
End-to-End Memory Networks

Sainbayar Sukhbaatar (NYU),
Arthur Szlam, Jason Weston, Rob Fergus

New York University

Facebook AI Research

Overview

•  Impressive performance of Deep Networks
for range of perceptual tasks
– Object recognition, speech, NLP

•  But models lack explicit memory
– Essential for some tasks, e.g. reasoning

This talk: Neural net models with explicit memory

Convolutional Network (ConvNet)
•  Feed-forward operation:
– Convolve input
– Non-linearity (rectified linear)
–  Pooling (local max)

•  Features computed independently per-image
•  Only “memory” is in network weights
– Learnt from training set

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun	 et	 al.	 1998	

Feature maps

Recurrent Neural Networks (RNNs)

•  Implicit memory within internal state s
•  Mixing of computation & memory
–  Complex computation requires many layers of non-linearity
–  But some information is lost with each non-linearity
–  Gradient vanishing, catastrophic forgetting problems
–  Workarounds: gate units (e.g. LSTMs); impose slow/fast state

[LeCun, Bengio &
Hinton, Nature 2015]

External Global Memory
•  Separating memory from computation
– Dedicated separate memory module
– Memory can be stack or list/set of vectors

•  Control module accesses memory (read, write)
•  Advantage: stable, scalable

Memory
module

Controller
module

read

write

input

output

Memory Networks

Jason Weston, Antoine Bordes
& Sumit Chopra

[ICLR 2015] arXiv: http://arxiv.org/abs/1410.3916

Memory Networks
(Weston et al., ICLR 2015)

•  Neural network with large external memory

•  Writes everything to the memory, but reads only

relative information

•  Hard addressing: max of the inner product
between the internal state and memory contents

Example Task

•  From bAbI dataset (Weston et al. arXiv 1502.05698, 2015)

 Input sentences:
 Mary is in garden.
 John is in office.
 Bob is in kitchen.

 Q: Where is John?
 A: office

MAX

Embed

Input text

output

Decoder

Addressing

Internal
state vector

Where is John John is in office Bob is in kitchen Mary is in garden

Embed Embed Embed

x x x

Embed

John is in office

+

office Memory

supervision

supervision
C

ontroller

Issues with Memory Network

•  Requires explicit supervision of attention during
training
– Need to say which memory the model should use

•  Only feasible for simple tasks
–  Severely limits application of model

•  Want model that just requires supervision at output
– No supervision of attention required

End-to-End Memory Networks
(MemN2N)

Sainbayar Sukhbaatar, Arthur Szlam,
Jason Weston, Rob Fergus

[NIPS 2015] arXiv: http://arxiv.org/abs/1503.08895

End-To-End Memory Networks
(MemN2N)

•  Soft attention version of MemNN
– Flexible read-only memory

•  End-to-end training
– Only needs final output for training
– Simple back-propagation

•  Multiple memory lookups (hops)
– Can consider multiple memory before deciding output
– More reasoning power

Dot Product

Softmax

Input

Weighted Sum Output

Memory Module

Memory Content

1
A

 B

2
P

3
D

 E

4
P

5
G

6
R

X

7
O

 W
 I

8
M

A

1 A B

W

7 O W I

4

4 P

Read

Addressing

State

Linear

Sum

Tanh/ReLU

State

Dot Product

Softmax

Weighted Sum

Memory Content

Memory Module

Controller module
(e.g. RNN)

Input

Output

MemN2N architecture
Target

Loss Function

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uTmi). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).

Question
q

O
utput

Input

Embedding B

Embedding C
W

eights Softmax

Weighted Sum

pi

ci

mi

Sentences
 {xi}

Embedding A

o W Softm
ax

Predicted
Answer
â

u

u

Inner Product

O
ut3 In

3

B

Sentences

W

â

{xi}

o1

u1

o2

u2

 o3

u3

A1

C1

A3

C3

A2

C2

Question q

O
ut2 In

2
O

ut1 In
1

Predicted
Answer

(a) (b)

Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

2

Single Memory Lookup

MemN2N applied to bAbI task

Mary is in garden.
John is in office.
Bob is in kitchen.
…
…

Where is John?

office

Training: estimate embedding matrices A, B & C and output matrix W

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uTmi). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).

Question
q

O
utput

Input

Embedding B

Embedding C

W
eights Softmax

Weighted Sum

pi

ci

mi

Sentences
 {xi}

Embedding A

o W Softm
ax

Predicted
Answer
â

u

u

Inner Product

O
ut3 In

3

B

Sentences

W

â

{xi}

o1

u1

o2

u2

 o3

u3

A1

C1

A3

C3

A2

C2

Question q

O
ut2 In

2
O

ut1 In
1

Predicted
Answer

(a) (b)

Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

2

Multiple Memory Lookups

 “Multiple hops”

RNN viewpoint of MemN2N

RNN

RNN

Memory

All input

Place all inputs in the memory. Let the
model decide which part it reads next.

Input sequence

Inputs are fed to RNN one-by-one in
order. RNN has only one chance to
look at a certain input symbol.

Plain RNN Memory Network

Addressing signal

Selected input

Advantages of MemN2N over RNN

•  More generic input format
–  Any set of vectors can be input
–  Each vector can be

•  BOW of symbols (including location)
•  Image feature + feature position

–  Location can be 1D, 2D, …
–  Variable size

•  Out-of-order access to input data
•  Less distracted by unimportant inputs
•  Longer term memorization
•  No vanishing or exploding gradient problems

Related Work: Explicit Memory

•  Stack memory for RNNs
 (Joulin et al. NIPS’15)
–  Continuous actions: PUSH, POP, NO-OP
–  Multiple stacks

•  Neural Turing Machine
(Graves et al. arXiv ’14)
–  Learns how to read and write

(erase + add) to the memory
–  Soft addressing
–  LSTM or feed-forward net controller
–  Can learn algorithms such as sort,

associative recall and copy.

•  Related to MemNN:
[Kumar et al., arXiv:1506.07285]
[Hermann et al., arXiv:1506.03340]

Attention-based Models

•  RNNsearch: Attention in Machine Translation
(Bahdanau et al., 2015)
– Decoder can look at past encoder states using soft attention

•  Image caption generation with attention
(Xu et al., 2015)
– Convnet + LSTM
– Also Yao et al. 2015

for video

•  Pointer Network: attention as an output
(Vinyals et al., 2015)

Experiment on bAbI Q&A data

•  Data: 20 bAbI tasks (Weston et al. arXiv 1502.05698, 2015)
•  Answer questions after reading short story
•  Small vocabulary, simple language
•  Different tasks require different reasoning
•  Training data size 10K for each task

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.
Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.
Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.
Sam drops the apple. Bernhard is green. Mary discarded the milk.
Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I
sentences {xi} where I 320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and

4

Model Details for bAbI dataset

•  Sentence as memory unit
– Need to encode sentences into vectors

•  Initialize the internal state with the question
•  Tried two weight tying schemes
– Adjacent vs layer-wise

•  Temporal encoding
– Add special time words (“t1”, “t2”, …) into each

sentences
– Random noise injection into time/location

Sentence Representation

•  Bag-of-Words
– Embed each word into vectors and add them

•  Position Encoding
– Apply simple order dependent

transformation before adding

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

The issue with this is that it cannot capture the order of the words in the sentence, which is important
for some tasks.

We therefore propose a second representation that encodes the position of words within the
sentence. This takes the form: mi =

P
j lj ·Axij , where · is an element-wise multiplication. lj is a

column vector with the structure lkj = (1� j/J)� (k/d)(1� 2j/J) (assuming 1-based indexing),
with J being the number of words in the sentence, and d is the dimension of the embedding. This
sentence representation, which we call position encoding (PE), means that the order of the words
now affects mi. The same representation is used for questions, memory inputs and memory outputs.

Temporal Encoding: Many of the QA tasks require some notion of temporal context, i.e. in
the first example of Section 2, the model needs to understand that Sam is in the bedroom after
he is in the kitchen. To enable our model to address them, we modify the memory vector so
that mi =

P
j Axij + TA(i), where TA(i) is the ith row of a special matrix TA that encodes

temporal information. The output embedding is augmented in the same way with a matrix Tc

(e.g. ci =
P

j Cxij + TC(i)). Both TA and TC are learned during training. They are also subject to
the same sharing constraints as A and C. Note that sentences are indexed in reverse order, reflecting
their relative distance from the question so that x1 is the last sentence of the story.

Learning time invariance by injecting random noise: we have found it helpful to add “dummy”
memories to regularize TA. That is, at training time we can randomly add 10% of empty memories
to the stories. We refer to this approach as random noise (RN).

4.2 Training Details
Our models were trained using a learning rate of ⌘ = 0.01, with anneals every 25 epochs by ⌘/2
until 100 epochs were reached. No momentum or weight decay was used. The weights were
initialized randomly from a Gaussian distribution with zero mean and � = 0.1. When trained on all
tasks simultaneously with 1k training samples (10k training samples), 60 epochs (20 epochs) were
used with learning rate anneals of ⌘/2 every 15 epochs (5 epochs). All training uses a batch size of
32 (but cost is not averaged over a batch), and gradients with an `2 norm larger than 40 are divided
by a scalar to have norm 40. In some of our experiments, we explored commencing training with
the softmax in each memory layer removed, making the model entirely linear except for the final
softmax for answer prediction. When the validation loss stopped decreasing, the softmax layers
were re-inserted and training recommenced. We refer to this as linear start (LS) training. In LS
training, the initial learning rate is set to ⌘ = 0.005. The capacity of memory is restricted to the
most recent 50 sentences. Since the number of sentences and the number of words per sentence
varied between problems, a null symbol was used to pad them all to a fixed size. The embedding of
the null symbol was constrained to be zero.

On some tasks, we observed a large variance in the performance of our model (i.e. sometimes failing
badly, other times not, depending on the initialization). To remedy this, we repeated each training
10 times with different random initializations, and picked the one with the lowest training error.

4.3 Baselines
We compare our approach (abbreviated to MemN2N) to a range of alternate models:

• MemNN: The strongly supervised AM+NG+NL Memory Networks approach, proposed in We-
ston et al. [21]. This is the best reported approach in that paper. It uses a max operation (rather
than softmax) at each layer which is trained directly with supporting facts (strong supervision). It
employs n-gram modeling, nonlinear layers and an adaptive number of hops per query.

• MemNN-WSH: A weakly supervised heuristic version of MemNN where the supporting sen-
tence labels are not used in training. Since we are unable to backpropagate through the max
operations in each layer, we enforce that the first memory hop should share at least one word with
the question, and that the second memory hop should share at least one word with the first hop and
at least one word with the answer. All those memories that conform are called valid memories,
and the goal during training is to rank them higher than invalid memories using the same ranking
criteria as during strongly supervised training.

• LSTM: A standard LSTM model, trained using question / answer pairs only (i.e. also weakly
supervised). For more detail, see [21].

5

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John? Answer: bathroom Prediction: bathroom Where is the milk? Answer: hallway Prediction: hallway

What color is Greg? Answer: yellow Prediction: yellow Does the suitcase fit in the chocolate? Answer: no Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple

7

Examples of Attention Weights

•  4 test cases:

[23] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio.
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ArXiv

preprint: 1502.03044, 2015.
[24] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. arXiv

preprint arXiv:1409.2329, 2014.

Appendix A Results on 10k QA dataset
Baseline MemN2N

Strongly PE 1 hop 2 hops 3 hops PE PE LS
Supervised MemNN PE LS PE LS PE LS PE LS LS RN LW

Task MemNN LSTM WSH BoW PE LS RN joint joint joint joint joint
1: 1 supporting fact 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2: 2 supporting facts 0.0 81.9 39.6 0.6 0.4 0.5 0.3 62.0 1.3 2.3 1.0 0.8
3: 3 supporting facts 0.0 83.1 79.5 17.8 12.6 15.0 9.3 80.0 15.8 14.0 6.8 18.3
4: 2 argument relations 0.0 0.2 36.6 31.8 0.0 0.0 0.0 21.4 0.0 0.0 0.0 0.0
5: 3 argument relations 0.3 1.2 21.1 14.2 0.8 0.6 0.8 8.7 7.2 7.5 6.1 0.8
6: yes/no questions 0.0 51.8 49.9 0.1 0.2 0.1 0.0 6.1 0.7 0.2 0.1 0.1
7: counting 3.3 24.9 35.1 10.7 5.7 3.2 3.7 14.8 10.5 6.1 6.6 8.4
8: lists/sets 1.0 34.1 42.7 1.4 2.4 2.2 0.8 8.9 4.7 4.0 2.7 1.4
9: simple negation 0.0 20.2 36.4 1.8 1.3 2.0 0.8 3.7 0.4 0.0 0.0 0.2
10: indefinite knowledge 0.0 30.1 76.0 1.9 1.7 3.3 2.4 10.3 0.6 0.4 0.5 0.0
11: basic coreference 0.0 10.3 25.3 0.0 0.0 0.0 0.0 8.3 0.0 0.0 0.0 0.4
12: conjunction 0.0 23.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
13: compound coreference 0.0 6.1 12.3 0.0 0.1 0.0 0.0 5.6 0.0 0.0 0.0 0.0
14: time reasoning 0.0 81.0 8.7 0.0 0.2 0.0 0.0 30.9 0.2 0.2 0.0 1.7
15: basic deduction 0.0 78.7 68.8 12.5 0.0 0.0 0.0 42.6 0.0 0.0 0.2 0.0
16: basic induction 0.0 51.9 50.9 50.9 48.6 0.1 0.4 47.3 46.4 0.4 0.2 49.2
17: positional reasoning 24.6 50.1 51.1 47.4 40.3 41.1 40.7 40.0 39.7 41.7 41.8 40.0
18: size reasoning 2.1 6.8 45.8 41.3 7.4 8.6 6.7 9.2 10.1 8.6 8.0 8.4
19: path finding 31.9 90.3 100.0 75.4 66.6 66.7 66.5 91.0 80.8 73.3 75.7 89.5
20: agent’s motivation 0.0 2.1 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mean error (%) 3.2 36.4 39.2 15.4 9.4 7.2 6.6 24.5 10.9 7.9 7.5 11.0
Failed tasks (err. > 5%) 2 16 17 9 6 4 4 16 7 6 6 6

Table 3: Test error rates (%) on the 20 bAbI QA tasks for models using 10k training examples.
Key: BoW = bag-of-words representation; PE = position encoding representation; LS = linear start
training; RN = random injection of time index noise; LW = RNN-style layer-wise weight tying (if
not stated, adjacent weight tying is used); joint = joint training on all tasks (as opposed to per-task
training).

Appendix B Visualization of attention weights in QA problems

10

Results on 10k training data

Experiment on Language Modeling

•  Data
– Penn Tree Bank (PTB): 1M words, 10K vocab
– Text8: wikipedia 100M chars, 40K vocab

•  Model
– Main module: linear + non-linearity (half)

•  Layer-wise tying
•  Linear projection and non-linearity

– Words as memory unit

Results on Language Modeling

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John? Answer: bathroom Prediction: bathroom Where is the milk? Answer: hallway Prediction: hallway

What color is Greg? Answer: yellow Prediction: yellow Does the suitcase fit in the chocolate? Answer: no Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple

7

Average over Penn
Treebank

Average over Text8
(Wikipedia)

Conclusions

•  Simple model that combines external memory with
an RNN

•  Versatile: can be applied to range of tasks
– Language modeling, bAbI dataset

•  Code available at: https://github.com/facebook/MemNN

•  Interesting to explore biological parallels
– E.g. hippocampus & PFC

Thanks!

Antoine Bordes

PhD students & Facebook AI Research colleagues

Sumit Chopra Jason Weston

Sainbayar
Sukhbaatar (NYU)

Arthur Szlam

Yuandong Tian Bolei Zhu (MIT)

	fergus cover
	fergus

