(combination

Hierarchical

Ne gnitron temporal memory Deep learning
Fukashima (1980) Hawkins (2004) e.g., Lee (2012)

1. After 40 year, shere is no satisfactory account
of what the canonical circuit might be, if there is
one

“One simplifying hypothesis that has existed since Cajal
is that the neocortex consists of repeated copies of the
same fundamental circuit. However, finding that
fundamental circuit has proved elusive” - Douglas &
Martin (2007)

“l still haven’t found what | am looking for” - Bono (1987)

Part Il. Some reasons to doubt the canonical
circuit view

2. The canonical circuit view offers
no account of why cortical
diversity is so pervasive




Complexity in cortical areas and their connectivity

Felleman and van
Essen (1991)

2EIF®

Markov et al 2

Complexity at the level of neuronal subtypes

¢ Corticofugal

d Neurons with multiple projections

The division of “The mammalian neocortex ...
into only six histologically distinct layers belies
an extraordinary diversity of neuronal

subtypes* Greig et al. (2013) Nature Neurosci

Complexity in how the six layers
connect to each other and brain areas

Cerebral Cortex

Paranppocampsl gyrus
Hppocamous

Basal Ganglis

Solari & Stoner (2011)
Cognitive Consilience

BRAIN STRUCTURE

Cell types in the mouse cortex and
hippocampus revealed by
single-cell RNA-seq

Amit Zeisel,"* Ana B. Mufioz-Manchado,"* Simone Codeluppi,’ Peter Lonnerberg,'
Gioele La Mzm.nu,' Anna Juréus,” Sueli M;quucs,' Hermany Mun;’,ubu,' Liqun llc,2
Christer Betsholtz,>* Charlotte Rolny,* Gonealo Castelo-Branco,!

Jens Hjerling-Leffler,' Sten Linnarsson't

The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration,
memory, and social behaviors. Normal brain function relies on a diverse set of differentiated

cell types, including neurons, glia, and vasculature. Here, we have used large-scale single-cell RNA
sequencing (RNA-seq) to classify cells in the mouse somatosensory cortex and hippocampal CA1
region. We found 47 molecularly distinct subclasses, comprising all known major cell types in the
cortex. We identified numerous marker genes, which allowed alignment with known cell types,
morphology, and location. We found a layer | interneuron expressing Pax6 and a distinct
postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types,
transcription factors formed a complex, layered regulatory code, suggesting a mechanism for the

maintenance of adult cell type identity.

he brain is built from a large number of
specialized cell types, enabling highly re-
fined electrophysiological behavior, as well
as fulfilling brain nutrient needs and defense
against pathogens. Functional specialization

allows fine-tuning of circuit dynamics and decou-
pling of support functions such as energy supply,
waste removal, and immune defense. Cells in the
nervous system have historically been classified
using location, morphology, target specificity, and

sciencemag.org SCIENCE




“Unfortunately, nature seems unaware of
our intellectual need for convenience and
unity, and very often takes delight in
complication and diversity.”

Santiago Ramoén y Cajal (1906)

“At least 410 different proteins have been identified in synaptic vesicles”
O'Rourke et al. (2012) Nature Reviews Neuroscience

[l have] sometimes heard it said that the
nervous system consists of huge numbers
of random connections. Although its
orderliness is indeed not always obvious, |
nevertheless suspect that those who speak 3. Hierarchies of feature detectors
of random networks in the nervous system
are not constrained by any previous can only get you so far
exposure to neuroanatomy.

—David Hubel, Eye, Brain, and Vision
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Part Ill: A conjecture
inspired by digital circuit design

Hierarchies of features
* Not on par with human performance - part of the
solution, not the the full solution

* Not wrong, but nor are they sufficient, neither for Al
nor for neuroscience

The Conjecture

The cortex consists not of a single repeated element that
performs a single computation, but a heteregenous set of
basic circuit types (possibly evolved from a common origin)




The inspiration

Identical, differing

only to the extent Tuned by
that they are tuned experience
by different inputs

Canonical
cortical
microcircuits Essentially uniform
tuned by
experience

L] Al i ]
PROGRAMMABLE
INTERCONNECT

fMRI literature Often implicitly Often implicitly
on functional presumed to be presumed to be Not specified
specialization heterogeneous heterogeneous

e
SO0 001A

om0 £O 5 0 £

Cortex as an gely shared, but
array of with important
reconfigurable molecularly-guided

- computational fine-tuning for
LOGIC BLOCKS elements individual blocks

The FPGA - ostensibly uniform at macro level,
but precisely configured at the micro level

Prewired by

Tinkered variations molecular cues,
on theme shaped by
experience

Algorithmic/
representational realization

Rapid perceptual Receptive fields, pooling a Hi ies of simple and complex
cFr)asspiﬁcati%n local contrast norm: on cell pev & Visual system
Complex Bayesian belief propagation Feedforward and feedback pathways in
:l 19,63 " . 19 Sensory hierarchies
o o cortical hierarchy
Learning efficient 0 T Sensory and other
coding of INputs Thresholding and local competition! N

i
Worki emor Continuousiondiscre elatiracton Persistent activity in recurrent networks®® Prefrontal cortex
v states in networks®6.6” Y

Walgasaliifz i Cortically implemented Bayesian

a|'e$rr‘i{m§2;%malifgmﬁi c inference networks combined w td Prefrontal cortex
9 7 reinforcement learnin,

models’!

Winner-take-all networks Recurrent networks vcoLvlap\ed via lateral Prefrontal cortex
inhibition”
Context-dependent tuning of . .
Gating of Recurrent neural networks implementing
information flow ceiniyy recurren714network line attractors and selection vectors’ Pz G
i . Divergent excitatory relays and input- .
Shifter circuits®: selective shunting inhibition in Visual system
X . A Shunting inhibition in networks or Common across man
SO0 R, Sl S
el 7

Sequencing of Feed-forward cascades; Synfire chains8®-82; Thalamo-cortico- Common across many
events over time 7 Serial working memories™® striatal loops®384 cortical areas

i i Time-varying firing rates of cosine-tuned
Population coding neurons representing dot products with Motor cortex
L Gt
Variable bi Holographic reduced Circular convolution of vectors Cortical areas involve:
U=l representations 56,86 represented by neural population codes

Dynamic binding®7:88 Neural synchronization8®

Computation ural implementation(s) Brain location(s)

Decision making




Some evidence that is consistent with our view

anatomical differences gene expression differences across cortex
across cortex

e e i . An anatomically comprehensive atlas of
: : =y the adult human brain transcriptome

“The neocortex displays a relatively
homogeneous transcriptional pattern, but
with distinct features associated selectively
with primary sensorimotor cortices and
with enriched frontal lobe expression”

GOd|Ove et al 201 4 Neocortical genetic topography

Hawrylycz et al. (2012) Nature
and Konopka et al (2012)




There exist ways of configuring the microcircuitry of Ways of Caniguring ‘Fhe microcircgitry of individual
individual blocks in appropriately customized ways blocks in appropriately customized ways (2)

+ Combinatorial genetic codes offer Ui opdiaa s Wages tiodincty isiagaas Sty ifacthd - . e
one way of specifying fine-grained »
molecular detail (e.g. Drosophila
“stripes”)

Activ
Splicing of Neurexin-1

lima et al. (2011) Cell

New evidence suggests that is

Individual neuron types, eg., " ’ mgxmsg;mche Splicing
mouse S1 layer 5 projection | o Postsynaptic AMPA Receptor Trafficking
neurons, can have molecularly- ! isoforms o
defined subclasses that project to : Aoto et al. (201 3) Cell
different destinations (Sorenson et ) o . .

al, 2013) Combinatorial logic of S5 L5 projection neurons Alternative splicing offers another mechanism, by which small

Sorenson et al 2013, Cerebral Cortex molecular differences could lead to critical synaptic differences

Frankland and Greene (PNAS) Some palra”el queS.J“OHS, for
biologically-inspired Al

agent patient < L training data
| dog || chased || S the dog scratched the man
4 the dog scratched the girl

e o|s better Al really about the quantity and quality of data? Or
e O s T one | e bemped he the nature of the representations we extract from the data?
chased > Cma ; .;»Q.‘ Q” | tedg tprnced h *\Why is there so much diversity in the brain? What does it tell
e - e g th us about the underlying algorithms?
eHow much do we need to enrich our computational ontology?
“dog bites man” vs “man bites dog” MLPs vs LSTMS; stacks; ; FOPC? Are their probabilistic
MVPA in fMRI points to reliably separate “registers” for programs among our neurons, and if so how are they realized?

agent vs patient, consistent across subjects .
Cgonclusifn “fthis resulf] supports an imjriguing e|s memory best understand as sets of vectors? Are their
possibility (Marcus, 2001): that the explicit useful higher level constructs, eg akin to data structures in

representation of abstract semantic variables in distinct which binary bits are organized (jpgs, mp3s, linked lists, etc)?

neural circuits plays a critical role in enabling human eHow can we brio’ge between the |anguage of nodes to the

brains to compose complex ideas out of simpler " .
ones.” P g P language of propositions, trees, and abstractions?

agent




Summary

Comparatively little attention has been paid in computational
neuroscience to models that incorporate a rich set of basic
computational circuit types (as opposed to only one or a few
elementary operations)

Yet such architectures are a natural choice - given our knowledge of
the brain’s development and function

The conjecture provides a conceptual framework for bridging
between neural structures and computational function

New tools mean that conjectures like ours may soon be testable

But this is early days for our approach — and we would love help!!!
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