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with Baccus lab:  inferring  
hidden circuits in the retina 
 
 
with Clandinin lab: unraveling the  
computations underlying fly motion  
vision from whole brain optical imaging 

with the Giocomo lab: understanding 
the internal representations of space  
in the mouse entorhinal cortex  
 
 
with the Shenoy lab: a theory of neural 
dimensionality, dynamics and measurement 
 
 
with the Raymond lab: theories of how 
enhanced plasticity can either enhance 
or impair learning depending on experience  

      Neural circuits and behavior: theory, computation and experiment 



Statistical mechanics of high dimensional data analysis 

N = dimensionality of data!
M = number of data points! α = N / M!

Classical Statistics Modern Statistics 

N  ~ O(1)!
M -> ∞!
 α -> 0	


N -> ∞ !
M -> ∞!
 α ~ 0(1)	


Machine Learning and Data Analysis!
 !
  Learn statistical parameters by!
  maximizing log likelihood of data !
  given parameters. !

Statistical Physics of Quenched 
Disorder!
 !
Energy  = - log Prob ( data | parameters)!
  !
Data = quenched disorder!
Parameters = thermal degrees of freedom!

Applications to:  1) compressed sensing!
                          2) optimal inference in high dimensions!
                          3) a theory of neural dimensionality and measurement  !





         The project that really keeps me up at night 

                        



•  What does it mean to understand the brain (or a neural circuit?) 

•  We understand how the connectivity and dynamics of a neural circuit gives 
rise to behavior. 

•  And also how neural activity and synaptic learning rules conspire to self-
organize useful connectivity that subserves behavior. 

•  It is a good start, but it is not enough, to develop a theory of either random 
networks that have no function. 

•  The field of machine learning has generated a plethora of learned neural 
networks that accomplish interesting functions. 

•  We know their connectivity, dynamics, learning rule, and developmental 
experience, *yet*, we do not have a meaningful understanding of how they 
learn and work! 

 Motivations for an alliance between theoretical neuroscience and            
theoretical machine learning: opportunities for statistical physics 

On simplicity and complexity in the brave new world of large scale neuroscience,  
Gao and Ganguli Curr. Op. Neurobiology 2015 



  Talk Outline 

                        
 Dynamic Criticality 

       Time  
    Reversal 

     Random  
  Landscapes 

Original motivation: understanding category learning in neural networks 

Understand and exploit geometry 
of high dimensional error surfaces: 
need to escape saddle points not  
local minima. 

Exploit violations of the second 
law of thermodynamics to create 
deep generative models 

We find random weight initializations, that make a network 
dynamically critical and allow rapid training of very deep networks.  
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                       A Mathematical Theory of  
                        Semantic Development* 

Joint work with:  Andrew Saxe and Jay McClelland 

*AKA: The misadventures of an “applied physicist” 
           wondering around the psychology department 



                    What is “semantic cognition”? 

Human semantic cognition:  Our ability to  
       learn, recognize, comprehend and produce 
       inferences about properties of objects  
       and events in the world, especially properties 
       that are not present in the current perceptual  
       stimulus 

For example: 
 
              Does a cat have fur? 
              Do birds fly? 
               

Our ability to do this likely relies on our ability to form  
internal representations of categories in the world 



  Psychophysical tasks that probe semantic cognition 

Looking time studies: Can an infant distinguish between two 
   categories of objects? At what age? 

Property verification tasks:  Can a canary move? Can it sing? 
       Response latency => central and peripheral properties 

Inductive generalization: 

Category membership queries: Is a sparrow a bird?  An ostrich? 
        Response latency => typical / atypical category members 

     (A) Generalize familiar properties to novel objects: 
             i.e. a “blick” has feathers.  Does it fly?  Sing? 

   (B) Generalize novel properties to familiar objects: 
           i.e. a bird has gene “X”.  Does a crocodile have gene X? 
                                                    Does a dog? 



Semantic Cognition Phenomena 



          A Network for Semantic Cognition 

Rogers and McClelland 



          Evolution of internal representations 

Rogers and McClelland 



      Categorical representations in human and monkey 

Kriegeskorte et. al. Neuron 2008 



      Categorical representations in human and monkey 

Kriegeskorte et. al. Neuron 2008 



          Evolution of internal representations 

Rogers and McClelland 



                        Theoretical questions 

What are the mathematical principles underlying the hierarchical 
self-organization of internal representations in the network?  

What are the relative roles of:     
        nonlinear input-output response 
        learning rule 
        input statistics  (second order?  higher order?) 

Why are some properties learned more quickly than others? 

What is a mathematical definition of category coherence, and  
How does it relate the speed of category learning? 

How can we explain changing patterns of inductive  
generalization over developmental time scales? 



Problem	  formula,on	  

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

We	  analyze	  a	  fully	  linear	  three	  layer	  network	  
	  

Learning hierarchical categories in deep neural networks
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Department of Psychology
Surya Ganguli (sganguli@stanford.edu)
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Abstract
A wide array of psychology experiments have revealed re-
markable regularities in the developmental time course of hu-
man cognition. For example, infants generally acquire broad
categorical distinctions (i.e., plant/animal) before finer-scale
distinctions (i.e., dog/cat), often exhibiting rapid, or stage-like
transitions. What are the theoretical principles underlying the
ability of neuronal networks to discover categorical structure
from experience? We develop a mathematical theory of hi-
erarchical category learning through an analysis of the learn-
ing dynamics of multilayer networks exposed to hierarchically
structured data. Our theory yields new exact solutions to the
nonlinear dynamics of error correcting learning in deep, three
layer networks. These solutions reveal that networks learn
input-output covariation structure on a time scale that is in-
versely proportional to its statistical strength. We further ana-
lyze the covariance structure of data sampled from hierarchical
probabilistic generative models, and show how such models
yield a hierarchy of input-output modes of differing statistical
strength, leading to a hierarchy of time-scales over which such
modes are learned. Our results reveal that even the second
order statistics of hierarchically structured data contain pow-
erful statistical signals sufficient to drive complex experimen-
tally observed phenomena in semantic development, including
progressive, coarse-to-fine differentiation of concepts and sud-
den, stage-like transitions in performance punctuating longer
dormant periods.
Keywords: neural networks; hierarchical generative models;
semantic cognition; learning dynamics

Introduction
Our world is characterized by a rich, nested hierarchical
structure of categories within categories, and one of the most
remarkable aspects of human semantic development is our
ability to learn and exploit this rich structure. Experimental
work has shown that infants and children acquire broad cate-
gorical distinctions before fine categorical distinctions (Keil,
1979; Mandler & McDonough, 1993), suggesting that hu-
man category learning is marked by a progressive differen-
tiation of concepts from broad to fine. Furthermore, humans
can exhibit stage-like transitions as they learn, rapidly moving
from ignorance to mastery (Inhelder & Piaget, 1958; Siegler,
1976).

Many neural network simulations have captured aspects of
these broad patterns of semantic development (Rogers & Mc-
Clelland, 2004; Rumelhart & Todd, 1993; McClelland, 1995;
Plunkett & Sinha, 1992; Quinn & Johnson, 1997). The inter-
nal representations of such networks exhibit both progressive
differentiation and stage like transitions.

However the theoretical basis for the ability of neuronal
networks to exhibit such strikingly rich nonlinear behavior re-

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

Figure 1: The three layer network analyzed in this work.

mains elusive. What are the essential principles that underly
such behavior? What aspects of statistical structure in the
input are responsible for driving such dynamics? For exam-
ple, must networks exploit nonlinearities in their input-output
map to detect higher order statistical regularities to drive such
learning?

Here we analyze the learning dynamics of a linear 3 layer
network and find, surprisingly, that it can exhibit highly non-
linear learning dynamics, including rapid stage-like transi-
tions. Furthermore, when exposed to hierarchically struc-
tured data sampled from a hierarchical probabilistic model,
the network exhibits progressive differentiation of concepts
from broad to fine. Since such linear networks are sensitive
only to the second order statistics of inputs and outputs, this
yields the intriguing result that merely second order patterns
of covariation in hierarchically structured data contain statis-
tical signals powerful enough to drive certain nontrivial, high
level aspects of semantic development in deep networks.

Gradient descent dynamics in multilayer
neural networks

We examine learning in a three layer network (input layer 1,
hidden layer 2, and output layer 3) with linear activation func-
tions, simplifying the network model of Rumelhart and Todd
(1993), in which input units correspond to items e.g, Canary,
Rose and output units correspond to possible predicates or at-
tributes Can Fly, Has Petals that may or may not apply to each
item. Let Ni be the number of neurons in layer i, W 21 be an
N2⇥N1 matrix of synaptic connections from layer 1 to 2, and
similarly, W 32 an N3 ⇥N2 matrix of connections from layer 2
to 3. The input-output map of the network is y = W 32W 21x,
where x is an N1 dimensional column vector representing in-
puts to the network, and y is an N2 dimensional column vector
representing the network output (see Fig. 1).

Items	  Proper,es	  



Learning	  dynamics	  
•  Network	  is	  trained	  on	  a	  set	  of	  items	  and	  their	  proper,es	  

•  Weights	  adjusted	  using	  standard	  backpropaga,on:	  
–  Change	  each	  weight	  to	  reduce	  the	  error	  between	  desired	  network	  

output	  and	  current	  network	  output	  

•  Highlights	  the	  error-‐correc,ve	  aspect	  of	  this	  learning	  process	  
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

tic gradient descent; each time an example µ is presented, the
weights W 32 and W 21 are adjusted by a small amount in the
direction that minimizes the squared error

��yµ �W 32W 21xµ
��2

between the desired feature output, and the network’s feature
output. This gradient descent procedure yields the standard
back propagation learning rule

DW 21 = lW 32T
(yµ � ŷµ)xµT (3)

DW 32 = l(yµ � ŷµ)hµT , (4)

for each example µ, where ŷµ =W 32W 21xµ denotes the output
of the network in response to input example xµ, hµ = W 21xµ

is the hidden unit activity, and l is a small learning rate.
Here W 32T

(yµ � ŷµ) in (3) corresponds to the signal back-
propagated to the hidden units through the hidden-to-output
weights. These equations emphasize that the learning pro-
cess works by comparing the network’s current output ŷµ to
the desired target output yµ, and adjusting weights based on
this error term.

By a substitution and rearrangement, however, we can
equivalently write these equations as

DW 21 = lW 32T �
yµxµT �W 32W 21xµxµT � (5)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

. (6)

This form emphasizes two crucial aspects of the learning dy-
namics. First, it highlights the importance of the statistics
of the training set. In particular, the training set enters only
through two terms, one related to the input-output correla-
tions yµxµT and the other related to the input correlations
xµxµT . Indeed, if l is sufficiently small so that weights change
only a small amount per epoch, we can rewrite these equa-
tions in a batch update form by averaging over the training
set to obtain the mean change in weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (7)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (8)

where S11 ⌘ Âµ=1 xµxµT ⌘ E[xxT ] is an N1 ⇥N1 input corre-
lation matrix, S31 is the N3 ⇥N1 input-output correlation ma-
trix defined previously, and t ⌘ P

l . Hence we see that linear
networks are sensitive only to the second order statistics of
inputs and outputs. In general the learning process is driven
by both the input and input-output correlation matrices. Here
we take the simplifying assumption that these input corre-
lations are insignificant; formally, we assume S11 = I, the
identity matrix. Concretely, this assumption corresponds to
the supposition that input representations for different items
are highly differentiated from, or orthogonal to each other.
While this is unlikely to hold exactly in any natural domain,
we take this assumption for two reasons. First, it was used in
prior simulation studies (Rogers & McClelland, 2004), and
hence our attempt to understand their results is not limited
by this assumption. Second, Rogers and McClelland (2004)

have shown that relaxing this assumption to incorporate more
complex input correlations leaves intact the basic phenom-
ena of progressive differentiation and stage-like transitions
in learning. Nevertheless, understanding the impact of input
correlations is an important direction for further work.

Second, the form of Eqns. (7)-(8) highlights the coupling
between the two equations: to know how to change W 21 we
must know W 32, and visa versa, since each appears in the
update equation for the other. This coupling is the crucial
element added by the addition of a hidden layer, and as we
shall see, it qualitatively changes the learning dynamics of
the network compared to a “shallow” network with no hid-
den layer. Intuitively, this coupling complicates the learn-
ing procedure since both weight matrices must cooperate to
produce the correct answer; but crucially, it enables knowl-
edge sharing between different items, by assigning them sim-
ilar hidden unit representations. Without this coupling, the
network would learn each item-property association indepen-
dently, and would not be sensitive to shared structure in the
training set.

The temporal dynamics of learning To understand the
connection between learning dynamics and training set statis-
tics, then, we can solve Eqns. (7)-(8). We have found a class
of exact solutions (whose derivation will be presented else-
where) that describe the weights of the network over time
during learning, as a function of the training set. In partic-
ular, the composite mapping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (9)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (10)

That is, the network learns about the N2 strongest input-
output modes identified by the singular value decomposi-
tion, progressively incorporating each mode into its repre-
sentation. The coefficient a(t,sa,a0) describes how strongly
input-output mode a has been learned by time t, starting
from some small initial value of a0. As can be seen from
Fig. 3, this function is a sigmoidal curve, capturing the fact
that the network initially knows nothing about a particular
dimension (the animal-plant dimension, say), but over time
learns the importance of this dimension and incorporates it
into its representation, ultimately reaching the correct asso-
ciation strength sa. At this point the network correctly maps
items onto the animal-plant dimension using the object an-
alyzer vector vaT , and generates the corresponding correct
features using the feature synthesizer vector ua.

Eqns. (9)-(10) describe the fundamental connection be-
tween the structure of a training set and learning dynamics.
In particular, the dynamics depends on the singular value
decomposition of the input-output correlation matrix of the



Learning	  dynamics	  
In	  linear	  networks,	  there	  is	  an	  equivalent	  formula,on	  that	  
highlights	  the	  role	  of	  the	  sta,s,cs	  of	  the	  training	  environment:	  
	  

	  
	  
	  

Equivalent	  dynamics:	  
	  
	  
	  
	  
	  
	  
•  Learning	  driven	  only	  by	  correla,ons	  in	  the	  training	  data	  
•  Equa,ons	  coupled	  and	  nonlinear	  
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

•  Each	  mode	  evolves	  
independently	  

•  Each	  mode	  is	  learned	  in	  
)me	  
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Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D = 3
hierarchical levels, binary branching, flip probability e = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W 32(t)W 21(t) in Eqns. (3)-(4) starting
from different random initializations, and blue traces show
theoretical curves obtained from (8).

As can be seen from Fig. 3, for a0 < s, this function is a
sigmoidal curve that starts at a0 when t = 0, and asymptot-
ically rises to s as t ! •. Thus for small initial conditions
a0

a, the weight trajectory (7) describes an evolving network
whose input-output mapping successively builds up the first
N2 modes of the SVD of S31 in (6). This result is the so-
lution to (3)-(4) for a special class of initial conditions on
the weights W 21 and W 32. However this analytic solution
is a good approximation to the time evolution the network’s
input-output map for random small initial conditions, as con-
firmed in Fig. 3.

Eqns. (7)-(8) reveal a number of important properties of
the learning dynamics. What is the final outcome of learning?
As t ! •, the weight matrices converge to the best rank N2
approximation of S31.

More importantly, what is the timescale of learning? Each
pair of output (ua) and input (va) modes are learned in (7) on
a different time scale, governed by the singular value sa. To
estimate this time scale, we can assume a small initial condi-
tion a0 = e and ask when a(t) in (8) is within e of the final
value s, i.e. a(t) = s� e; then the timescale of learning in the
limit e ! 0 is

t(s,e) = t
s

ln
s
e
. (9)

This is O(t/s) up to a logarithmic factor. Thus the time re-
quired to learn an input-output mode is inversely related to its
statistical strength, quantified through its singular value.

Finally, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (8) from a state in which the net-
work does not represent a particular input-output relation at

all, to a state in which the network fully incorporates that rela-
tion. To formalize this, we begin with the sigmoidal learning
curve in (8). If we assume the initial strength of the mode a0
satisfies a0 < s/2, where s is its final learned value, we can
define the transition time to be the time at which the mode is
half learned (i.e. a(thalf) = s/2). This yields

thalf =
t
2s

log
✓

s
a0

�1
◆
. (10)

We can then define the transition period ttrans as the time re-
quired for a linear approximation to a(t,s,a0) at thalf to rise
from zero to s. This yields a transition time to go from a state
of no learning to almost full learning given by ttrans = 2t

s .
Thus, by starting with a very small initial condition in the
weights (i.e. a0), it is clear that one can make the ratio
ttrans/thalf arbitrarily small. Hence the learning dynamics
of (3)-(4) can indeed exhibit sharp stage-like transitions con-
sisting of long periods of dormancy ended by an abrupt tran-
sition to mastery. Interestingly, we can prove that single layer
networks are not capable of such stage-like transitions. Thus
their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer, and
does not require nonlinearity in the input-output map of the
network.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training ex-
amples and the dynamics of learning. In particular, for an ar-
bitrary input-output task the network will ultimately come to
represent the closest rank N2 approximation to the full input-
output correlation matrix. Furthermore, the learning dynam-
ics depend crucially on the singular values of the input-output
correlation matrix. Each input-output mode is learned in time
inversely proportional to its associated singular value, yield-
ing the intuitive result that stronger input-output associations
are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gener-
ative model of items and their attributes that, when sampled,
produces a dataset that can be supplied to our neural network.
Using this, we will be able to explicitly link hierarchical tax-
onomies of categories to the dynamics of network learning.
A key result in the following is that our network must exhibit
progressive differentiation with respect to any of the underly-
ing hierarchical taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process To understand the time course of learning of hier-
archical structure, we propose a simple generative model of
hierarchical data {xµ,yµ}, and compute for this model the sta-
tistical properties (sa,ua,va) which drive learning. We first
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)



Stage-‐like	  transi,ons	  
Empirical	  evidence	  suggests	  transi,ons	  during	  learning	  can	  be	  
rapid	  and	  stage-‐like	  
•  Our	  model	  exhibits	  such	  transi,ons	  
•  Intui,vely,	  arises	  from	  sigmoidal	  learning	  trajectories	  
•  The	  ra,o	  of	  the	  transi(on	  period	  to	  the	  ignorance	  period	  

can	  be	  arbitrarily	  small	  
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Take home messages so far 
•  The network learns different modes of covariation between 

input and output on a time scale inversely proportional to 
the statistical strength of that covariation. 

•  The learning curve for an input output mode can be 
sigmoidal with little evidence of learning for a long time, 
then a sudden transition to being learned. 

•  NEXT: What does this have to do with hierarchical 
differentiation of concepts?  To answer this we must 
understand the second order statistics of hierarchically 
structured data. 



Learning	  hierarchical	  structure	  

•  The	  preceding	  analysis	  describes	  dynamics	  in	  response	  to	  a	  
specific	  dataset	  

•  Can	  we	  move	  beyond	  specific	  datasets	  to	  general	  principles	  
when	  a	  neural	  network	  is	  exposed	  to	  hierarchical	  structure?	  

•  We	  consider	  training	  a	  neural	  network	  with	  data	  generated	  by	  
a	  hierarchical	  genera)ve	  model	  



Connec)ng	  hierarchical	  genera)ve	  
models	  and	  neural	  network	  learning	  

…

…
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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A	  hierarchical	  branching	  diffusion	  process	  

…
Branching factor B0 

…

B1 

Genera,ve	  model	  defined	  
by	  a	  tree	  of	  nested	  
categories	  
	  
Feature	  values	  diffuse	  
down	  tree	  with	  small	  
probability	  ε	  of	  changing	  
along	  each	  link	  
	  
Sampled	  independently	  
N	  ,mes	  to	  produce	  	  
N	  features	  

Item	  1	   Item	  2	   Item	  P	  
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Assume	  our	  network	  is	  
trained	  on	  an	  infinite	  amount	  
of	  data	  drawn	  from	  this	  model	  
	  
Can	  analy,cally	  compute	  SVD	  
of	  the	  input-‐output	  
correla,on	  matrix:	  
	  
The	  object	  analyzer	  vectors	  
mirror	  the	  tree	  structure	  
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The	  singular	  values	  are	  a	  decreasing	  func)on	  of	  the	  hierarchy	  level.	  
	  
	  



Progressive	  differen,a,on	  

Hence	  the	  network	  must	  exhibit	  progressive	  
differen,a,on	  on	  any	  dataset	  generated	  by	  this	  class	  of	  
hierarchical	  diffusion	  processes:	  
	  
•  Network	  learns	  input-‐output	  modes	  in	  ,me	  
	  
	  
•  	  Singular	  values	  of	  broader	  hierarchical	  dis,nc,ons	  

are	  larger	  than	  those	  of	  finer	  dis,nc,ons	  

•  Input-‐output	  modes	  correspond	  exactly	  to	  the	  
hierarchical	  dis,nc,ons	  in	  the	  underlying	  tree	  
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Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D = 3
hierarchical levels, binary branching, flip probability e = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W 32(t)W 21(t) in Eqns. (3)-(4) starting
from different random initializations, and blue traces show
theoretical curves obtained from (8).

As can be seen from Fig. 3, for a0 < s, this function is a
sigmoidal curve that starts at a0 when t = 0, and asymptot-
ically rises to s as t ! •. Thus for small initial conditions
a0

a, the weight trajectory (7) describes an evolving network
whose input-output mapping successively builds up the first
N2 modes of the SVD of S31 in (6). This result is the so-
lution to (3)-(4) for a special class of initial conditions on
the weights W 21 and W 32. However this analytic solution
is a good approximation to the time evolution the network’s
input-output map for random small initial conditions, as con-
firmed in Fig. 3.

Eqns. (7)-(8) reveal a number of important properties of
the learning dynamics. What is the final outcome of learning?
As t ! •, the weight matrices converge to the best rank N2
approximation of S31.

More importantly, what is the timescale of learning? Each
pair of output (ua) and input (va) modes are learned in (7) on
a different time scale, governed by the singular value sa. To
estimate this time scale, we can assume a small initial condi-
tion a0 = e and ask when a(t) in (8) is within e of the final
value s, i.e. a(t) = s� e; then the timescale of learning in the
limit e ! 0 is

t(s,e) = t
s

ln
s
e
. (9)

This is O(t/s) up to a logarithmic factor. Thus the time re-
quired to learn an input-output mode is inversely related to its
statistical strength, quantified through its singular value.

Finally, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (8) from a state in which the net-
work does not represent a particular input-output relation at

all, to a state in which the network fully incorporates that rela-
tion. To formalize this, we begin with the sigmoidal learning
curve in (8). If we assume the initial strength of the mode a0
satisfies a0 < s/2, where s is its final learned value, we can
define the transition time to be the time at which the mode is
half learned (i.e. a(thalf) = s/2). This yields

thalf =
t
2s

log
✓

s
a0

�1
◆
. (10)

We can then define the transition period ttrans as the time re-
quired for a linear approximation to a(t,s,a0) at thalf to rise
from zero to s. This yields a transition time to go from a state
of no learning to almost full learning given by ttrans = 2t

s .
Thus, by starting with a very small initial condition in the
weights (i.e. a0), it is clear that one can make the ratio
ttrans/thalf arbitrarily small. Hence the learning dynamics
of (3)-(4) can indeed exhibit sharp stage-like transitions con-
sisting of long periods of dormancy ended by an abrupt tran-
sition to mastery. Interestingly, we can prove that single layer
networks are not capable of such stage-like transitions. Thus
their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer, and
does not require nonlinearity in the input-output map of the
network.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training ex-
amples and the dynamics of learning. In particular, for an ar-
bitrary input-output task the network will ultimately come to
represent the closest rank N2 approximation to the full input-
output correlation matrix. Furthermore, the learning dynam-
ics depend crucially on the singular values of the input-output
correlation matrix. Each input-output mode is learned in time
inversely proportional to its associated singular value, yield-
ing the intuitive result that stronger input-output associations
are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gener-
ative model of items and their attributes that, when sampled,
produces a dataset that can be supplied to our neural network.
Using this, we will be able to explicitly link hierarchical tax-
onomies of categories to the dynamics of network learning.
A key result in the following is that our network must exhibit
progressive differentiation with respect to any of the underly-
ing hierarchical taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process To understand the time course of learning of hier-
archical structure, we propose a simple generative model of
hierarchical data {xµ,yµ}, and compute for this model the sta-
tistical properties (sa,ua,va) which drive learning. We first
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Figure 4: Statistical structure of hierarchical data. (a) Ex-
ample hierarchical diffusion process with D = 4 levels and
branching factor B = 2. To sample one feature’s value across
items, the root node is randomly set to ±1; next this value dif-
fuses to children nodes, where its sign is flipped with a small
probability e. The leaf node assignments yield the value of
this feature on each item. To generate more features, the pro-
cess is repeated independently N times. (b) Analytically de-
rived input singular vectors (up to a scaling) of the resulting
data, ordered top-to-bottom by singular value. Mode 1 is a
level 0 function on the tree, mode 2 is level 1, 3 and 4 are
level 2, while modes 5 through 8 are level 3. Singular modes
corresponding to broad distinctions (higher levels) have the
largest singular values, and hence will be learned first. (c)
The output covariance of the data consists of hierarchically
organized blocks.

address the output data yµ,µ = 1, . . . ,P. Each yµ is an N-
dimensional feature vector where each feature i in example
µ takes the value yµ

i =±1. The value of each feature i across
all examples arises from a branching diffusion process occur-
ring on a tree (see e.g. Fig. 4A). Each feature i undergoes its
own diffusion process on the tree, independent of any other
feature j. This entire process, described below, yields a hier-
archical structure on the set of examples µ = 1, . . . ,P, which
are in one-to-one correspondence with the leaves of the tree.

The tree has a fixed topology, with D levels indexed by
l = 0, . . . ,D� 1, with Ml total nodes at level l. We take for
simplicity a regular branching structure, so that every node at
level l has exactly Bl descendants. Thus Ml = M0Pl�1

k=0Bl .
The tree has a single root node at the top (M0 = 1), and
again P leaves at the bottom, one per example in the dataset
(MD�1 = P).

Given a single feature component i, its value across P ex-
amples is determined as follows. First draw a random vari-
able h(0) associated with the root node at the top of the tree.
The variable h(0) takes the values ±1 with equal probability
1
2 . Next, for each of the B0 descendants below the root node
at level 1, pick a random variable h(1)

i , for i = 1, . . . ,B0. This
variable h(1)

i takes the value h(0) with probability 1� e and
�h(0) with probability e. The process continues down the
tree: each of Bl�1 nodes at level l with a common ancestor
at level l �1 is assigned its ancestor’s value with probability
1� e, or is assigned the negative of its ancestor’s value with
probability e. Thus the original feature value at the root, h(0),
diffuses down the tree with a small probability e of changing
at each level along any path to a leaf. The final values at the
P leaves constitute the feature values yµ

i for µ = 1, . . . ,P. This
process is repeated independently for N feature components.

In order to understand the dimensions of variation in the
feature vectors, we consider the inner product, or overlap,
between two example feature vectors. This inner product,
normalized by the number of features N, has a well-defined
limit as N ! •. Furthermore, due to the hierarchical diffu-
sive process which generates the data, the normalized inner
product only depends on the level of the tree at which the first
common ancestor of the two leaves associated with the two
examples arises. Therefore we can make the definition

qk =
1
N

N

Â
i=1

yµ1
i yµ2

i , (11)

where again, the first common ancestor of leaves µ1 and µ2
arises at level k. It is possible to explicitly compute qk for the
generative model described above, which yields

qk = (1�4e(1� e))D�1�k. (12)

It is clear that the overlap qk strictly decreases as the level
k of the last common ancestor decreases (i.e. the distance
up the tree to the last common ancestor increases). Thus
pairs of examples with a more recent common ancestor have
stronger overlap than pairs of examples with a more distant
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Figure 4: Statistical structure of hierarchical data. (a) Ex-
ample hierarchical diffusion process with D = 4 levels and
branching factor B = 2. To sample one feature’s value across
items, the root node is randomly set to ±1; next this value dif-
fuses to children nodes, where its sign is flipped with a small
probability e. The leaf node assignments yield the value of
this feature on each item. To generate more features, the pro-
cess is repeated independently N times. (b) Analytically de-
rived input singular vectors (up to a scaling) of the resulting
data, ordered top-to-bottom by singular value. Mode 1 is a
level 0 function on the tree, mode 2 is level 1, 3 and 4 are
level 2, while modes 5 through 8 are level 3. Singular modes
corresponding to broad distinctions (higher levels) have the
largest singular values, and hence will be learned first. (c)
The output covariance of the data consists of hierarchically
organized blocks.

address the output data yµ,µ = 1, . . . ,P. Each yµ is an N-
dimensional feature vector where each feature i in example
µ takes the value yµ

i =±1. The value of each feature i across
all examples arises from a branching diffusion process occur-
ring on a tree (see e.g. Fig. 4A). Each feature i undergoes its
own diffusion process on the tree, independent of any other
feature j. This entire process, described below, yields a hier-
archical structure on the set of examples µ = 1, . . . ,P, which
are in one-to-one correspondence with the leaves of the tree.

The tree has a fixed topology, with D levels indexed by
l = 0, . . . ,D� 1, with Ml total nodes at level l. We take for
simplicity a regular branching structure, so that every node at
level l has exactly Bl descendants. Thus Ml = M0Pl�1

k=0Bl .
The tree has a single root node at the top (M0 = 1), and
again P leaves at the bottom, one per example in the dataset
(MD�1 = P).

Given a single feature component i, its value across P ex-
amples is determined as follows. First draw a random vari-
able h(0) associated with the root node at the top of the tree.
The variable h(0) takes the values ±1 with equal probability
1
2 . Next, for each of the B0 descendants below the root node
at level 1, pick a random variable h(1)

i , for i = 1, . . . ,B0. This
variable h(1)

i takes the value h(0) with probability 1� e and
�h(0) with probability e. The process continues down the
tree: each of Bl�1 nodes at level l with a common ancestor
at level l �1 is assigned its ancestor’s value with probability
1� e, or is assigned the negative of its ancestor’s value with
probability e. Thus the original feature value at the root, h(0),
diffuses down the tree with a small probability e of changing
at each level along any path to a leaf. The final values at the
P leaves constitute the feature values yµ

i for µ = 1, . . . ,P. This
process is repeated independently for N feature components.

In order to understand the dimensions of variation in the
feature vectors, we consider the inner product, or overlap,
between two example feature vectors. This inner product,
normalized by the number of features N, has a well-defined
limit as N ! •. Furthermore, due to the hierarchical diffu-
sive process which generates the data, the normalized inner
product only depends on the level of the tree at which the first
common ancestor of the two leaves associated with the two
examples arises. Therefore we can make the definition

qk =
1
N

N

Â
i=1

yµ1
i yµ2

i , (11)

where again, the first common ancestor of leaves µ1 and µ2
arises at level k. It is possible to explicitly compute qk for the
generative model described above, which yields

qk = (1�4e(1� e))D�1�k. (12)

It is clear that the overlap qk strictly decreases as the level
k of the last common ancestor decreases (i.e. the distance
up the tree to the last common ancestor increases). Thus
pairs of examples with a more recent common ancestor have
stronger overlap than pairs of examples with a more distant
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Figure 3.9: Learned distribution of predicates in representation space. The shading is illustrative, and suggests
characteristics of the regions of the representation space to which particular predicates may apply. More general
names apply to items in a broader region of the space.Rogers	  &	  McClelland,	  2004	  
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Conclusion	  

•  Progressive	  differen)a)on	  of	  hierarchical	  
structure	  is	  a	  general	  feature	  of	  learning	  in	  
deep	  neural	  networks	  

•  Deep	  (but	  not	  shallow)	  networks	  exhibit	  
stage-‐like	  transi)ons	  during	  learning	  

•  Second	  order	  sta,s,cs	  of	  data	  are	  sufficient	  
to	  drive	  hierarchical	  differen,a,on	  	  



Ongoing	  work	  

In	  a	  posi,on	  to	  analy,cally	  understand	  many	  phenomena	  
previously	  simulated	  
	  
•  Illusory	  correla,ons	  early	  in	  learning	  
•  Familiarity	  and	  typicality	  effects	  
•  Induc,ve	  property	  judgments	  
•  ‘Dis,nc,ve’	  feature	  effects	  
	  

Our	  framework	  connects	  probabilis)c	  models	  and	  neural	  
networks,	  analy,cally	  linking	  structured	  environments	  to	  
learning	  dynamics.	  
	  

•  Basic	  level	  effects	  
•  Category	  coherence	  
•  Perceptual	  correla,ons	  	  
•  Prac,ce	  effects	  



Why	  are	  some	  proper,es	  dis,nc,ve,	  or	  learned	  faster?	  
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Proper,es:	  Move,	  Fly,	  Swim,	  Bark,	  Petals	  

A property                  = vector across items!
An object analyzer     = vector across items!
!
If a property is similar to an object analyzer with large!
singular value then (and only then) will it be learned quickly.!
!
That property is distinctive for the category associated with !
that object analyzer  (i.e. move for animals versus plant) !



Why	  are	  some	  items	  more	  typical	  members	  of	  a	  category?	  
(i.e.	  sparrow	  versus	  ostrich	  for	  the	  category	  bird)	  
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Items:	  Canary,	  Salmon,	  Oak,	  Rose	  
Proper,es:	  Move,	  Fly,	  Swim,	  Bark,	  Petals	  

An  item                                        = vector across properties!
A category feature synthesizer    = vector across properties!
!
If an item is similar to the feature synthesizer for a category, then it is a 
typical member of that category. !
!
Category membership verification easier for typical versus atypical items. !



How	  is	  induc,ve	  generaliza,on	  achieved	  by	  neural	  networks?	  
Inferring	  familiar	  proper,es	  of	  a	  novel	  item.	  

Σ31 U S VT
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vectors 

=

Given a new partially described object = vector across subset of properties!
What are the rest of the object’s properties?!
!
i.e. a “blick” has feathers.  Does it fly? Sing?!

Partial property vector !

Neural network internal 
representation!

Filled in property vector!
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How	  is	  induc,ve	  generaliza,on	  achieved	  by	  neural	  networks?	  
Inferring	  which	  familiar	  objects	  have	  a	  novel	  property.	  	  
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Given a new property      =  vector across subset of items!
Which other items have this property?!
!
i.e.  A bird has gene X.  Does a crocodile? A dog?!

Partial item vector !

Neural network internal 
representation!

Filled in item vector!
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What	  is	  a	  useful	  mathema,cal	  defini,on	  of	  category	  coherence?	  

i.e. “incoherent” = the set of all things that are blue!
i.e. “coherent”    = the set of all things that are dogs!
!
A natural definition of a coherent !
category is the singular value of !
the category, normalized by!
its level in the hierarchy!
!
Singular value = coherence * exp ( - level )!
!
For hierarchically structured data:!
!
Coherence = similarity of descendants – similarity to 
nearest out-category !
!
Mathematical Theorem: Coherent categories are 
learned faster!!

…
Branching factor B0 

…

B1 

Item	  1	   Item	  2	   Item	  P	  
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 Dynamic Criticality 
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     Random  
  Landscapes 

Original motivation: understanding category learning in neural networks 

Understand and exploit geometry 
of high dimensional error surfaces: 
need to escape saddle points not  
local minima. 

Exploit violations of the second 
law of thermodynamics to create 
deep generative models 

We find random weight initializations, that make a network 
dynamically critical and allow rapid training of very deep networks.  



Towards	  a	  theory	  of	  deep	  learning	  dynamics	  
	  

– The	  dynamics	  of	  learning	  in	  deep	  networks	  is	  non-‐
trivial	  –	  i.e.	  plateaus	  and	  sudden	  transitions	  to	  
better	  performance	  

– How	  does	  training	  time	  scale	  with	  depth?	  

– How	  should	  the	  learning	  rate	  scale	  with	  depth?	  

– How	  do	  different	  weight	  initializations	  impact	  
learning	  speed?	  

– We	  will	  @ind	  that	  weight	  initializations	  with	  critical	  
dynamics	  can	  aid	  deep	  learning	  and	  generalization.	  

	  



Deep	  network	  
•  Little	  hope	  for	  a	  complete	  theory	  with	  arbitrary	  
nonlinearities	  

	   x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)



Deep	  linear	  network	  
•  Use	  a	  deep	  linear	  network	  as	  a	  starting	  point	  

x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)



Deep	  linear	  network	  
•  Input-‐output	  map:	  Always	  linear	  

•  Gradient	  descent	  dynamics:	  Nonlinear;	  coupled;	  nonconvex	  

•  Useful	  for	  studying	  learning	  dynamics,	  not	  representation	  power.	  
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1 Introduction

Deep learning approaches have realized remarkable performance across a range of application areas
in machine learning, from computer vision [1, 2] to speech recognition [3] and natural language
processing [4], but the complexity of deep nonlinear networks has made it difficult to develop a
comprehensive theoretical understanding of deep learning. For example, the necessary conditions
for convergence, the speed of convergence, and optimal methods for initialization are based pri-
marily on empirical results without much theoretical support. As a first step in understanding the
learning dynamics of deep nonlinear networks, we can analyze deep linear networks which compute
y = W

D

W

D�1 · · ·W 2
W

1
x, where x, y are input and output vectors respectively, and the W

i are
D weight matrices in this D + 1 layer deep network. Although these networks are no more expres-
sive than a single linear map y = Wx (and therefore unlikely to yield high accuracy in practice),
we have previously shown [5] that they do exhibit nonlinear learning dynamics similar to those ob-
served in nonlinear networks. By precisely characterizing how the weight matrices evolve in linear
networks, we may gain insight into the properties of nonlinear networks with simple nonlinearities
(such as rectified linear units).

In this progress report, we show preliminary results for continuous batch gradient descent, in which
the gradient step size is assumed to be small enough to take a continuous time limit. By the end of
the project, we hope to obtain similar results for discrete batch gradient descent (with a discrete step
size) and stochastic (online) gradient descent.

2 Preliminaries and Previous Work

A deep linear network maps input vectors x to output vectors y =

⇣Q
D

i=1 W
i

⌘
x ⌘ Wx. We wish

to minimize the squared error on the training set {xµ

, y

µ}P
µ=1, l(W ) =

P
P

µ=1 kyµ �Wx

µk2.

The batch gradient descent update for a layer l is
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where
Q

b

i=a

W

i

= W

b

W

(b�1) · · ·W (a�1)
W

a with the caveat that
Q

b

i=a

W

i

= I if a > b.

The minimizing W can be found analytically, by setting the derivative of the loss to zero:
PX

µ=1

(y

µ �Wx

µ

)x

µT

= 0 (2)

Let ⌃xx ⌘
P

P

µ=1 x
µ

x

µT be the input correlation matrix, and ⌃

yx ⌘
P

P

µ=1 y
µ

x

µT be the input-
output correlation matrix. The optimal W is

W

⇤
= ⌃

yx

(⌃

xx

)

�1 (3)
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•  Dynamics	  
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Input	  correla,ons:	  
Input-‐output	  correla,ons:	  

and the network’s feature output. This gradient descent procedure yields the learning rule

�W 21 = �W 32T
�
yµxµT �W 32W 21xµxµT

�
(1)

�W 32 = �
�
yµxµT �W 32W 21xµxµT

�
W 21T , (2)

for each example µ, where � is a small learning rate. We imagine that training is divided into a
sequence of learning epochs, and in each epoch, the above rules are followed for all P examples in
random order. As long as � is su�ciently small so that the weights change by only a small amount
per learning epoch, we can average (1)-(2) over all P examples and take a continuous time limit to
obtain the mean change in weights per learning epoch. Let X = [x1x2 · · ·xP ] be a matrix consisting
of all input examples, and Y = [y1y2 · · · yP ] be a matrix consisting of the corresponding output
vectors. Over the course of an epoch, the averaged system performs gradient descent on the sum
of the squared error (SSE) of all patterns, defined as

SSE(W 21,W 32) =
��Y �W 32W 21X

��2
F

(3)

where kAkF =
qP

i,j A
2
ij is the Frobenius norm of a matrix. Gradient descent on the SSE is

controlled purely by the second order statistics of the training set, and gives rise to the di↵erential
equations

⌧
d

dt
W 21 = W 32T

�
⌃31 �W 32W 21⌃11

�
(4)

⌧
d

dt
W 32 =

�
⌃31 �W 32W 21⌃11

�
W 21T , (5)

where
⌃11 ⌘ XXT (6)

is an N1 ⇥N1 input correlation matrix,

⌃31 ⌘ Y XT (7)

is an N3 ⇥N1 input-output correlation matrix, and

⌧ ⌘ P

�
. (8)

Here t measures time in units of learning epochs; as t varies from 0 to 1, the network has seen P
examples corresponding to one learning epoch. We note that, although the network we analyze is
completely linear with the simple input-output map y = W 32W 21x, the gradient descent learning
dynamics given in Eqns. (4)-(5) are nonlinear.

1.1 Learning dynamics with orthogonal inputs

Our fundamental goal is to understand the dynamics of learning in (4)-(5) as a function of the
input statistics ⌃11 and ⌃31. In general, the outcome of learning will reflect an interplay between
the perceptual correlations in the examples, described by ⌃11, and the input-output correlations
described by ⌃31. To begin, though, we further simplify the analysis by focusing on the case
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

(see	  paper	  for	  	  
more	  general	  	  
input	  correla,ons)	  
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

τ	   1/Learning	  rate	  

s	   Singular	  value	  

a0	   Ini,al	  mode	  strength	  

•  Star,ng	  from	  decoupled	  ini,al	  
condi,ons.	  

	  
•  Each	  ‘connec,vity	  mode’	  evolves	  

independently	  

•  Singular	  value	  s	  learned	  at	  ,me	  O(1/s)	  
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Epochs	  Saxe,	  McCelland,	  Ganguli,	  ICLR,	  2014	  



Deeper	  network	  learning	  dynamics	  
•  Jacobian	  that	  back-‐propagates	  gradients	  can	  explode	  or	  
decay	  

	   x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)



Deeper	  networks	  
•  Can	  generalize	  to	  arbitrary	  depth	  network	  

•  Each	  effective	  singular	  value	  a	  evolves	  
independently	  

	  
•  In	  deep	  networks,	  combined	  gradient	  is	  

τ
d
dt
a = (Nl −1)a

2−2 (Nl−1)(s− a)
τ	   1/Learning	  

rate	  

s	   Singular	  value	  

Nl	   #	  layers	  

O Nl τ( )

w1	  w2	  wNl-‐1	  

a =
Nl�1Y

i=1

Wi



Deep	  linear	  learning	  speed	  
•  Intuition	  (see	  paper	  for	  details):	  
	  

– Gradient	  norm	  

– Learning	  rate	  

– Learning	  time	  

•  Deep	  learning	  can	  be	  fast	  with	  the	  right	  ICs.	  

O Nl( )

O 1 Nl( )

O 1( )

(Nl	  =	  #	  layers)	  

Saxe,	  McClelland,	  Ganguli	  ICLR	  2014	  



MNIST	  learning	  speeds	  

•  Trained	  deep	  linear	  nets	  on	  MNIST	  

•  Depths	  ranging	  from	  3	  to	  100	  
•  1000	  hidden	  units/layer	  (overcomplete)	  
•  Decoupled	  initial	  conditions	  with	  @ixed	  initial	  mode	  
strength	  

•  Batch	  gradient	  descent	  on	  squared	  error	  
•  Optimized	  learning	  rates	  for	  each	  depth	  

•  Calculated	  epoch	  at	  which	  error	  falls	  below	  @ixed	  
threshold	  



MNIST	  depth	  dependence	  
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Deep	  linear	  networks	  

•  Deep	  learning	  can	  be	  fast	  with	  decoupled	  ICs	  and	  O(1)	  initial	  mode	  strength.	  
How	  to	  7ind	  these?	  

•  Answer:	  	  Pre-‐training	  and	  random	  orthogonal	  initializations	  can	  @ind	  these	  
special	  initial	  conditions	  that	  allow	  depth	  independent	  training	  times!!	  

•  But	  scaled	  random	  Gaussian	  initial	  conditions	  on	  weights	  cannot.	  	  



Depth-‐independent	  training	  time	  

Time	  to	  criterion	   Op)mal	  learning	  rate	  

•  Deep	  linear	  networks	  on	  MNIST	  
•  Scaled	  random	  Gaussian	  ini,aliza,on	  (Glorot	  &	  Bengio,	  2010)	  

•  Pretrained	  and	  orthogonal	  have	  fast	  depth-‐independent	  
training	  ,mes!	  



Random	  vs	  orthogonal	  
•  Gaussian	  preserves	  norm	  of	  random	  vector	  on	  average	  

•  Attenuates	  on	  subspace	  of	  high	  dimension	  
•  Ampli6ies	  on	  subspace	  of	  low	  dimension	  

1	  layer	  net	   5	  layer	  net	   100	  layer	  net	  

Singular	  values	  of	  
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Random	  vs	  orthogonal	  

1	  layer	  net	   5	  layer	  net	   100	  layer	  net	  

Singular	  values	  of	  

Fr
eq
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y	  

Wtot = Wi

i=1

Nl−1

∏

All	  singular	  values	  of	  Wtot =1

•  Glorot	  preserves	  norm	  of	  random	  vector	  on	  average	  

•  Orthogonal	  preserves	  norm	  of	  all	  vectors	  exactly	  



Deeper	  network	  learning	  dynamics	  
•  Jacobian	  that	  back-‐propagates	  gradients	  can	  explode	  or	  
decay	  

	   x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)



Extensive	  Criticality	  yields	  	  
Dynamical	  Isometry	  in	  nonlinear	  nets	  
Suggests	  initialization	  for	  nonlinear	  nets	  
•  near-‐isometry	  on	  subspace	  of	  large	  dimension	  
•  Singular	  values	  of	  end-‐to-‐end	  Jacobian	  
	  	  	  	  	  concentrated	  around	  1.	  	  
Scale	  orthogonal	  matrices	  by	  gain	  g	  to	  counteract	  contractive	  
nonlinearity	  
	  
	  
	  
	  
Just	  beyond	  edge	  of	  chaos	  (g>1)	  may	  be	  good	  initialization	  
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have shown that for linear networks, orthogonal initializations achieve exact dynamical isometry with all
singular values at 1, while greedy pre-training achieves it approximately.

We note that the discrepancy in learning times between the scaled Gaussian initialization and the orthogonal
or pre-training initializations is modest for the depths of around 6 used in large scale applications, but is
magnified at larger depths (Fig. 6A left). This may explain the modest improvement in learning times with
greedy pre-training versus random scaled Gaussian initializations observed in applications (see discussion in
Supplementary Appendix D). We predict that this modest improvement will be magnified at higher depths,
even in nonlinear networks. Finally, we note that in recurrent networks, which can be thought of as infinitely
deep feed-forward networks with tied weights, a very promising approach is a modification to the training
objective that partially promotes dynamical isometry for the set of gradients currently being back-propagated
[24].

4 Achieving approximate dynamical isometry in nonlinear networks

We have shown above that deep random orthogonal linear networks achieve perfect dynamical isometry.
Here we show that nonlinear versions of these networks can also achieve good dynamical isometry proper-
ties. Consider the nonlinear feedforward dynamics

xl+1
i

=

X

j

gW (l+1,l)
ij

�(xl

j

), (20)

where xl

i

denotes the activity of neuron i in layer l, W (l+1,l)
ij

is a random orthogonal connectivity matrix from
layer l to l + 1, g is a scalar gain factor, and �(x) is any nonlinearity that saturates as x ! ±1. We show
in Supplementary appendix G that there exists a critical value g

c

of the gain g such that if g < g
c

, activity
will decay away to zero as it propagates through the layers, while if g > g

c

, the strong linear positive gain
will combat the damping due to the saturating nonlinearity, and activity will propagate indefinitely without
decay, no matter how deep the network is. When the nonlinearity is odd (�(x) = ��(�x)), so that the mean
activity in each layer is approximately 0, these dynamical properties can be quantitatively captured by the
neural population variance in layer l,

ql ⌘ 1

N

NX

i=1

(xl

i

)

2. (21)

Thus lim

l!1 ql ! 0 for g < g
c

and lim

l!1 ql ! q1(g) > 0 for g > g
c

. When �(x) = tanh(x), we
compute g

c

= 1 and numerically compute q1(g) in Fig. 8 in Supplementary appendix G. Thus these non-
linear feedforward networks exhibit a phase-transition at the critical gain; above the critical gain, infinitely
deep networks exhibit chaotic percolating activity propagation, so we call the critical gain g

c

the edge of
chaos, in analogy with terminology for recurrent networks.

Now we are interested in how errors at the final layer N
l

backpropagate back to earlier layers, and whether
or not these gradients explode or decay with depth. To quantify this, for simplicity we consider the end to
end Jacobian

JNl,1
ij

(xNl
) ⌘ @xNl

i

@x1
j

����
x

Nl

, (22)

which captures how input perturbations propagate to the output. If the singular value distribution of this
Jacobian is well-behaved, with few extremely large or small singular values, then the backpropagation of
gradients will also be well-behaved, and exhibit little explosion or decay. The Jacobian is evaluated at a
particular point xNl in the space of output layer activations, and this point is in turn obtained by iterating
(20) starting from an initial input layer activation vector x1. Thus the singular value distribution of the
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•  g>1	  speeds	  up	  30	  layer	  nonlinear	  nets	  

•  Dynamic	  isometry	  reduces	  test	  error	  by	  1.4%	  pts	  

Dynamic	  Isometry	  Initialization	  

MNIST	  Classifica,on	  error,	  epoch	  1500	   Train	  	  
Error	  (%)	  

Test	  	  
Error	  (%)	  

Gaussian	  (g=1,	  random)	   2.3	   3.4	  

g=1.1,	  random	   1.5	   3.0	  

g=1,	  orthogonal	   2.8	   3.5	  

Dynamic	  Isometry	  (g=1.1,	  orthogonal)	   0.095	   2.1	  

•  Tanh	  network,	  solmax	  output,	  500	  units/layer	  
•  No	  regulariza,on	  (weight	  decay,	  sparsity,	  dropout,	  etc)	  



Summary	  
•  Deep	  linear	  nets	  have	  nontrivial	  nonlinear	  learning	  dynamics.	  

•  Learning	  time	  inversely	  proportional	  to	  strength	  of	  input-‐output	  
correlations.	  

•  With	  the	  right	  initial	  weight	  conditions,	  number	  of	  training	  epochs	  
can	  remain	  @inite	  as	  depth	  increases.	  	  

•  Dynamically	  critical	  networks	  just	  beyond	  the	  edge	  of	  chaos	  enjoy	  
depth-‐independent	  learning	  times.	  



Beyond	  learning:	  criticality	  and	  
generalization	  

•  Deep	  networks	  +	  large	  gain	  factor	  g	  train	  exceptionally	  quickly	  	  
•  But	  large	  g	  incurs	  heavy	  cost	  in	  generalization	  performance	  

	  
•  Suggests	  small	  initial	  weights	  regularize	  towards	  smoother	  functions	  
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  Talk Outline 

                        
 Dynamic Criticality 

       Time  
    Reversal 

     Random  
  Landscapes 

Original motivation: understanding category learning in neural networks 

Understand and exploit geometry 
of high dimensional error surfaces: 
need to escape saddle points not  
local minima. 

Exploit violations of the second 
law of thermodynamics to create 
deep generative models 

We find random weight initializations, that make a network 
dynamically critical and allow rapid training of very deep networks.  



High dimensional nonconvex optimization!

It is often thought that local minima at high error stand as !
as a major impediment to non-convex optimization.!
!
In random non-convex error surfaces over!
high dimensional spaces, local minima at high!
error are exponentially rare in the dimensionality.  !
!
Instead saddle points proliferate.!
!
We developed an algorithm that rapidly escapes saddle points 
in high dimensional spaces.   !
!
!
!Identifying and attacking the saddle point problem in high dimensional non-convex optimization.!

Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, Yoshua 
Bengio.  NIPS 2014!
 



General properties of error landscapes in 
high dimensions !

From statistical physics:!
!
Consider a random Gaussian error 
landscape over N variables.!
!
Let x be a critical point.!
Let E be its error level.!
Let f be the fraction of negative curvature !
directions. !
!
!
!

Bray and Dean, Physical Review Letters, 2007  
E	


f	




Properties of Error Landscapes on the"
Synaptic Weight Space of a Deep Neural Net!

Qualitatively consistent with the 	

statistical physics theory of random error landscapes	




How to descend saddle points!

Newton’s Method	


Saddle Free Newton’s Method	


Intuition: saddle points attract Newton’s method, but  	

                                  repel saddle free Newton’s method.	

	

Derivation:  minimize a linear approximation to f(x) within a trust region	

                  in which the linear and quadratic approximations agree	


�x = �H�1 rf(x)

�x = �|H|�1 rf(x)



Performance of saddle free Newton in 
learning deep neural networks.!

SFN out-performs 	

       (1) minibatch stochastic gradient descent and	

       (2) damped Newton’s method	

	

The performance advantage increases with the problem dimensionality.	




Performance of saddle free Newton in 
learning deep neural networks.!

When stochastic gradient descent appears to plateau, switching to saddle 	

Free newton escapes the plateau.	
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 Dynamic Criticality 

       Time  
    Reversal 

     Random  
  Landscapes 

Original motivation: understanding category learning in neural networks 

Understand and exploit geometry 
of high dimensional error surfaces: 
need to escape saddle points not  
local minima. 

Exploit violations of the second 
law of thermodynamics to create 
deep generative models 

We find random weight initializations, that make a network 
dynamically critical and allow rapid training of very deep networks.  



  Modeling Complex Data by      
ReversingTime!

with Jascha Sohl-Dickstein!
Eric Weiss, Niru Maheswaranathan!



Jascha Sohl-Dickstein	
 Modeling Complex Data	


Flexibility-Tractability Tradeoff 
in Probabilistic Models!

Goal!
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Achieving Flexibility!
and Tractability!

•  Physical motivation!

•  Destroy structure in data through a diffusive process.!

•  Carefully record  the destruction. !

•   Use deep networks to reverse time and create structure from noise.!

•  Inspired by recent results in non-equilibrium statistical 
mechanics which show that entropy can transiently 
decrease for short time scales (violations of second law)!
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 Modeling Complex Data	


Physical Intuition: Destruction 
of Structure through Diffusion!

•  Dye density represents probability density!

•  Goal: Learn structure of probability density!

•  Observation: Diffusion destroys structure!

Data distribution! Uniform distribution!
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Physical Intuition: Recover 
Structure by Reversing Time!

•  What if we could reverse this process?!

•  Recover data distribution by starting from 
uniform distribution and running a new type of 
reverse dynamics (using a trained deep 
network)!

Data distribution! Uniform distribution!
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•  What if we could reverse time?!

•  Recover data distribution by starting from 
uniform distribution and running dynamics 
backwards (using a trained deep network)!

Data distribution! Uniform distribution!

Physical Intuition: Recover 
Structure by Reversing Time!
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 Modeling Complex Data	


Swiss Roll!

•  Forward diffusion process!

•  Start at data!

•  Run Gaussian diffusion until samples become Gaussian blob!
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Swiss Roll!

•  Reverse diffusion process!

•  Start at Gaussian blob!

•  Run Gaussian diffusion until samples become data distribution!
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Swiss Roll!

Diffusion!

Data distribution!

Diffusion with neural network!
determining mean and covariance!

of each step!
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Dead Leaf Model!

•  Training data!
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Diffusion Probabilistic Model 
on Dead Leaves!

Training Data! Sample from!
[Theis et al, 2012]!

Sample from!
diffusion model!

Log likelihood!
1.24 bits/pixel!

Log likelihood!
1.49 bits/pixel!
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Natural Images!

•  Training data!
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Diffusion Probabilistic Model 
Inpainting!
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Flexible and Tractable Learning 
of Probabilistic Models!

•  Flexible!

•  Every distribution has a diffusion process (ongoing work applying to 
binary spike trains, and full color natural images from diverse 
scenes)!

•  Tractable!

•  Training: Estimate mean and covariance of Gaussian!

•  Sampling: Exact - model defined by sampling chain!

•  Inference: Via sampling!

•  Evaluation: Cheap - compute probability of sequence of Gaussians!
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Other Research: A Useful 
Tool for Optimization!
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Other Research: A Useful 
Tool for Optimization!

•  Flexible tool for training functions on minibatches!

•  Open source Python and MATLAB packages!

•  No hyperparameters to tune!

Try me:    http://git.io/SFO!
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Optimizer Performance!
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Other Research: A Useful 
Tool for Optimization!

•  Flexible tool for training functions on minibatches!

•  Open source Python and MATLAB packages!

•  No hyperparameters to tune!

Try me:    http://git.io/SFO!
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Reverse Trajectory!

•  Use multilayer neural network to estimate mean and covariance!
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Results!

•  Inpainting!
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