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A. B.

D.

C.

It takes just one quick 
glance to see the fox, a 

tree trunk, some grass and 
background twigs. 

but the longer we look the 
more we see…
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A. B.

D.

C.“One can see that there 
is an animal, a fox--in fact 
a baby fox. It is emerging 
from behind the base of a 
tree not too far from the 
viewer, is heading right, 
high-stepping through 

short grass, and probably 
moving rather quickly. Its 
body fur is fluffy, reddish-
brown, relatively light in 

color, but with some 
variation. It has darker 

colored front legs and a 
dark patch above the 

mouth. Most of the body 
hairs flow from front to 
back...and what a cute 
smile, like a dolphin.”
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Ambiguity: To be sure about any small piece, 
the visual system has to understand the larger 

context

two computational problems
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Versatility:  To make an unlimited variety of inferences,  
to generalize, the visual system needs to represent 

and access information across multiple scales, feature 
types and transformations

two computational problems

A. B.

D.

C.
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Inferences about the fox picture involved various: 

• levels of abstraction 

• spatial scales 

• feature types (shape, material) 

• relationships between parts, objects, and viewer 

A strong “bayesian” assumption is that reliable and versatile visual 
inferences are based on structured generative, probabilistic  

knowledge of how virtually any natural image could be produced 

…but doesn’t specify what the generative factors are, how they 
should be used, structured in the brain, or the mechanisms that 

underly their inferences

6

working hypothesis
Hierarchical computations within and between 
visual cortical areas reflects 

• the rich, probabilistic, generative structure of 
image input,  

constrained by 

• the generative factors important for 
behavioral outcomes (hardwired or dynamic)

7

knowledge of the relationships between generative factors, 
S = (S1, S2,...) and image patterns I=  (I1 ,I2...) are represented 
probabilistically:

p(S1, S2,…; I1 ,I2...)

p(S1, S2,... | I1 ,I2...)

joint

posterior

p(I1 ,I2... | S1, S2,...) x  p(S1,S2,...)∝likelihood x prior

• conditional dependencies structure complex distributions 
• the task determines which variables to discount and thus sum over, and the 

image measurements which variables to fix, and thus condition the posterior 
• factoring the posterior into likelihood and prior makes the generative 

knowledge explicit 
• decisions are based on operations over the resulting “simplified” posterior

the basics
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I

s1
s2?s

I1 I2

?

s1 s2

I1 I2

?

known to be inferred to discount

examples of some applications  of bayesian tools, 
mathematical and conceptual, to human vision

s1

I1 I2

m

s2

directed graphs hierarchical inferences

information  integration discounting

model selection explaining away

Ii
Ij

li j

undirected graphs
lateral inference & 
local “smoothness”

priors
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• discriminative, feedforward “neural network” solutions for 
rapid object recognition, with parallels in mammalian ventral 
stream, but without explicit generative processes 

• many human perceptual behavior results over past decade 
are consistent with statistically optimal integration, but also 
exceptions 

•  recent support for optimal cue integration from neural 
recordings (Fetsch et al., 2011) 

• theoretical results in probabilistic neural population codes, 
and mechanisms for optimal integration (Pouget, Beck, Ma,
…)

s

I1 I2

?

integration of multiple sources of ambiguous information

from Alexandre PougetErnst & Banks, 2002 
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I

s1
s2?

integrating out unwanted information

• core problem of “object constancy”, recognition, … 

• implicit in training of feedforward “neural network” 
solutions for object recognition, e.g. discounting 
variations in appearance. 

• long history in ideal observer analysis of human vision, with 
applications, e.g. human color constancy 

• theoretical results in active marginalization using 
probabilistic neural population codes (Beck et al., 2011)
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model-dependent human parameter estimation

• human estimation of surface slant from 
texture—model averaging of isotropic 
and homogeneous texture models 
(Knill, 2003) 

• vision/auditory localization of sound —
model selection (Kording et al., 2007) 

• conditioned perception. (Stocker & 
Simoncelli, 2008) 

• human velocity estimation depends on 
the optic flow category. Wu, S., Lu, H., 
& Yuille, A. (2008)

s1

I1 I2

m

s2

slant of the scree field?
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https://sites.google.com/site/hierarchicalmotionperception/home

Gershman, S. J., Tenenbaum, J. B., & Jakel, F. (2015). Discovering hierarchical motion structure.  
Vision Research, 1–10.  http://doi.org/10.1016/j.visres.2015.03.004

flexible summaries of hierarchical motion structure
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so far these are applications of bayesian concepts/tools to 
model perceptual behavior

Can the black arrows just be used to represent the confounding 
variables for the problem to be solved? Or are human  

visual inferences based on feedback mechanisms that operate 
on 

internal generative models of the world?

scene

object
class

material

shape

lighting

sensory measurements
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Wallisch, P., & Movshon, J. A. (2008). Structure and Function Come 
Unglued in the Visual Cortex. Neuron, 60(2), 194–197.

a strong generative hypothesis

object

parts
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level
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low-level
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computational architectures: 
probabilistic models on graphs

the “executive metaphor”—Alan Yuillefeedforward

feedback . . .

image data ‘Vn’ ‘Vn+1’

Lee & Mumford, 2003 

17

s1 s2

I1 I2

?

empirical evidence for 
inference through generative cortical mechanisms 

via feedback? 

larger spatial contexttarget features

“perceptual explaining away” 
…lots of perceptual examples 
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V1
LOC

?

V1 sensitive to 
local, oriented 

edges/bars 

higher-level visual 
cortical regions, 
such as LOC, 

respond to changes 
in perceived whole 

shape

Murray, Kersten, Olshausen, Schrater, & Woods (2002)

19

Fang, Boyaci, Kersten, Murray (2008)

Diamond
shape 

perceived

Line 
fragments 
perceived

V1 activity is 
suppressed when the 

diamond shape is 
perceived

Murray, Kersten, Olshausen, Schrater, & Woods (2002)
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Figure 1: Standard model of V1 simple cell responses. The neuron computes a weighted
sum of the image over space and time, and this result is normalized by the responses of
neighboring units, and passed through a pointwise non-linearity (see e.g., Carandini et al.,
1997

It may seem surprising to some that we should take such a stance. V1 does
afterall have a seemingly ordered appearance—a clear topographic map, and an or-
derly arrangement of ocular dominance and orientation columns. Many neurons are
demonstrably tuned for stimulus features such as orientation, spatial-frequency, color,
direction of motion, and disparity. And there has even emerged a fairly well agreed
upon “standard model” for V1 in which simple-cells compute a linearly weighted sum
of the input over space and time (usually a Gabor-like function) and the output is
passed through a pointwise nonlinearity, in addition to being subject to contrast gain
control to avoid response saturation (Figure 1). Complex cells are similarly explained
in terms of summing the outputs of a local pool of simple-cells with similar tuning
properties but di�erent positions or phases. The net result is to think of V1 roughly
as a “Gabor filter bank.” There are now many papers showing that this basic model
fits much of the existing data well, and many scientists have come to accept this as a
working model of V1 function (see e.g., Lennie, 2003a)

But behind this picture of apparent orderliness, there lies an abundance of un-
explained phenomena, a growing list of untidy findings, and an increasingly uncom-
fortable feeling among many about how the experiments that have led to our current
view of V1 were conducted in the first place. The main problem stems from the
fact that cortical neurons are highly nonlinear—i.e., they emit all-or-nothing action
potentials, not analog values. They also adapt, so their response properties depend
upon the history of activity. Cortical pyramidal cells have highly elaborate dendritic
trees, and realistic biophysical models suggest that each thin branch could act as a
non-linear subunit, so that any one neuron could be computing many di�erent non-
linear combinations of its inputs (Hausser & Mel, 2003), in addition to being sensitive
to coincidences (Softky & Koch, 1993; Azouz & Gray, 2000, 2003). Everyone knows
that neurons are non-linear, but few have acknowledged the implications for studying
cortical function. Unlike linear systems, where there exist mathematically tractable,
textbook methods for system identification, non-linear systems can not be teased
apart using some straightforward, reductionist approach. In other words, there is no
general method for characterizing non-linear systems.2

2The Volterra series expansion is often touted as a general approach for characterizing non-linear

2

Mumford; Rao & Ballard
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or notor

stimulus

“explanations”, S

image 
measurements, I

s1 s2

I1 I2

?

diamond percept 
also coupled with 

illusory bar contours 
that rotate
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…but is modulation spatially localized to voxels in V1 
that correspond retinotopically to the target features?

.. some fMRI results suggest not (cf. Wit et al., 2012)
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psychophysical test of modulation?
use adaptation--psychophysicist’s “electrode”

adapt testvertical
appearance

tilted
appearance

adapt testnormal
appearance

fattened
appearance

assumption: 
adapts neurons 
in early cortical 

areas, V1 

assumption: 
adapts high-
level cortical 

areas 
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We found opposite modulation of high- and low-level visual 
aftereffects as a consequence of perceptual grouping

He, D., Kersten, D., & Fang, F. (2012). Opposite modulation of high- and low-level visual aftereffects by perceptual 
grouping. Current Biology, 22(11), 1040–1045.

Perceptual grouping (“diamond percept”) reduces the strength of 
adaptation to local tilt, while amplifying the effect of adaptation to a whole 
shape, consistent with localized lower-level, feature-specific modulation.

diamond 
perceived

oriented patches 
perceived

24



…but we haven’t always found localized 
suppression when local patches “fit” the 

larger context
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Mannion, Kersten & Olman

~1mm fMRI in V1

some patches are consistent with scene (Coh) and 
some not (Non)
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perhaps context-dependent suppression of V1 voxel 
activity depends the complexity of the parsing/

segmentation problem?

Responses in early visual areas to contour integration are context dependent. Cheng Qiu, Philip Burton, Daniel Kersten, Cheryl A. Olman

~2mm fMRI in V1 target V2 
voxels

With background clutter, there was evidence of 
of increased V1-V2 correlations when perceiving 

aligned versus when perceiving unaligned 
contours. 
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S D

Dc

size 3D depth

angular 
extent

depth 
cues

?

✓

inferring the size of an object
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Perceptual effect: ∼17%

 17 

FIGURE CAPTIONS 

 

Figure 1  Stimulus for the behavioural and fMRI experiments. (a) In the behavioural 

experiment subjects were asked to adjust the front sphere to match the angular size of the 

back sphere so that the two images of the spheres would perfectly overlap if they were to be 

moved to the same location on the screen.  All subjects judged the angular size of the back 

sphere to be larger (mean = 17%, diameter; s.e.m. = 1.9%) than a physically equivalent front 

sphere. (b) A schematic of the experimental design used in the fMRI experiment.  Subjects 

maintained fixation on a small green dot.  The spheres were rendered with counter-phase 

flickering checkerboard patterns.  Each condition was presented in succession for 10 s, and 

then repeated 5 times in each scan. 

 

http://vision.psych.umn.edu/users/boyaci/Vision/SizeAppletLarge.html

S

✓ ⇡ S/D

perceptual estimation of the size of an 
object
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does 3D context modulate 
the size of the “neural image” in human V1?

V1 has a retinotopic map, so for an actual increase in 
ring size in the image, we expect:

Huk, A. C. (2008) Visual Neuroscience: Retinotopy meets Percept-otopy, Current Biology, 18, 21, 
R1005-1007.

30

Front 
ring

Back 
ring

what was found for an illusory increase in ring size

attend-to-ring 
condition

Fang, Boyaci, Kersten, & Murray, 
S. O. (2008). Attention-
dependent representation of a 
size illusion in human V1. 
Current Biology

Ni, A. M., Murray, S. O., & Horwitz, G. D. (2014). 
Object-Centered Shifts of Receptive Field 
Positions in Monkey Primary Visual Cortex. 
Curbio, 1–6
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S D

Dc

object size depth

angular
extent

depth
cues

?

✓

✓ ⇡ S/D

Does the shift of spatial extent in 
V1 represent the neural 

representation of an estimate of 
physical size (S) or a bias in the 

estimate of angular size (  )? ✓

in terms of inference, what might be going on?

two possible representational assumptions: 
physical or angular size?
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estimating angular size is also a non-trivial 
inference 

S D

Dc

size depth

angular 
extent

depth 
cues

image features

✓ ?

…
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?

Bayesian theories of human 
visual behavior are here to stay 

Progress closely tied to 
progress in computer vision, 

But augmented by physiological 
constraints, attentional 
mechanisms, …

The jury is out on whether and how 
strong, hierarchical generative models of 

scene structure (the “executive 
metaphor”) may be instantiated in neural 

brain architecture 

…but the robustness and versatility 
of human vision suggest such 

processes

how far can bayesian theories of 
vision take us?

Visual
Behavior

Bayesian
Theories Algorithms

Neural
Circuits
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Bayes provides conceptual tools for 
managing uncertainty given 

specific task requirements at an 
abstract level...but we need more.  

In particular, a better understanding 
of human-oriented generative 

models, compositional structure, 
and the algorithms/control 

structures for accessing information 
for a enormously diverse range of 

tasks

A. B.

D.

C.

To explain how the longer we look, the more we see
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