
Searching for Principles of Brain Computation

Wolfgang Maass
Institut für Grundlagen der Informationsverarbeitung

Technische Universität Graz, Austria

Institute for Theoretical Computer Science http://www.igi.tugraz.at/maass/

Structure of my talk

1. Problems that we are facing, and how to overcome them

2. Four principles (constraints) of brain computation

3. Visions for future work, and open problems

1. Problems that we are facing,
and how to overcome them

How can theoretical neuroscience become
more of a „science“ ?

• Paradigm for a really successful theoretical science: Theoretical
physics

• Characteristic features of theoretical physics

--ongoing debates between opposing camps
--strong interest in new experimental data
--theory aims to be falsifiable
--falsification of theoretical predictions has impact on theory

A quick case study of theory and experimental data in

computational neuroscience:
What firing regimes of neural circuits are most

suitable for computations?

The AI (asynchronous
irregular) firing regime was
proposed to be suitable for
neural computation

And a large number of models
and theory studies investigated
how such AI firing regime can
be produced

Brunel 2000, Journal of Computational Neuroscience,, 2000.

Vogels et al. 2005, Annu. Rev. Neurosci. , 2005.

But: Virtually all simultaneous recordings from many neurons
suggest that neural circuits operate in a regime where spatio-

temporal firing patterns dominate

Miller et al. , PNAS 2014

Okun et al. 2015, Nature 2015

Is theoretical neuroscience
addressing this discrepancy
between theoretically driven
models and experimental data?

spikes recorded through multi-electrodes firing rates on a larger time scale (Ca-imaging

Miller et al. , PNAS 2014.

What types of models/analyses are needed?

(Marr and Poggio, 1976) suggested to analyze neural computation on 3
different levels:
• computational (behavioural) level (what needs to be computed?)
• algorithmic level (how is that computed?)
• implementation level (how can biological neural networks implement that?)

In (Poggio, The levels of understanding framework revisited, 2012)
he suggested to add two further levels of analysis at the top:
• evolution

• learning and development

In addition he suggested that in view of rich data in computational
neuroscience one should now focus on connections between the levels, and
also to proceed bottom-up.

2. Four Principles (Constraints)
of Brain Computation

Principle 1: Neural circuits are highly recurrent
networks of neurons and synapses with diverse
dynamic properties

Note that already the evolutionary oldest neural circuits (e.g. in
hydra, C-elegans) were highly recurrent networks, whereas we as
theoreticians usually prefer to think in terms of feedforward
networks.

There are many different types of neurons that exhibit
diverse temporal dynamics:

 The same input (here a step current) causes different responses in different types of
neurons

Model for a dynamic synapse with
parameters w, U (release probability,
D(time constant for depression), F (time
constant for facilitation) according to
[Markram, Wang, Tsodyks, PNAS 1998]:

The amplitude Ak of the postsynaptic potential
for the kth spike in a spike train with inter-spike
intervals ∆1, ∆2,…,∆k-1 is modeled by the
equations

 Ak = w · uk ·Rk
 uk = U + uk-1 (1-U) exp(- ∆k-1 /F)
 Rk = 1 + (Rk-1 - uk-1 Rk-1 -1) exp(- ∆k-1 /D)

Short term dynamics of synapses
Every synapse has a complex inherent temporal dynamics

(and can NOT be modeled by a single parameter w like in artificial neural networks).

The parameters U, D, F are different for different synapses

Empirically found distributions are reported in

H. Markram, Y. Wang, and M. Tsodyks, Differential
signaling via the same axon of neocortical pyramidal
neurons, PNAS 95, 5323 – 5328, 1998.

A. Gupta, Y. Wang, and H. Markram, Organizing
principles for a diversity of GABAergic interneurons
and synapses in the neocortex, Science 287, 273 –
278, 2000.

I will return later to the experimentally found relatively low
values of the release probability U for the first spike.

Consequence: Network activity patterns in theory-
driven models tends to differ strongly from

experimentally observed ones

 model data

A. Litwin-Kumar and B. Doiron. Nature Communications, , 2014.

These data suggest that neural computation in the brain has a
different organization than computations in digital circuits,

artificial neural networks. networks of neuroids, etc

In fact; I would lbe willing to bet that one cannot simulate computations
of digital circuits, artificial neural networks, or neuroid networks with
reasonably realistic models for recurrent networks of biological neurons and
synapses.

Note that elimination of noise by averaging over several parallel copies of a
circuit would require „parameter sharing“, which is questionable in biological
networks

Principle 2: Neural computation needs to
serve diverse „neural users“

(which extract samples of high-D network states,
and are adaptive)

 Neural users are numerous
different downstream
neural systems, to which
projection neurons on superficial
and deep layers project.

These projection neurons extract
high-D samples from the network
activity.

Their synapses are subject to
longterm plasticity.

Consequence: When thinking about computations in
a cortical column, we should analyze its sequence of
high-D „network states“.

What computational operations within a column are
suggested by this perspective?

Two candidates:
• Integration of incoming information over time
• Nonlinear projection of this information into the high-D space of network states

Diversity of neurons and synapses could support temporal
integration of information over time

Theorem (Maass, Natschläger, Markram, 2002) ,based on (Boyd and Chua, 1985):

Any time-invariant filter with fading memory can be approximated with any
degree of precision by this simple computational model

B1

Bk

.

.

.

filter output
(t)x

y(t)

memoryless readout
y(t) = f ((t))x

u(s)
for s t£

• if there is a rich enough pool B of basis filters (time
invariant, with fading memory) from which the basis
filters B1,…,Bk in the filterbank can be chosen
(B needs to have the pointwise separation property)
and

• if any continuous bounded function can be

approximated by some readout

Def: A class B of basis filters has the pointwise separation property if there
exists for any two input functions u(•), v(•) with u(s)  v(s) for some s £ t a basis
filter B  B with (Bu)(t)  (Bv)(t).

Open problem: Can theory provide further insight into the functional role of diverse

computational units in a recurrent network?

Boosting the computational power of linear
readouts (projection neurons) through generic

nonlinear projections into high-D spaces

This principle is well-known from Machine Learning (kernels of Support
Vector Machines):

Note that no concrete nonlinear operations, such as multiplication, are
needed for that:
It suffices if different inputs to the kernel (or cortical column) are mapped
onto linearly independent output vectors.

Randomly connected
network of 135
spiking neurons with
dynamic synapses:

7 linear readouts,
trained for 7 different
tasks by linear
regression (blue
traces) receive
EPSPs from the 135
network neurons

A simple demo for this style of network computation
(Maass, Natschlaeger, Markram, 2004)

Network input:
4 Poisson spike trains with firing rates f1(t)
for spike trains 1 and 2 and firing rates f2(t)
for spike trains 3 and 4, drawn
independently every 30 ms from the
interval [0, 80] Hz

The theoretical computational power of the model makes
a qualitative jump if one allows
feedback from trained readouts

Training a readout neuron with feedback is equivalent to training a
neuron within the neural circuit.

Theorem: If one allows feedback from readout neurons back into the circuit,
and if a readout neuron can learn to compute any continuous function,
then this model becomes universal for analog (and digital) computation
on input streams.
 [Maass, Joshi, Sontag, PLOS Comp. Biol. 2007

Additional effect if one applies STDP to all (or
many) synaptic connections between

excitatory neurons:
The network responds with stereotypical spatio-

temporal patterns to repeating input patterns

For digit classification It is no longer necessary to train a readout
through supervised learning: A downstream WTA circuit learns
autonomously to classify the two spoken digits without supervision

S. Klampfl and W. Maass. Emergence of dynamic memory traces in cortical microcircuit models through STDP.
J. of Neuroscience, 2013
G. Griesbacher, W. Maass, in preparation

Input
patterns

1. Temporal integration of information and nonlinear
projection into high D
D. Nikolic, S. Haeusler, W. Singer, and W. Maass. Distributed fading memory
 for stimulus properties in the primary visual cortex. PLoS Biology, 2009

S. Klampfl, S. V. David, P. Yin, S. A. Shamma, and W. Maass. A quantitative
 analysis of information about past and present stimuli encoded by spikes of
 A1 neurons. J. of Neurophys., 2012

2. Multiplexing of “neural codes” in the network for different
tasks:
Rigotti, M., Barak, O., Warden, M. R., Wang, X. J., Daw, N. D., Miller, E. K., &

Fusi, S. The importance of mixed selectivity in complex cognitive tasks.
Nature, 2013

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T.. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 2013

3. Diversity of neural readouts from the same cortical column:
Chen, J. L., Carta, S., Soldado-Magraner, J., Schneider, B. L., & Helmchen, F..

Behaviour-dependent recruitment of long-range projection neurons in
somatosensory cortex. Nature 2013.

Experimental data support the resulting computational
model (generic preprocessing for diverse readouts)

Principle 3: Brain computations are subject to

high trial-to-trial variability (“noise”)

Substantial rial-to-trial variability is observed in the brain at virtually all
spatial and temporal scales.

Example: Variability of spike responses in area V1 of cat:
each column shows 3 trials with the same stimulus

[Nikolic, Haeusler, Singer, Maass, PLoS Biol. 2009]

A major source of variability in neural circuits:
probabilistic vesicle release at synapses

Common estimates of release probability
of a vesicle in response to a presynaptic
spike are around 0.5 (for neocortex),
see e.g.
(Branco, Staras, Nat. Rev. in Neurosci, 2009)

In addition vesicles are frequently
released without a presynaptic spike
(Kavalali, Nat. Rev. in Neurosci., 2015)

How can one compute with stochastic neural systems?

It would be difficult to emulate deterministic computational models without
biologically unrealistic averaging over duplicate copies of the circuit.

Markov chains (MCs) are stochastic systems that are
commonly used in computer science and machine learning
(simulated in software)

Key property of MCs (used e.g. for Google page rank):
Under some mild assumptions they have a unique
stationary distribution p of network states, to which they
converge from any initial state.

I will discuss two types of computational applications of MCs for networks of
spiking neurons:

• solving constraint satisfaction problems
• probabilistic inference

A common type of MC: Boltzmann machines (BMs)
Useful in theory and applications, but biologically unrealistic

• This type of MC is commonly used in machine learning (e.g. for „deep
learning“) and for solving constraint satisfaction problems

• BMs are stochastic artificial neural networks, whose units output 1 or 0, with
stochastic switches according to some global schedule:

 When unit i is allowed to switch, it assumes

 𝑥𝑖 = 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜎 (
1

𝑇
(𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖𝑖)) , else 𝑥𝑖 = 0

 for the common sigmoidal activation function 𝜎 𝑥 = 1/(1 + 𝑒−𝑥)

• The state of a BM with N units is a bit vector of length N
.
• Every Boltzmann distribution (i.e., distribution over binary random variables

with at most 2nd order dependencies) is the stationary distribution p of some
BM.

• The stochastic dynamics of BMs is equivalent to Gibbs sampling (which is
frequently used for probabilistic inference in ML: „MCMC sampling“)

Theoretical results I
• For every BM with N units there is a network of N
 spiking neurons (SNN) that has the same
 stationary distribution p of network states , where
 one uses a standard way of converting spikes
 to bits:

• Spiking neuron model: Instantaneous firing probability
 for a standard definition of the membrane potential

• But the corresponding SNNs have a different stochastic dynamics, since

BMs are reversable MCs, SNN are non-reversable MCs

• Consequence for theory: One needs to replace the „detailed balance“

condition for BMs by the „neural computability condition“ for SNNs in order
to construct SNNs that have a given stationary distribution p

 (Büsing, Bill, Nessler, Maass. PLOS Comp. Biol. 2011)
.

• For the case with symmetric weights one can characterize the stationary

distribution pC of a SNN C (like for a BM) through its energy function:

 with 𝐸 𝐳 = − 𝑤𝑖𝑗𝑧𝑖𝑧𝑗𝑖<𝑗 − 𝑏𝑖𝑖 𝑧𝑖
• This provides a new method for constructing SNNs that can solve specific

computational tasks:
 One first constructs an energy function that assigns lowest energy to good
 solutions of a computational problem (e.g., TSP, SAT, SUDOKU, ...)

• The resulting SNN finds often solutions faster (i.e., with fewer state changes) than

a BM with the same energy function: and temperature. Example for the TSP:

• One can also engage network motifs with asymmetric weights.
 (Zonke, Habenschuss, Maass. Arxiv 2015)

Theoretical results II

Reason: spiking neurons
overcome faster
energy barriers

Theoretical results III
• Using auxiliary spiking neurons (and asymmetric weights) SNNs can learn

through STDP any distribution p over discrete random variables, also with
higher order dependencies

• More precisely, a suitable SNN can build through STDP an internal
models for such given distribution p, just by processing examples that are
drawn from p

• In this way, SNNs can acquire through learning really complex knowledge
• They can extract information from this knowledge base through

probabilistic inference (through sampling)

Example: Learning probabilistic inference with „explaining away“
for a visual cognition task (Knill, Kersten, Nature 1991)

 (Pecevski, Maass, 2015 (under review)

Challenge for future work: Move models for
stochastic computation closer to biological data

• The previous sketched paradigms work best with idealized modesl for
stochastic neurons and synapses; additional biological features tend to
degrade performance

• In addition, it is not likely that salient random variables are represented
by single neurons in the brain. This also requires changes in the theory.

Even complex data based models of networks of neurons have a stationary
distribution of network states z --and of spatio-temporal patterns
 (Habenschuss, Jonke, Maass, PLOS CB 2013)
.

One theoretical result on stochastic computation that

holds also for biologically detailed models

One possible advantage of
biological network design:
Convergence to stationary
distribution is surprisingly
fast for data- based
microcircuit models
(shown are curves are from
Gelman-Rubin analysis).

Open problem: Why`?

.

Inputs e network states z
a network state z

This microcircuit can estimate for example
(via MCMC sampling) posterior marginals,
conditioned on external input e:

Principle 4: Brain networks are subject to permanently
ongoing rewiring and parameter changes

This imposes constraints on models for learning, and provides hints for the
organization for network plasticity

• One of the most puzzling fact about neural circuits is that they
change all the time, even in the absence of overt learning

• How can such system have stable computational performance ?

Some experimental data that demonstrate permanently
ongoing network rewiring and parameter changes

A postsynaptic density consists of over 1000 different
types of proteins, many in small numbers.

Since these molecules have a lifetime of only weeks
or months, their number is subject to permanent
stochastic fluctuations.
Receptors etc. are subject to Brownian motion within
the membrane.

Furthermore axons sprout and dendritic spines come
and go on a time scale of days (even in adult cortex,
perhaps even in the absence of neural activity)

Data from Svoboda Lab

Longterm recordings show that neural codes drift on
the time-scale of weeks and months

Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., ... & Schnitzer, M. J..
Long-term dynamics of CA1 hippocampal place codes. Nature Neuroscience, 2013

See also:

Rokni, U., Richardson, A. G., Bizzi, E., & Seung. Motor learning with unstable neural
representations. Neuron, 2007

and forthcoming new data.

Mathematical framework for capturing these phenomena:
 „Synaptic Sampling“

We model the evolution of network parameters through Stochastic Differential
Equations (SDEs): 𝑑𝜃𝑖 = 𝑏

𝜕

𝜕𝜃𝑖
log 𝑝∗(𝜽) 𝑑𝑡 + 2𝑇𝑏 ∙ 𝑑𝒲𝑖

The diffusion term 𝑑𝒲𝑖 in the SDE
denotes an infinitesimal step of a
random walk („Brownian motion),
whose temporal evolution from
time s to time t satisfies
𝓦𝒊
𝒕 −𝓦𝒊

𝒔~𝐍𝐎𝐑𝐌𝐀𝐋 𝟎, 𝒕 − 𝒔 .

𝑝* (𝜽) can be any given target distribution
of the parameter vector.

time t

drift diffusion

Mathematical framework for capturing these phenomena:
 „Synaptic Sampling“

The resulting evolution of the probability density of the parameter vector 𝜽
 is given by a deterministic PDE (Fokker-Planck equation):

𝜕

𝜕𝑡
𝑝𝐹𝑃(𝜽, 𝑡) = −

𝑖

𝜕

𝜕𝜃𝑖
 𝑏
𝜕

𝜕𝜃𝑖
log 𝑝∗ 𝜃𝑖 𝐱, 𝜽\𝒊 𝑝𝐹𝑃 𝜽, 𝑡 +

𝜕2

𝜕𝜃𝑖
2 𝑇𝑏 𝑝𝐹𝑃 𝜽, 𝑡

By setting the left-hand side to 0, this FP-equation makes the resulting stationary

distribution
1

𝑍
𝑝∗(𝜽)

1

𝑇 for the vector 𝜽 of all network parameters 𝜃𝑖 explicit.

Implication: One can program into stochastic plasticity rules
 𝑑𝜃𝑖 = 𝑏

𝜕

𝜕𝜃𝑖
log 𝑝∗(𝜽) 𝑑𝑡 + 2𝑇𝑏 ∙ 𝑑𝒲𝑖

the desired target distribution 1
𝑍
𝑝∗(𝜽)

1

𝑇 of the parameter vector.

This provides a principled of way designing and understanding local plasticity
rules in neural networks.

synaptic sampling
 with prior 𝑝𝑆 𝜽

reinforcement learning

 𝑝∗ 𝜽 ∝ 𝑝𝑆 𝜽 ∙ 𝑝𝒩 R = 1 𝜽)

where R signals reward

This integrates policy gradient RL
with probabilistic inference.

D. Pecevski, L. Büsing, W. Maass, PLOS Comp.
Biol.,.2011

D. Pecevski, W. Maass, 2015 (under review)

unsupervised learning (generative
models)

 𝑝∗ 𝜽 𝒙 ∝ 𝑝𝑆 𝜽 𝑝𝒩 𝒙 𝜽

where
• x are repeatedly occurring network inputs

• 𝑝𝒩 𝒙 𝜽 is the generative model provided

by a neural network 𝒩 with parameters 𝜽

Kappel, Habenschuss, Legenstein, Maass;
Reward-based network plasticity as Bayesian inference,
RLDM 2015

In particular, synaptic sampling can implement sampling
from a posterior distribution of network parameters

Kappel, Habenschuss, Legenstein, Maass;
Network plasticity as Bayesian inference,
PLoS Comp Biol, in press, and NIPS 2015

(draft in Arxiv)

How does this change our understanding of network plasticity ?

• Priors enable the network to combine experience
dependent learning with structural rules in a theoretically
optimal way (”learning as Bayesian inference”)

• Better generalization capability through learning of a

posterior (predicted by MacKay, 1992)

• Structural plasticity (rewiring) can easily be integrated

into this learning framework

• Learning does not fix the parameters 𝜽 of the network at

some optimal position (as in max. likellihood learning),
Rather, parameters (and neural codes) keep moving
within some low-dimensional manifold where both prior
and network performance are high

• Network perturbations and lesions are no big deal, since
parameters do not converge to particular values
(automatic self-repair)

Demos of that in (Kappel, Habenschuss, Legenstein, Maass;
Network plasticity as Bayesian inference, PLoS Comp Biol, in press,

(draft in Arxiv)

Spine dynamics and synaptic plasticity can easily be
integrated into a SDE for a parameter that regulates both

Ansatz: A single parameter 𝜃𝑖 controls the spine volume and – once a synaptic
connection has been formed – the weight of this synaptic connection.

Not only STDP, but also experimentally
observed power-law survival curves for
synaptic connections are reproduced by this
combined rule:

Experimental data from
(Löwenstein, Kuras, Rumpl,
J. of Neuroscience, 2015)

Example: Self-repair of a generative model: Two generative models „visual
cortex“ zv ,and „auditory cortex“ zA both modelled as recurrent networks of
spiking WTA circuits.

Both receive during learning handwritten
and spoken versions of the same digit
(„1“ or „2“), transformed into firing rates

All synaptic connections between inputs
and hidden neurons, and among hidden
neurons are allowed to grow

The previously described synaptic sampling
rule is applied to all of these potential synaptic
connections

Synaptic sampling yields automatic self-repair

Test of self-repair capability through synaptic sampling

We removed in 2 successive lesions
1. all neurons from the „visual cortex“ zv that had created in their weights a generative model

for digit „2“
2. all synaptic connections between the „visual cortex“ zv ,and the „auditory cortex“ zA (and

these were not allowed to regrow)

Result: The network performance (measured by information about
current digit in visual cortex when only auditory input was provide)
recovered after each lesion .

 First 3 principal components of a subset of the parameters 𝜽 :

in gray:
connections from
preceding phase

Simple demo of reward-based synaptic sampling

Network is rewarded if the assembly that projects to target Ti fires more for
input that resembles pattern Pi

 (Kappel et al, in preparation)

Reward-based synaptic sampling can approximate
global network optimization (simulated annealing)

The expected reward depends on the temperature T (which regulates the amplitude

of spontaneous stochastic changes of network parameters) as follows (for a flat prior):
𝐸 𝑅 =

1

𝑍
 𝑝𝒩 R = 1 𝜽) 𝑝𝒩 R = 1 𝜽)

1

𝑇 d𝜽

Hence a cooling schedule for the stochastic dynamics of network parameters is
in principle able to find globally optimal solutions (like in simulated annealing).

Consolidation of synaptic weights and connections could be viewed as special
case of such cooling.

3. Visions for future work, and open
problems

 I have argued that constraints provided by experimental data suggest
specific principles of brain computation:
1. Neural circuits are highly recurrent networks of neurons and synapses
with diverse dynamic properties
I had discussed one Theorem that suggests a functional role for this

diversity in a feedforward setting; more theoretical analysis is needed that

addresses diversity, especially in recurrent networks

2. Neural computation needs to serve neural users (which receive high-D
inputs, and are adaptive)
I am suggesting that we view neural computation as preprocessing for

learning

3. Brain computations are subject to high trial-to-trial variability
Hence we should consider models for stochastic brain computation

4. Brain networks are subject to permanently ongoing rewiring and
parameter changes

Hence we should consider models for learning that do not aim at

convergence to a local optimum, such as max. likelihood learning

Interesting aspect regarding
Marr/Poggio levels of analysis

• The 4 constraints of biological implementation on which I had focused
all suggest specific approaches on the computational and algorithmic
level, which are different from commonly chosen ones by theoretical
neuroscientists.

• Hence it seems to make little sense to start top-down with clever
computational or algorithmic approaches (but little knowledge of
experimental data), and hope that these magically meet constraints of
biological implementions

• Additional desirable property of the 4 principles that I have discussed
is, lthat they have a certain level of generality, i.e., are applicable to a
fairly large variety of models.

• In contrast, many socalled „abstract“ models for biological neural

networks (even models in textbooks) are inconsistent with experimental
data; i.e., they do not cover more detailed models as special cases.

Major open problem areas in the
theory of neural computation

• We need better concepts, models, and tools for understanding computational
properties of high-dimensional stochastic dynamical systems (consisting of
diverse units)

• How can we address the complexity of data on synapses (including the molecular
level), their hidden variables and their dynamics, complex dependencies on
neuromodulators and network activity history?

• Understand the role of stereotypical spatio-temporal activity patterns of
neurons for neural computations? (are these „words“ or even „sentences“ of neural
codes?)

• Understand how stochastic computations can arrive fast at good solutions (not
necessarily „arbitrary“ initial states)

• We are also missing theoretical tools for dealing with diverse dynamic network
components in stochastic computations.

• How should the interaction of neocortex with other brain areas (including
thalamus) be reflected in our computational analysis?

How can we improve the „science“-aspect of
theoretical neuroscience?

• make discrepancies between different theoretical approaches explicit (rather
than being polite/tactical)

• invest more efforts into falsifiable theory

• encourage a „risk analysis“ of models for neural systems, rather than covering
up pros and cons of a model by claiming that it is „biologically plausible“

• encourage radically new ideas and theories (we may not even have understood
the basics of neural computation!)

• recruit also clever minds from mathematics and theoretical computer science
(but direct them towards stochastic dynamical systems or other questions
motivated by biological data)

• set up a list of benchmark tasks (linked to experimental data that provide clues
how brains solve such tasks)

I will discuss the work of the following former and current
members of our team in Graz (Opening for Postdoc/Assist. Prof. !)

Bernhard Nessler
(FIAS, Frankfurt) Lars Büsing

 (Columbia Univ)

Dejan Pecevski
(software industry)

Zeno Jonke
(software industry)

Michael Pfeiffer
(ETH Zurich)

Stefan Habenschuss
(software industry)

David Kappel

	maass cover
	maass

