how far can bayesian
theories of vision take us?

It takes just one quick
glance to see the fox, a
tree trunk, some grass and
background twigs.
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“One can see that there
is an animal, a fox--in fact
a baby fox. It is emerging
from behind the base of a
tree not too far from the
viewer, is heading right,
high-stepping through
short grass, and probably
moving rather quickly. Its
body fur is fluffy, reddish-
brown, relatively light in
color, but with some
variation. It has darker
colored front legs and a
dark patch above the

mouth. Most of the body Ambiguity: To be sure about any small piece,
hairs flow from front to

back. .and what a cute the visual system has to understand the larger
smile, like a dolphin.” context




two computational problems

Versatility: To make an unlimited variety of inferences,
to generalize, the visual system needs to represent
and access information across multiple scales, feature
types and transformations

Inferences about the fox picture involved various:
® |evels of abstraction
® spatial scales
e feature types (shape, material)
® relationships between parts, objects, and viewer
A strong “bayesian” assumption is that reliable and versatile visual
inferences are based on structured generative, probabilistic
knowledge of how virtually any natural image could be produced
...but doesn’t specify what the generative factors are, how they

should be useqd, structured in the brain, or the mechanisms that
underly their inferences

working hypothesis

Hierarchical computations within and between
visual cortical areas reflects

* the rich, probabilistic, generative structure of
image input,

constrained by

* the generative factors important for
behavioral outcomes (hardwired or dynamic)

the basics

knowledge of the relationships between generative factors,

S =(S1, S»,...) and image patterns |= (I1 |2...) are represented
probabilistically:

joint p(S1, S2,...; 11 l2...)
posterior P(S1, So,. | 11 l2..0)

 ikelihood x prior p(ly l2... | S1, S2,...)  x p(S1,S2....)
e conditional dependencies structure complex distributions

e the task determines which variables to discount and thus sum over, and the
image measurements which variables to fix, and thus condition the posterior

e factoring the posterior into likelihood and prior makes the generative
knowledge explicit

¢ decisions are based on operations over the resulting “simplified” posterior
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examples of some applications of bayesian tools,
mathematical and conceptual, to human vision
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model selection

undirected graphs
lateral inference &
local “smoothness”

A A priors

explaining away

integration of multiple sources of ambiguous information

« discriminative, feedforward “neural network” solutions for
? rapid object recognition, with parallels in mammalian ventral
stream, but without explicit generative processes

4=
! J \ * many human perceptual behavior results over past decade

are consistent with statistically optimal integration, but also
exceptions

« recent support for optimal cue integration from neural
recordings (Fetsch et al., 2011)

« theoretical results in probabilistic neural population codes,
and mechanisms for optimal integration (Pouget, Beck, Ma,

Ac! ivity

Activity

known  to beinferred  to discount 2 /S
. . o Ernst & Banks, 2002 ! ~\«‘z’x~z>g“m from Alexandre Pouget
directed graphs hierarchical inferences _
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integrating out unwanted information

?
' » core problem of “object constancy”, recognition, ...

| 3

& J  implicit in training of feedforward “neural network”

A solutions for object recognition, e.g. discounting
variations in appearance.

« long history in ideal observer analysis of human vision, with

applications, e.g. human color constancy

« theoretical results in active marginalization using

probabilistic neural population codes (Beck et al., 2011)

model-dependent human parameter estimation

and homogeneous texture models
(Knill, 2003)

e \éD human estimation of surface slant from
Xé) texture—model averaging of isotropic

vision/auditory localization of sound —
model selection (Kording et al., 2007)

conditioned perception. (Stocker &
Simoncelli, 2008)

human velocity estimation depends on
the optic flow category. Wu, S., Lu, H.,
& Yuille, A. (2008)

slant of the scree field?
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flexible summaries of hierarchical motion structure

?:“@ ?W

https://sites.google.com/site/hierarchicalmotionperception/home

Gershman, S. J., Tenenbaum, J. B., & Jakel, F. (2015). Discovering hierarchical motion structure.

Vision Research, 1-10. http: i.org/10.1016/}.visr

so far these are applications of bayesian concepts/tools to
model perceptual behavior
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Can the black arrows just be used to represent the confounding
variables for the problem to be solved? Or are human
visual inferences based on feedback mechanisms that operate
on
internal generative models of the world?

lighting
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a strong generative hypothesis
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computational architectures:
probabilistic models on graphs

empirical evidence for
inference through generative cortical mechanisms
via feedback?

target features A A

larger spatial context

feedforward “ i L i « [ ”
> the “executive metaphor’—Alan Yuille perceptual explaining away
feedback ...lots of perceptual examples
- image data V' Vnt+l'
Wallisch, P., & Movshon, J. A. (2008). Structure and Function Come Lee & Mumford, 2003
Unglued in the Visual Cortex. Neuron, 60(2), 194-197.
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f Line suppressed when the
ragments diamond shape is
perceived
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% Bold signal change

Fang, Boyaci, Kersten, Murray (2008)
Mumford; Rao & Ballard

Murray, Kersten, Olshausen, Schrater, & Woods (2002)
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‘explanations”, S .or . #I or not

stimulus A A

diamond percept

...but is modulation spatially localized to voxels in V1
that correspond retinotopically to the target features?

.. some fMRI results suggest not (cf. Wit et al., 2012)

also coupled with .
illusory bar contours Image
that rotate measurements, |
21 22

psychophysical test of modulation”?

use adaptation--psychophysicist’s “electrode”

b (N db dp

areas, V1
vertical adapt test tilted
appearance appearance
assumption:
adapts high-
level cortical
areas
normal adapt test fattened
appearance appearance

We found opposite modulation of high- and low-level visual
aftereffects as a consequence of perceptual grouping

diamond oriented patches
perceived perceived

/8\\/A\\
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Perceptual grouping (“diamond percept”) reduces the strength of
adaptation to local tilt, while amplifying the effect of adaptation to a whole
shape, consistent with localized lower-level, feature-specific modulation.

He, D, Kersten, D., & Fang, F. (2012). Opposite modulation of high- and low-level visual aftereffects by perceptual
grouping. Current Biology, 22(1 1), 040—1045.
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...but we haven’t always found localized
suppression when local patches “fit” the
larger context

some patches are consistent with scene (Coh) and
some not (Non)
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Relative ctx depth
Inner Middle Outer

Mannion, Kersten & Olman
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perhaps context-dependent suppression of V1 voxel
activity depends the complexity of the parsing/
segmentation problem?

~2mm fMRI in V1 * target V2

A voxels

A. Aligned Unaligned

Without
background

With background clutter, there was evidence of
of increased V1-V2 correlations when perceiving
aligned versus when perceiving unaligned
contours.

With
background

Responses in early visual areas to contour integration are context dependent. Cheng Qiu, Philip Burton, Daniel Kersten, Cheryl A. Olman

inferring the size of an object

size 3D depth

- ®

\ / N\
angular  depth
extent cues
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perceptual estimation of the size of an
object

0~S/D

Perceptual effect: ~17%

http://vision.psych.umn.edu/users/boyaci/Vision/SizeAppletLarge.html

does 3D context modulate
the size of the “neural image” in human V17

V1 has a retinotopic map, so for an actual increase in
ring size in the image, we expect:

Current Biclogy

Huk,A. C. (2008) Visual Neuroscience: Retinotopy meets Percept-otopy, Current Biology, 18, 21,
R1005-1007.
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what was found for an illusory increase in ring size
Left hemisphere Right hemisphere

Fang, Boyaci, Kersten, & Murray,
S. O.(2008). Attention-
dependent representation of a
size illusion in humanVI.
Current Biology

attend-to-ring
Ni, A. M., Murray, S. O., & Horwitz, G. D. (2014). i
Object-Centered Shifts of Receptive Field Cond ition
Positions in Monkey Primary Visual Cortex.
Curbio, 1-6

in terms of inference, what might be going on?
two possible representational assumptions:
physical or angular size?
0 ~S/D
object size depth
? @ Does the shift of spatial extent in

V1 represent the neural
/ \ representation of an estimate of
angular  depth

physical size (S) or a bias in the
estimate of angular size (g)?
extent cues
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estimating angular size is also a non-trivial

how far can bayesian theories of

. il p)
inference vision take us"
size depth m
Visual N Bayesian o Algorith N Neural
Behavior Theories Algorithms Circuits
| ¥ F angular ) depth . .

RECE 3 3 extent : cues Bayesian theories of human The jury is out on whether and how
5 EEEECE visual behavior are here to stay strong, hierarchical generative models of
sagapaat EEER e scene structure (the “executive
H ;‘ ; : : i mE Progress closely tied to metaphor”) may be instantiated in neural
4 N EEEE b ; ; A A progress in computer vision, brain architecture
'? . .Y j i ﬂ g § E i image features but the robustness and versatility

4 4 = - Bt e - -k 1 1
But atugrrlentettd th ph;llsmloglcal of human vision suggest such
constraints, attentiona processes
mechanisms, ...
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Bayes provides conceptual tools for
managing uncertainty given
specific task requirements at an
abstract level...but we need more.

In particular, a better understanding
of human-oriented generative
models, compositional structure,
and the algorithms/control
structures for accessing information
for a enormously diverse range of
tasks

To explain how the longer we look, the more we see
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