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1. Problems that we are facing, and how to overcome them 
 

2. Four principles (constraints) of brain computation 
 

3. Visions for future work, and open problems 



1. Problems that we are facing,  
and how to overcome them 

 
 



How can theoretical neuroscience become 
more of a „science“ ? 

• Paradigm for a really successful theoretical science: Theoretical 
physics 
 

• Characteristic features of theoretical physics 
 

--ongoing debates between opposing camps 
--strong interest in new experimental data 
--theory aims to be falsifiable  
--falsification of theoretical predictions has impact on theory 



A quick case study of theory and experimental data in 

computational neuroscience: 
What firing regimes of neural circuits are most 

suitable for computations?  

The AI (asynchronous 
irregular) firing regime was 
proposed to be suitable for 
neural computation 
 
 
 
And a large number of models 
and theory studies investigated 
how such AI firing regime can 
be produced  
 

Brunel 2000, Journal of Computational Neuroscience,, 2000. 

Vogels et al. 2005, Annu. Rev. Neurosci. , 2005.  



But: Virtually all simultaneous recordings from many neurons 
suggest  that neural circuits operate in a regime where spatio-

temporal firing patterns dominate 
 

Miller et al. , PNAS 2014   

Okun et al. 2015,  Nature 2015 

Is theoretical neuroscience 
addressing this discrepancy 
between theoretically driven 
models and experimental data? 
 

spikes recorded  through multi-electrodes                      firing rates on a larger time scale (Ca-imaging  

Miller et al. , PNAS 2014.   



What types of models/analyses are needed?  

(Marr and Poggio, 1976) suggested to analyze neural computation on 3 
different levels: 
• computational (behavioural) level (what needs to be computed?) 
• algorithmic level    (how is that computed?) 
• implementation level (how can biological neural networks implement that?) 

 
In (Poggio, The levels of understanding framework revisited, 2012)                
he suggested to add two further levels of analysis at the top: 
• evolution 

• learning and development 

 
In addition he suggested that in view of rich data in computational 
neuroscience one should now focus on connections between the levels, and 
also to proceed bottom-up. 
  

 
 
 



2.  Four Principles (Constraints)  
of Brain Computation 

 
 

 
Principle 1:  Neural circuits are highly recurrent 
networks of neurons and synapses with diverse 
dynamic properties 
 
Note that already the evolutionary oldest neural circuits (e.g. in 
hydra, C-elegans) were highly recurrent networks, whereas we as 
theoreticians usually prefer to think in terms of feedforward 
networks. 

 
 
 
 
 
  
 
 



There are many different types of neurons that exhibit  
diverse temporal dynamics: 

 The same input (here a step current) causes different responses in different types of 
neurons 



Model for  a dynamic synapse with 
parameters  w, U (release probability, 
D(time constant for depression), F (time 
constant for facilitation) according to 
[Markram, Wang, Tsodyks,   PNAS 1998]: 
 
The amplitude Ak of the postsynaptic potential 
for the kth spike in a spike train with inter-spike 
intervals  ∆1, ∆2,…,∆k-1  is modeled by the 
equations 
 
  Ak = w · uk ·Rk 
  uk = U + uk-1 (1-U) exp(- ∆k-1 /F) 
  Rk = 1 + (Rk-1  - uk-1 Rk-1 -1) exp(- ∆k-1 /D) 

Short term dynamics of synapses  
Every synapse has a complex inherent temporal dynamics     

(and can NOT be modeled by a single parameter  w  like in artificial neural networks).   
 



The parameters U, D, F are different for different synapses 

Empirically found distributions are reported in 
 
H. Markram, Y. Wang, and M. Tsodyks, Differential 
signaling via the same axon of neocortical pyramidal 
neurons, PNAS 95, 5323 – 5328, 1998. 
 
A. Gupta, Y. Wang, and H. Markram, Organizing 
principles for a diversity of GABAergic interneurons 
and synapses in the neocortex, Science 287, 273 – 
278, 2000. 

 
 

I will return later to the experimentally found  relatively low 
values of  the release probability U for the first spike. 



Consequence: Network activity patterns in theory-
driven models tends to differ strongly from 

experimentally observed ones 

                    model                                                       data 

A. Litwin-Kumar and B. Doiron. Nature Communications, , 2014.  



These data suggest that neural computation in the brain has a 
different organization than computations in digital circuits, 

artificial neural networks. networks of neuroids, etc 
 

In fact; I would lbe willing to bet that one cannot simulate computations  
of digital circuits, artificial neural networks, or neuroid networks with  
reasonably realistic models for recurrent networks of biological neurons and  
synapses. 
 
Note that elimination of noise by averaging over several parallel copies of a  
circuit would require „parameter sharing“, which is questionable in biological  
networks  



Principle 2: Neural computation needs to  
serve diverse „neural users“  

(which extract samples of high-D network states,  
and are adaptive) 

 Neural users are numerous 
different downstream  
neural systems, to which  
projection neurons on superficial  
and deep layers project. 
 
These projection neurons extract  
high-D samples from the network  
activity. 
 
Their synapses are subject to 
longterm plasticity.  

Consequence: When thinking about computations in  
a cortical column, we should analyze its sequence of 
high-D „network states“. 



What computational operations within a column are  
suggested by this perspective?  

Two candidates: 
• Integration of incoming information over time 
• Nonlinear projection of this information into the high-D space of network states 



Diversity of neurons and synapses could support temporal 
integration of information over time 

Theorem (Maass, Natschläger, Markram, 2002) ,based on (Boyd and Chua, 1985): 

Any time-invariant filter with fading memory  can be approximated with any 
degree of precision by this simple computational model 

B1

Bk

.

.

.

filter output
(t)x

y(t)

memoryless readout
y(t) = f ( (t))x

u(s)
for s  t£

• if  there is a rich enough pool B of basis filters (time 
invariant, with fading memory) from which the basis 
filters B1,…,Bk in the filterbank can be chosen 
(B  needs to have the pointwise separation property)       
and 

 
• if  any continuous bounded function can be 

approximated by some readout 
 
 
 

 

Def:   A class B  of basis filters has the pointwise separation property if there 
exists for any two input functions  u(•), v(•)  with  u(s)  v(s)  for some  s £ t  a basis 
filter B  B  with (Bu)(t)  (Bv)(t). 

 
Open problem: Can theory provide further insight into the functional role of diverse 

computational units in a recurrent network? 



Boosting the computational power of linear 
readouts (projection neurons) through generic 

nonlinear projections into high-D spaces 

This principle is well-known from Machine Learning (kernels of Support 
Vector Machines):  
 
 
 
 
 
 
 
 
 
Note that no concrete nonlinear operations, such as multiplication, are 
needed for that: 
It suffices if different inputs to the kernel (or cortical column) are mapped 
onto linearly independent output vectors. 



Randomly connected 
network of 135 
spiking neurons with 
dynamic synapses: 

 

 

7 linear readouts, 
trained for 7 different 
tasks  by linear 
regression ( blue 
traces) receive 
EPSPs from the 135 
network neurons 

 

 

 

 

 

A simple demo for this style of network computation 
(Maass, Natschlaeger, Markram, 2004) 

Network  input:  
4 Poisson spike trains with firing rates f1(t) 
for spike trains 1 and 2 and firing rates f2(t) 
for spike trains 3 and 4, drawn 
independently every 30 ms from the 
interval [0, 80] Hz 



The theoretical computational power of the model makes 
a qualitative jump if one allows  
feedback from trained readouts 

Training a readout neuron with feedback is  equivalent to training a   
neuron within the neural circuit. 
 
Theorem:  If one allows feedback from readout neurons back into the circuit, 
and if a readout neuron can learn to compute any continuous function,  
then this model becomes universal for analog (and digital) computation 
on input streams.  
                                                              [Maass, Joshi, Sontag, PLOS Comp. Biol. 2007 



Additional effect if one applies STDP to all (or 
many) synaptic connections between 

excitatory neurons:  
The network responds with stereotypical spatio-

temporal patterns to repeating input patterns 

For digit classification It is no longer necessary to train a readout  
through supervised learning: A downstream WTA circuit learns  
autonomously to classify the two spoken digits without supervision 

S. Klampfl and W. Maass. Emergence of dynamic memory traces in cortical microcircuit  models through STDP.  
J. of Neuroscience, 2013            
G. Griesbacher, W. Maass, in preparation 

Input 
patterns 



1. Temporal integration of information and nonlinear  
projection into high D 
D. Nikolic, S. Haeusler, W. Singer, and W. Maass. Distributed fading memory  
      for stimulus properties in the primary visual cortex. PLoS Biology, 2009 
 
S. Klampfl, S. V. David, P. Yin, S. A. Shamma, and W. Maass. A quantitative  
      analysis of information about past and present stimuli encoded by spikes of  
      A1 neurons. J. of Neurophys., 2012 
 
2. Multiplexing of “neural codes” in the network for different 
tasks: 
Rigotti, M., Barak, O., Warden, M. R., Wang, X. J., Daw, N. D., Miller, E. K., & 

Fusi, S. The importance of mixed selectivity in complex cognitive tasks. 
Nature, 2013 

 

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T.. Context-dependent 
computation by recurrent dynamics in prefrontal cortex. Nature, 2013 
 

3. Diversity of neural readouts from the same cortical column: 
Chen, J. L., Carta, S., Soldado-Magraner, J., Schneider, B. L., & Helmchen, F.. 

Behaviour-dependent recruitment of long-range projection neurons in 
somatosensory cortex. Nature 2013. 

 

Experimental data support the resulting computational 
model (generic preprocessing for diverse readouts) 



 
Principle 3: Brain computations are subject to 

high trial-to-trial variability (“noise”) 
 

Substantial rial-to-trial variability is observed in the brain at virtually all 
spatial and temporal scales. 
 
 
  

 
Example:  Variability of spike responses in area V1 of cat: 
each column shows 3 trials with the same stimulus 

[Nikolic, Haeusler, Singer, Maass, PLoS Biol. 2009] 



A major source of variability in neural circuits: 
probabilistic vesicle release at synapses 

Common estimates of release probability 
of a vesicle in response to a presynaptic 
spike  are around 0.5 (for neocortex),  
see e.g.  
(Branco, Staras, Nat. Rev. in Neurosci, 2009) 
 
 
In addition vesicles are frequently 
released without a presynaptic spike 
(Kavalali, Nat. Rev. in Neurosci., 2015) 



How can one compute with stochastic neural systems? 
 

It would be difficult to emulate deterministic computational models without 
biologically unrealistic averaging over duplicate copies of the circuit. 
 
Markov chains (MCs) are stochastic systems that are  
commonly used in computer science and machine learning 
(simulated in software) 
 
Key property of MCs (used e.g. for Google page rank):  
Under some mild assumptions they have a  unique  
stationary distribution p of network states, to which they 
converge from any initial state. 
 
I will discuss two types of computational applications of MCs for networks of 
spiking neurons: 
 
• solving constraint satisfaction problems 
• probabilistic inference 

 
 



A common type of MC: Boltzmann machines (BMs) 
Useful in theory and applications, but biologically unrealistic 

• This type of MC is commonly used in machine learning (e.g. for „deep 
learning“) and for solving constraint satisfaction problems 

• BMs are stochastic artificial neural networks, whose units output 1 or 0, with 
stochastic switches according to some global schedule: 

                        When unit i is allowed to switch, it assumes   

                𝑥𝑖 = 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜎 (
1

𝑇
( 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖𝑖 )) ,    else   𝑥𝑖 = 0 

           for the common sigmoidal activation function     𝜎 𝑥 = 1/(1 + 𝑒−𝑥) 
 

• The state of a BM with N units is a bit vector of length N 
. 
• Every Boltzmann distribution (i.e., distribution over binary random variables 

with at most 2nd order dependencies) is the stationary distribution p of some 
BM. 
 

• The stochastic dynamics of BMs is equivalent to Gibbs sampling (which is 
frequently used for probabilistic inference in ML: „MCMC sampling“) 
 

 

 



Theoretical results  I 
• For every BM with N units there is a network of N  
      spiking neurons (SNN) that has the same  
      stationary distribution p of network states , where  
      one uses a  standard way of converting spikes  
      to bits: 
 
• Spiking neuron model: Instantaneous firing probability 
      for a standard definition of the membrane potential 
 
• But the corresponding SNNs have a different stochastic dynamics, since 

BMs are reversable MCs, SNN are non-reversable MCs 
 
• Consequence for theory: One needs to replace the „detailed balance“ 

condition for BMs by the „neural computability condition“ for SNNs in order 
to construct SNNs that have a given stationary distribution p    
 

                                                                   (Büsing,  Bill, Nessler,  Maass. PLOS Comp. Biol. 2011)  
. 

 
 
 
 
 
 



 
 
• For the case with symmetric weights one can characterize the stationary 

distribution pC  of a  SNN C  (like for a BM) through its energy function: 
                                                                    
                                                                       with 𝐸 𝐳 = − 𝑤𝑖𝑗𝑧𝑖𝑧𝑗𝑖<𝑗 −  𝑏𝑖𝑖 𝑧𝑖 
• This provides a new method for constructing SNNs that can solve specific 

computational tasks: 
         One first constructs an energy function that assigns lowest energy to good  
         solutions  of a computational problem (e.g., TSP, SAT, SUDOKU, ...)   
          
• The resulting SNN finds often solutions faster (i.e., with fewer state changes) than 

a BM with the same energy function: and temperature.  Example for the TSP: 
 
 
 
 

 
• One can also engage network motifs with asymmetric weights. 
                                                                                                           (Zonke, Habenschuss,  Maass. Arxiv 2015) 

 
 
 
 

Theoretical results  II 

Reason: spiking neurons  
overcome faster  
energy barriers  



Theoretical results III 
• Using auxiliary spiking neurons (and asymmetric weights) SNNs can learn 

through STDP any distribution p over discrete random variables, also with 
higher order dependencies 
 

• More precisely,  a suitable SNN can build through STDP an internal 
models for such given distribution p, just by processing examples that are 
drawn from p 

 
• In this way, SNNs can acquire through learning really complex knowledge 
• They can extract information from this knowledge base through 

probabilistic inference (through sampling) 
 

Example: Learning probabilistic inference with „explaining away“  
for a visual cognition task (Knill, Kersten, Nature 1991) 
 
 
 
 
 
 
 

 

 

 (Pecevski, Maass, 2015 (under review) 



Challenge for future work: Move models for 
stochastic computation closer to biological data 

• The previous sketched paradigms work best  with idealized modesl for 
stochastic neurons and synapses; additional biological features tend to 
degrade performance 
 

• In addition, it is not likely that salient random variables are represented 
by single neurons in the brain. This also requires changes in the theory. 
 



Even complex data based models of networks of neurons have a stationary  
distribution of network states z --and of spatio-temporal patterns 
 (Habenschuss, Jonke, Maass, PLOS CB 2013) 
.  
 

   
One theoretical result on stochastic computation that 

holds also for biologically detailed models 

One possible advantage of 
biological network design: 
Convergence to stationary 
distribution is surprisingly 
fast  for data- based 
microcircuit models 
(shown are curves are from 
Gelman-Rubin analysis). 
 
Open problem: Why`?  
 
.  
 
 
 
 

Inputs  e                   network states  z 
a network state  z 

This microcircuit can estimate for example  
(via MCMC sampling) posterior marginals,  
conditioned on external input e: 



Principle 4: Brain networks are subject to permanently 
ongoing rewiring and parameter changes  

This imposes constraints on models for learning, and provides hints for the 
organization for network plasticity 

• One of the most puzzling  fact about neural circuits is that  they 
change all the time, even in the absence of overt learning  
 

• How can such system have stable computational performance ? 



Some experimental data that demonstrate  permanently 
ongoing network rewiring and parameter changes  

 
 
 
  

A postsynaptic density consists of over 1000 different 
types of proteins, many in small numbers. 
 
Since these molecules have a lifetime of only weeks 
or months, their number is subject to permanent 
stochastic fluctuations. 
Receptors etc. are subject to Brownian motion within 
the membrane. 
 
Furthermore axons sprout and dendritic spines come 
and go on a time scale of days (even in adult cortex, 
perhaps even in the absence of neural activity) 
 

Data from Svoboda Lab 



Longterm recordings show that neural codes drift on 
the time-scale of weeks and months 

Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., ... & Schnitzer, M. J.. 
Long-term dynamics of CA1 hippocampal place codes. Nature Neuroscience, 2013  
 
See also: 
 
Rokni, U., Richardson, A. G., Bizzi, E., & Seung. Motor learning with unstable neural 
representations. Neuron, 2007 

 

 
and forthcoming new data. 



Mathematical framework for capturing these phenomena: 
 „Synaptic Sampling“ 

We model the evolution of network parameters through Stochastic Differential 
Equations (SDEs):           𝑑𝜃𝑖 = 𝑏

𝜕

𝜕𝜃𝑖
log 𝑝∗(𝜽) 𝑑𝑡 + 2𝑇𝑏 ∙ 𝑑𝒲𝑖    

 
 
 
The diffusion term 𝑑𝒲𝑖 in the SDE  
denotes an infinitesimal step of a  
random walk („Brownian motion),  
whose temporal evolution from  
time s to time t satisfies  
𝓦𝒊
𝒕 −𝓦𝒊

𝒔~𝐍𝐎𝐑𝐌𝐀𝐋 𝟎, 𝒕 − 𝒔 . 
 
 
𝑝* (𝜽) can be any given target distribution  
of the parameter vector. 

time t 

drift diffusion 



Mathematical framework for capturing these phenomena: 
 „Synaptic Sampling“ 

The resulting  evolution of the probability density of the parameter vector 𝜽 
      is given by a deterministic PDE (Fokker-Planck equation):  

 
𝜕

𝜕𝑡
𝑝𝐹𝑃(𝜽, 𝑡) =   −

𝑖

𝜕

𝜕𝜃𝑖
 𝑏
𝜕

𝜕𝜃𝑖
log 𝑝∗ 𝜃𝑖 𝐱, 𝜽\𝒊  𝑝𝐹𝑃 𝜽, 𝑡  +

𝜕2

𝜕𝜃𝑖
2  𝑇𝑏 𝑝𝐹𝑃 𝜽, 𝑡  

 
 
By setting the left-hand side to 0, this FP-equation makes the resulting stationary 

distribution 
1

𝑍
𝑝∗(𝜽)

1

𝑇  for the vector 𝜽 of all network parameters 𝜃𝑖   explicit.   

 
Implication:   One can program into stochastic plasticity rules 
                       𝑑𝜃𝑖 = 𝑏

𝜕

𝜕𝜃𝑖
log 𝑝∗(𝜽) 𝑑𝑡 + 2𝑇𝑏 ∙ 𝑑𝒲𝑖   

the desired target distribution   1
𝑍
𝑝∗(𝜽)

1

𝑇    of the parameter vector. 

 
This provides a principled of way designing and understanding local plasticity 
rules in neural networks. 



synaptic sampling 
 with prior 𝑝𝑆 𝜽  

reinforcement learning 
   
   𝑝∗ 𝜽 ∝ 𝑝𝑆 𝜽 ∙ 𝑝𝒩 R = 1 𝜽) 
 
where R signals reward  
 
This integrates policy gradient RL 
with probabilistic inference. 
 

D. Pecevski, L. Büsing, W. Maass, PLOS Comp. 
Biol.,.2011 
  
D. Pecevski, W. Maass, 2015 (under review) 
 
 
 

 

unsupervised learning (generative 
models)  
 
       𝑝∗ 𝜽 𝒙 ∝ 𝑝𝑆 𝜽  𝑝𝒩 𝒙 𝜽  
 
where  
• x are repeatedly occurring network inputs 

 
•  𝑝𝒩 𝒙 𝜽  is the generative model provided 

by a neural network 𝒩  with parameters 𝜽 

Kappel, Habenschuss, Legenstein, Maass;  
Reward-based network plasticity as Bayesian inference,  
RLDM 2015 

In particular, synaptic sampling can implement sampling 
from a posterior distribution of network parameters 

Kappel, Habenschuss, Legenstein, Maass;  
Network plasticity as Bayesian inference,  
PLoS Comp Biol, in press,  and NIPS 2015 

(draft in Arxiv) 



How does this change our understanding of  network plasticity ? 

• Priors enable the network to combine experience 
dependent  learning with structural rules in a theoretically 
optimal way  (”learning as Bayesian inference”) 

 
• Better generalization capability through learning of a 

posterior (predicted by MacKay, 1992) 
 
• Structural plasticity (rewiring) can easily be integrated 

into this learning framework 
 
• Learning does not fix the parameters 𝜽  of the network at 

some optimal position (as in max. likellihood learning), 
Rather, parameters (and neural codes) keep moving 
within some low-dimensional manifold where both prior 
and network performance are high 
 

• Network perturbations and lesions are no big deal, since 
parameters do not converge to particular values 
(automatic self-repair) 
 

Demos of that in (Kappel, Habenschuss, Legenstein, Maass;  
Network plasticity as Bayesian inference, PLoS Comp Biol, in press,  

(draft in Arxiv) 

 
 
 



Spine dynamics and synaptic plasticity can easily be 
integrated into a SDE for a parameter that regulates both 

Ansatz:  A single parameter 𝜃𝑖 controls the spine volume and – once a synaptic 
connection has been formed –  the weight of this synaptic connection. 

 
 

Not only STDP, but also experimentally 
observed power-law survival curves for 
synaptic connections are reproduced by this 
combined rule: 
 
 
 
Experimental data from  
(Löwenstein, Kuras, Rumpl,  
J. of Neuroscience, 2015) 



Example:  Self-repair of a generative model:  Two generative models „visual 
cortex“ zv  ,and  „auditory  cortex“ zA both modelled as recurrent networks of 
spiking WTA circuits. 
 
Both receive during learning handwritten  
and spoken versions of the same digit  
(„1“ or „2“),  transformed into firing rates 
   
All synaptic connections between inputs  
and hidden neurons, and among hidden 
neurons are allowed to grow 
 
 
 
The previously described synaptic sampling  
rule is applied to all of these potential synaptic  
connections 

Synaptic sampling yields automatic self-repair 



Test of self-repair capability through synaptic sampling  

We removed in 2 successive lesions  
1. all neurons from the „visual cortex“ zv  that had created in their weights a generative model 

for digit „2“  
2. all synaptic connections between the „visual cortex“ zv  ,and the „auditory  cortex“ zA  (and 

these were not allowed to regrow) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Result: The network performance (measured by information about  
current digit in visual cortex when only auditory input was provide)  
recovered after each  lesion . 
  
 
                       First 3 principal components of a subset of the parameters  𝜽 : 
 
 
 
 
 

in gray:    
connections from  
preceding phase 
 



Simple demo of reward-based synaptic sampling 

Network is rewarded if the assembly that projects to target Ti fires more for 
input that resembles  pattern Pi                                                                          

                                                                                                                       (Kappel et al, in preparation) 



Reward-based synaptic sampling can approximate 
global network optimization  (simulated annealing) 

The expected reward depends on the temperature T (which regulates the amplitude 

of spontaneous stochastic changes of network parameters) as follows (for a flat prior): 
𝐸 𝑅 =

1

𝑍
 𝑝𝒩 R = 1 𝜽)  𝑝𝒩 R = 1 𝜽)

1

𝑇 d𝜽    

 
 
 
 
 
 
 
 
Hence a cooling schedule for the stochastic dynamics of network parameters is 
in principle able to find globally optimal solutions (like in simulated annealing).  
 
Consolidation of synaptic weights and connections could be viewed as special 
case of such cooling. 
 



3. Visions for future work, and open 
problems 

 I have argued that constraints provided by experimental data suggest 
specific principles of brain computation: 
1.  Neural circuits are highly recurrent networks of neurons and synapses 
with diverse dynamic properties 
I had discussed  one Theorem that suggests a functional role for this 

diversity in a feedforward setting; more theoretical analysis is needed that 

addresses diversity, especially in recurrent networks 

2.   Neural computation needs to serve neural users (which receive high-D 
inputs, and are adaptive) 
I am suggesting that we view neural computation as preprocessing for 

learning 

3.   Brain computations are subject to high trial-to-trial variability 
Hence we should consider models for stochastic brain computation 

4. Brain networks are subject to permanently ongoing rewiring and 
parameter changes  

Hence we should consider models for learning that do not aim at 

convergence to a local optimum, such as max. likelihood learning 

 

 



Interesting aspect regarding  
Marr/Poggio levels of analysis 

• The 4 constraints of biological implementation on which I had focused 
all suggest specific approaches on the computational and algorithmic 
level, which are different from commonly chosen ones by theoretical 
neuroscientists. 
 

• Hence it seems to make little sense to start top-down with clever 
computational or algorithmic approaches (but little knowledge of 
experimental data), and hope that these magically meet constraints of 
biological implementions  
 

• Additional desirable property of the 4 principles that I have discussed 
is, lthat they have a certain level of generality, i.e., are applicable to a 
fairly large variety of models.  

 
• In contrast, many socalled „abstract“ models for biological neural 

networks (even models in textbooks) are inconsistent with experimental 
data; i.e., they do not cover more detailed models as special cases. 



Major open problem areas in the  
theory of neural computation 

• We need better concepts, models, and tools for understanding computational 
properties of high-dimensional stochastic dynamical systems (consisting of 
diverse units) 
 

• How can we address the complexity of data on synapses (including the molecular 
level), their hidden variables and their dynamics, complex dependencies on 
neuromodulators and network activity history? 
 

• Understand the role of stereotypical spatio-temporal activity patterns of 
neurons for neural computations? (are these „words“ or even „sentences“ of neural 
codes?) 
 

• Understand how stochastic computations can arrive fast at good solutions  (not 
necessarily „arbitrary“ initial states)  
 

• We are also missing theoretical tools for dealing with diverse dynamic network 
components in stochastic computations. 
 

• How should the interaction of neocortex with other brain areas (including 
thalamus) be reflected in our computational analysis? 
 
 

 
 



How can we improve the „science“-aspect of  
theoretical neuroscience? 

• make discrepancies between different theoretical approaches explicit (rather 
than being polite/tactical) 
 

• invest more efforts into falsifiable theory 
 

• encourage a „risk analysis“ of models for neural systems, rather than covering 
up pros and cons of a model by claiming that it is „biologically plausible“ 
 

• encourage radically new ideas and theories (we may not even have understood 
the basics of neural computation!) 
 

• recruit also clever minds from mathematics and theoretical computer science 
(but direct them towards stochastic dynamical systems or other questions 
motivated by biological data) 
 

• set up a list of benchmark tasks (linked to experimental data that provide clues 
how brains solve such tasks) 



I will discuss the work of the following former and current 
members of our team in Graz  (Opening for Postdoc/Assist. Prof. !) 

 
 

Bernhard Nessler 
(FIAS, Frankfurt) Lars Büsing 

 (Columbia Univ) 

Dejan Pecevski 
(software industry) 

Zeno Jonke 
(software industry) 

Michael Pfeiffer 
(ETH Zurich) 

Stefan Habenschuss 
(software industry) 

David Kappel 
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