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[ Neural circuits and behavior: theory, computation and experiment }

with Baccus lab: inferring
hidden circuits in the retina

with Clandinin lab: unraveling the
computations underlying fly motion
vision from whole brain optical imaging

with the Giocomo lab: understanding
the internal representations of space
in the mouse entorhinal cortex

with the Shenoy lab: a theory of neural

dimensionality, dynamics and measurement ' ' !
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with the Raymond lab: theories of how
enhanced plasticity can either enhance

or impair learning depending on experience Vestibular
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[ Statistical mechanics of high dimensional data analysis ]

N = dimensionality of data

M = number of data points a=N/M
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Machine Learning and Data Analysis
Learn statistical parameters by

maximizing log likelihood of data
given parameters.

Applications to: 1) compressed sensing

Statistical Physics of Quenched
Disorder

Energy = -log Prob ( data | parameters)

Data = quenched disorder
Parameters = thermal degrees of freedom

2) optimal inference in high dimensions
3) a theory of neural dimensionality and measurement
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The project that really keeps me up at night




Motivations for an alliance between theoretical neuroscience and
theoretical machine learning: opportunities for statistical physics

 What does it mean to understand the brain (or a neural circuit?)

» We understand how the connectivity and dynamics of a neural circuit gives
rise to behavior.

* And also how neural activity and synaptic learning rules conspire to self-
organize useful connectivity that subserves behavior.

« Itis a good start, but it is not enough, to develop a theory of either random
networks that have no function.

« The field of machine learning has generated a plethora of learned neural
networks that accomplish interesting functions.

* We know their connectivity, dynamics, learning rule, and developmental
experience, *yet*, we do not have a meaningful understanding of how they
learn and work!

On simplicity and complexity in the brave new world of large scale neuroscience,
Gao and Ganguli Curr. Op. Neurobiology 2015



Talk Outline

[ Original motivation: understanding category learning in neural networks]

We find random weight initializations, that make a network
dynamically critical and allow rapid training of very deep networks.

[ Dynamic Criticality ]
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of high dimensional error surfaces:
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Exploit violations of the second
law of thermodynamics to create
deep generative models
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A Mathematical Theory of
Semantic Development®

Joint work with:  Andrew Saxe and Jay McClelland

*AKA: The misadventures of an “applied physicist”
wondering around the psychology department




What is “semantic cognition”?

Human semantic cognition: Our ability to
learn, recognize, comprehend and produce

inferences about properties of objects
and events in the world, especially properties
that are not present in the current perceptual

stimulus
For example:
Does a cat have fur?

Do birds fly?

Our ability to do this likely relies on our ability to form
iInternal representations of categories in the world



[ Psychophysical tasks that probe semantic cognition ]

Looking time studies: Can an infant distinguish between two
categories of objects? At what age?

Property verification tasks: Can a canary move? Can it sing?
Response latency => central and peripheral properties

Category membership queries: Is a sparrow a bird? An ostrich?
Response latency => typical / atypical category members

Inductive generalization:

(A) Generalize familiar properties to novel objects:
i.e. a “blick” has feathers. Does it fly? Sing?

(B) Generalize novel properties to familiar objects:
i.e. a bird has gene “X”. Does a crocodile have gene X?
Does a dog?



Semantic Cognitio

n Phenomena

Table 1. Six key phenomena in the study of semantic abilities

Rogers & McClelland: Précis of Semantic Cognition

Phenomenon

Example

Progressive differentiation of
concepts

Category coherence

Domain-specific attribute
weighting

Iusory correlations

Conceptual reorganization

The importance of causal
knowledge

Children acquire broader semantic distinctions earlier than more fine-grained distinctions.
For example, when perceptual similarity among items is controlled, infants differentiate
animals from furniture around 7-9 months of age, but do not make finer-grained
distinctions (e.g., between fish and birds or chairs and tables) until somewhat later (Pauen
2002a; Mandler et al. 1991); and a similar pattern of coarse-to-fine conceptual
differentiation can be observed between the ages of 4 and 10 in verbal assessments of
knowledge about which predicates can appropriately apply to which nouns (Keil 1989).

Some groupings of objects (e.g., “the set of all things that are dogs”) seem to provide a useful
basis for naming and inductive generalization, whereas other groupings (e.g., “the set of all
things that are blue”) do not. How does the semantic system “know” which groupings of
objects should be used for purposes of naming and inductive generalization, and which
should not?

Some properties seem of central importance to a given concept, whereas others do not. For
instance, “being cold inside” seems important to the concept refrigerator, whereas “being
white” does not. Furthermore, properties that are central to some concepts may be
unimportant for others - although having a white color may seem unimportant for
refrigerator, it seems more critical to the concept polar bear. What are the mechanisms that
support domain-specific attribute weighting?

Children and adults sometimes attest to beliefs that directly contradict their own experience.
For example, when shown a photograph of a kiwi bird — a furry-looking animal with eyes but
no discernible feet — children may assert that the animal can move “because it has feet,”
even while explicitly stating that they can see no feet in the photograph. Such illusory
correlations appear to indicate some organizing force behind children’s inferences that goes
beyond “mere” associative learning. What mechanisms promote illusory correlations?

Children’s inductive projection of biological facts to various different plants and animals
changes dramatically between the ages of 4 and 10. For some researchers, these changing
patterns of induction indicate changes to the implicit theories that children bring to bear on
explaining biological facts. What mechanism gives rise to changing induction profiles over
development?

A variety of evidence now indicates that, in various kinds of semantic induction tasks, children
and adults strongly weight causally central properties over other salient but non-causal
properties. Why are people sensitive to causal properties?




A Network for Semantic Cognition
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Evolution of internal representations
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Categorical representations in human and monkey
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{ Categorical representations in human and monkey }
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Evolution of internal representations
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Figure 5. Bottom: Mean Euclidean distance between plants and animals, birds and fish, and canary and robin internal
representations throughout trainin%. Middle: Average magnitude of the error signal propagating back from properties that reliably
discriminate plants from animals, birds from fish, or the canary from the robin, at Eiﬂerent points throughout training when the
model is presented with the canary as input. Top: Activation of a property shared by animals (can move) or birds (can fly), or
unique to the canary (can sing), when the model is presented with the input canary can at different points throughout training,
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[ Theoretical questions ]

B \What are the mathematical principles underlying the hierarchical
self-organization of internal representations in the network?

B \What are the relative roles of:
nonlinear input-output response
learning rule
input statistics (second order? higher order?)

B What is a mathematical definition of category coherence, and
How does it relate the speed of category learning?

B \Why are some properties learned more quickly than others?

B How can we explain changing patterns of inductive
generalization over developmental time scales?



Problem formulation

We analyze a fully linear three layer network y = W32w2ly

OCO000O0

yE R he R x € RM

Properties ltems



Learning dynamics

 Network is trained on a set of items and their properties
{x* Yy} u=1,..P.

* Weights adjusted using standard backpropagation:

— Change each weight to reduce the error between desired network
output and current network output

AW = AW (g T
AWR = A (- T

* Highlights the error-corrective aspect of this learning process



Learning dynamics

In linear networks, there is an equivalent formulation that
highlights the role of the statistics of the training environment:

Input correlations: > = ExxT]
Input-output correlations: y3l — E[yxT]

Equivalent dynamics:

T%WZI _ w3l (231 _ W32W21Z“)
T%W:Sz — (231 _ W32W21211) W21T

* Learning driven only by correlations in the training data
* Equations coupled and nonlinear



Properties

Decomposing input-output correlations

The learning dynamics can be expressed using the SVD of X3!
N
y3l _ 333ty 11l _ i 5T
a=1

Mode a links a set of coherently covarying properties u* to
a set of coherently covarying items v*! with strength Sa

U S 1’4

231

Input-output Feature synthesizer . Object analyzer
. . Singular values
correlation matrix vectors vectors
Items Modes Modes Items
1 2 3 1 2 3
=
& 8
SRS E 2
RS = =
— é o
e
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Q
ltems: Canary, Salmon, Oak, Rose
Q

Properties: Move, Fly, Swim, Bark, Petals




Analytical learning trajectory

The network’s input-output map is exactly

W2 )W (1) =Y alt,sa, dg) u®v*"

t =
where af(t,s,ao) 1 T3 /a0

for a special class of initial conditions and £!! = 1.

200

Simulation
Theory
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e Each mode evolves
independently

)]
o

e Each mode is learned in
time O(t/s)

Input—output mode strength
S
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Input-output mode strength
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Stage-like transitions

Empirical evidence suggests transitions during learning can be

rapid and stage-like

* Our model exhibits such transitions

* Intuitively, arises from sigmoidal learning trajectories

* The ratio of the transition period to the ignorance period
can be arbitrarily small
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Take home messages so far

« The network learns different modes of covariation between
iInput and output on a time scale inversely proportional to
the statistical strength of that covariation.

* The learning curve for an input output mode can be
sigmoidal with little evidence of learning for a long time,
then a sudden transition to being learned.

 NEXT: What does this have to do with hierarchical
differentiation of concepts? To answer this we must
understand the second order statistics of hierarchically
structured data.



Learning hierarchical structure

The preceding analysis describes dynamics in response to a
specific dataset

Can we move beyond specific datasets to general principles
when a neural network is exposed to hierarchical structure?

We consider training a neural network with data generated by
a hierarchical generative model



Connecting hierarchical generative
models and neural network learning

World Agent

Noooooo




A hierarchical branching diffusion process

Generative model defined
by a tree of nested
categories

Branching factor B,

Feature values diffuse
down tree with small
probability € of changing
along each link

Sampled independently
N times to produce
N features

ltem 1 Item 2 ltem P



Object analyzer vectors

Assume our network is
trained on an infinite amount
of data drawn from this model

Modes
[oe] B | N W IS w (3] —

Can analytically compute SVD
of the input-output
correlation matrix: 0 dems

o o o
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The object analyzer vectors
mirror the tree structure

[tems
(o0} N | N W N W N —_

0.3

1 2 3 4 5 6 7 8
Items



Singular values

The singular values are a decreasing function of the hierarchy level.
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Progressive differentiation

Hence the network must exhibit progressive
differentiation on any dataset generated by this class of
hierarchical diffusion processes:

 Network learns input-output modes in time

O(t/s)

 Singular values of broader hierarchical distinctions
are larger than those of finer distinctions

* Input-output modes correspond exactly to the
hierarchical distinctions in the underlying tree



Progressive differentiation
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Progressive differentiation
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Conclusion

* Progressive differentiation of hierarchical
structure is a general feature of learning in

deep neural networks

e Deep (but not shallow) networks exhibit
stage-like transitions during learning

e Second order statistics of data are sufficient
to drive hierarchical differentiation



Ongoing work

In a position to analytically understand many phenomena
previously simulated

* [|llusory correlations early in learning Basic level effects

*  Familiarity and typicality effects * Category coherence
* Perceptual correlations
* Practice effects

* Inductive property judgments
 ‘Distinctive’ feature effects

Our framework connects probabilistic models and neural
networks, analytically linking structured environments to
learning dynamics.



Why are some properties distinctive, or learned faster?

Properties

A property = vector across items
An object analyzer = vector across items

If a property is similar to an object analyzer with large
singular value then (and only then) will it be learned quickly.

That property is distinctive for the category associated with
that object analyzer (i.e. move for animals versus plant)

>t = U S v’
Input.-output . Feature synthesizer Singular values Object analyzer
correlation matrix vectors vectors
Items Modes Modes Items
1 2 3 1 2 3 C S O R
1
= "
6 &
[z, kS E 0
38 = =
p=
S -1
[a
Sal
ltems: Canary, Salmon, Oak, Rose
S

Properties: Move, Fly, Swim, Bark, Petals




Why are some items more typical members of a category?
(i.e. sparrow versus ostrich for the category bird)

An item = vector across properties
A category feature synthesizer = vector across properties

If an item is similar to the feature synthesizer for a category, then it is a
typical member of that category.

Category membership verification easier for typical versus atypical items.

>t = U S v’
Input.-output . Feature synthesizer Singular values Object analyzer
correlation matrix vectors vectors
Items Modes Modes Items
1 2 3 1 2 3
=
6 &
. E 2
5 = >
4 p=
]
9] o
% S S
g A
kv Qq
ltems: Canary, Salmon, Oak, Rose
Q

Properties: Move, Fly, Swim, Bark, Petals




How is inductive generalization achieved by neural networks?
Inferring familiar properties of a novel item.

Given a new partially described object = vector across subset of properties
What are the rest of the object’s properties?

i.e. a “blick” has feathers. Does it fly? Sing?

Partial property vector UT
\ Neural network internal
representation
U
Filled in property vector
T
>3 = U S V

Input-output Feature synthesizer
correlation matrix vectors

Object analyzer

Singular values
vectors



How is inductive generalization achieved by neural networks?
Inferring which familiar objects have a novel property.

Given a new property = vector across subset of items
Which other items have this property?

i.e. A bird has gene X. Does a crocodile? A dog?

/VT Partial item vector
\V\
Filled in item vector

w31 U S v’

Input-output Feature synthesizer
correlation matrix vectors

Neural network internal
representation

Object analyzer

Singular values
vectors



What is a useful mathematical definition of category coherence?

i.e. “incoherent” = the set of all things that are blue
i.e. “coherent” = the set of all things that are dogs

A natural definition of a coherent Branching factor B,
category is the singular value of
the category, normalized by

its level in the hierarchy

Singular value = coherence * exp ( - level )

For hierarchically structured data: ltem 1 Item 2 Item P

Coherence = similarity of descendants — similarity to
nearest out-category

Mathematical Theorem: Coherent categories are
learned faster!



Talk Outline

[ Original motivation: understanding category learning in neural networks]

We find random weight initializations, that make a network
dynamically critical and allow rapid training of very deep networks.

[ Dynamic Criticality ]
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Towards a theory of deep learning dynamics

— The dynamics of learning in deep networks is non-
trivial - i.e. plateaus and sudden transitions to
better performance

— How does training time scale with depth?
— How should the learning rate scale with depth?

— How do different weight initializations impact
learning speed?

— We will find that weight initializations with critical
dynamics can aid deep learning and generalization.



Deep network

* Little hope for a complete theory with arbitrary
nonlinearities
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Deep linear network

* Use a deep linear network as a starting point
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Deep linear network

* [nput-output map: Always linear

D
y — | | Wl Y = WtOl‘x
i=1
* Gradient descent dynamics: Nonlinear; coupled; nonconvex

AT — Ai ( ﬁ Wi>T [yuw - (ﬁ Wi> xu;,;ﬂ] (ﬁ Wi)T

p=1 \i=Il+1 =1

[=1,+,D

* Useful for studying learning dynamics, not representation power.



Nontrivial learning dynamics

Plateaus and sudden Faster convergence from
transitions pretrained initial conditions

o Random ICs |
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o’ rul
Qo 22 E 2
= Qo
c c
£. ==
- . ‘©

1 =

.

Epochs m
Epochs

e Build intuitions for nonlinear case by analyzing linear case



Three layer dynamics




Problem formulation

* Network trained on patterns {x*,y'} u=1,...,P.
* Batch gradient descent on squared error Y - w»?w2x|,,

* Dynamics

t%Wﬂ _ w3t (231 _ W32W21Z“)
T%Wsz _ (231 _ W32W212“) w2t
Input correlations: yll =E[xxT] =  (seepaperfor

more general

Input-output correlations: y3l — E[yxT] input correlations)



Analytic learning trajectory

SVD of input-output correlations:

T | 1/Learning rate

N|
T
231 =il U33S31V11 _ Z SauocvocT
o=1

s Singular value

a, | Initial mode strength

Network input-output map:

. N> 0 S€2S[/T
wW32OW () =Y alt,s0,a2)u®*T  where af(t,s,a9) =
(W0 = ¥ altsudl) (05:00) = e
e Starting from decoupled initial 200 —
conditions. Py Theory
o 150 r
S
* Each ‘connectivity mode’ evolves “2 00|
independently %
* Singular value s learned at time O(1/s)

Saxe, McCelland, Ganguli, ICLR, 2014




Deeper network learning dynamics

* Jacobian that back-propagates gradients can explode or
decay
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Deeper networks

* Can generalize to arbitrary depth network

* Each effective singular value a evolves
independently

1/Learning

d e T
T—a=(N,-1)a’ YN (g — q) rate

dl‘ s | Singular value
N, | # layers

» In deep networks, combined gradientis ©(N./7)

W1 W, W, Ni—1
O—CO—CO—0O O—0 o= ][ Wi
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Deep linear learning speed

* Intuition (see paper for details):
— Gradientnorm O (N | )
— Learning rate O (1/ N z ) (N,= # layers)
— Learning time O (1)

* Deep learning can be fast with the right ICs.

Saxe, McClelland, Ganguli ICLR 2014



MNIST learning speeds

Trained deep linear nets on MNIST

Depths ranging from 3 to 100
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Deep linear networks

Deep learning can be fast with decoupled ICs and O(1) initial mode strength.
How to find these?

Answer: Pre-training and random orthogonal initializations can find these
special initial conditions that allow depth independent training times!!

But scaled random Gaussian initial conditions on weights cannot.



Depth-independent training time

* Deep linear networks on MNIST
e Scaled random Gaussian initialization (Glorot & Bengio, 2010)

Time to criterion Optimal learning rate
S 5
(o]
£ 200 L
£ — Glorot B
g 150 [| — Pretrained 1.5
£ o £
% 100 Orthogonal 5 1
8 T
5 50| E0.5
@ S
g 0 0 .
2 0 50 100 0 50 100
Depth Depth

* Pretrained and orthogonal have fast depth-independent
training times!



Random vs orthogonal

* (Gaussian preserves norim of random vector on average

1 layer net 5 layer net 100 layer net

N, -1=1 . N,-1=5 . N, - 1=100
x 10
10000 ‘ 2 6

Frequency

0 0
3 0 2 4 6 0 5 10 15 20

N,-1
Singular values of W* =] [W'

i=1

* Attenuates on subspace of high dimension
* Amplifies on subspace of low dimension



Random vs orthogonal

* Glorot preserves norm of random vector on average

1 layer net 5 layer net 100 layer net

N, -1=1 . N-1=5 . N, - 1=100
x 10
10000 ‘ 2 6

Frequency

0 0
3 0 2 4 6 0 5 10 15 20

N,-1
Singular values of W* =] [W'

i=1
* Orthogonal preserves norm of all vectors exactly

All singular values of W' =1



Deeper network learning dynamics

* Jacobian that back-propagates gradients can explode or
decay
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Extensive Criticality yields
Dynamical Isometry in nonlinear nets

Suggests initialization for nonlinear nets

* near-isometry on subspace of large dimension

Ny
 Singular values of end-to-end Jacobian "' (z™) = Or;

1
8a:j

N1

concentrated around 1.

Scale orthogonal matrices by gain g to counteract contractive
nonlinearity

Singular values
of J

Frequency

Gain g=0.9 g=0.95 g=1 g=1.05 g=1.1

Just beyond edge of chaos (g>1) may be good initialization



Dynamic Isometry Initialization

* g>1 speeds up 30 layer nonlinear nets

* Tanh network, softmax output, 500 units/layer
* No regularization (weight decay, sparsity, dropout, etc)

MNIST Classification error, epoch 1500 | Train Test
Error (%) | Error (%)
Gaussian (g=1, random) 2.3 3.4
g=1.1, random 1.5 3.0
g=1, orthogonal 2.8 3.5
Dynamic Isometry (g=1.1, orthogonal) 0.095 2.1

* Dynamic isometry reduces test error by 1.4% pts



Summary

Deep linear nets have nontrivial nonlinear learning dynamics.

Learning time inversely proportional to strength of input-output
correlations.

With the right initial weight conditions, number of training epochs
can remain finite as depth increases.

Dynamically critical networks just beyond the edge of chaos enjoy
depth-independent learning times.



Beyond learning: criticality and
generalization

* Deep networks + large gain factor g train exceptionally quickly
* Butlarge g incurs heavy cost in generalization performance

L 0.0

o)

L 0.0

Ltl e

= " Test error

=2 B N R

Z 0.0

= Train error
1 1.4 1.8

Gaing

* Suggests small initial weights regularize towards smoother functions



Talk Outline

[ Original motivation: understanding category learning in neural networks]

We find random weight initializations, that make a network
dynamically critical and allow rapid training of very deep networks.

[ Dynamic Criticality ]
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[ Random ]
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andscapeﬂ B

[Understand and exploit geometry
of high dimensional error surfaces:
need to escape saddle points not

\_local minima.

J

Time
L Reversal
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\_

Exploit violations of the second
law of thermodynamics to create
deep generative models




High dimensional nonconvex optimization

It is often thought that local minima at high error stand as
as a major impediment to non-convex optimization.

In random non-convex error surfaces over
high dimensional spaces, local minima at high
error are exponentially rare in the dimensionality.

Instead saddle points proliferate.
We developed an algorithm that rapidly escapes saddle points

in high dimensional spaces.

Identifying and attacking the saddle point problem in high dimensional non-convex optimization.
Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, Yoshua
Bengio. NIPS 2014



General properties of error landscapes in
high dimensions

From statistical physics:

Consider a random Gaussian error
landscape over N variables.

Let x be a critical point.

Let E be its error level.

Let f be the fraction of negative curvature
directions.

A

v

E

Bray and Dean, Physical Review Letters, 2007



Train error € (%)

Properties of Error Landscapes on the
Synaptic Weight Space of a Deep Neural Net

MNIST CIFAR-10
30 ) 10? = Error 0.32% 2\‘160 ‘ 10? [ Error 43.54%
P 10 2 Error 23.49% N 10, i ErrOT 48.08%
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Index of critical point o Eigenvalue \ Index of critical point o Eigenvalue A

Qualitatively consistent with the
statistical physics theory of random error landscapes



How to descend saddle points

Newton’s Method

Arx = —H 'Vf(x)

Saddle Free Newton’s Method

Az = —|H|"' V f(2)

Intuition: saddle points attract Newton’s method, but
repel saddle free Newton’s method.

Derivation: minimize a linear approximation to f(x) within a trust region
in which the linear and quadratic approximations agree



Performance of saddle free Newton in
learning deep neural networks.
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The performance advantage increases with the problem dimensionality.



Performance of saddle free Newton in
learning deep neural networks.

Deep Autoencoder Recurrent Neural Network
10 (f 100 102 3.5 11 35 10%° — ,
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When stochastic gradient descent appears to plateau, switching to saddle
Free newton escapes the plateau.



Talk Outline

[ Original motivation: understanding category learning in neural networks]

We find random weight initializations, that make a network
dynamically critical and allow rapid training of very deep networks.
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Modeling Complex Data by
Reversinglime

with Jascha Sohl-Dickstein
Eric Weiss, Niru Maheswaranathan




Flexibility-Tractability Tradeoff
IN Probabillistic Models

Nonparametric

Energy based
Variational Bayes

>
o
— Product of experts
0 Mixture of Gaussians \
b4 .
(4} Ising
E Goal
Generalized Gaussian
Student's t Latent factor analysis
Gaussian
Laplace
-

Tractability




Achieving Flexibility
and [ractability

Physical motivation
Destroy structure in data through a diffusive process.
Carefully record the destruction.

Use deep networks to reverse time and create structure from noise.

e Inspired by recent results in non-equilibrium statistical
mechanics which show that entropy can transiently
decrease for short time scales (violations of second law)



Physical Intuition: Destr

of Structure through Dit

Data distribution

Jction

‘usion

« Dye density represents probability density
« (@Goal: Learn structure of probability density

« QObservation: Diffusion destroys structure

— Uniform distribution




Physical Intuition: Recover
Structure by Reversing Time

« What if we could reverse this process?

« Recover data distribution by starting from
uniform distribution and running a new type of
reverse dynamics (using a trained deep
network)

Data distribution _ Uniform distribution




Physical Intuition: Recover
Structure by Reversing Time

« What if we could reverse time?

« Recover data distribution by starting from
uniform distribution and running dynamics
backwards (using a trained deep network)

Data distribution _ Uniform distribution




Swiss Roll

Forward diffusion process
« Start at data

« Run Gaussian diffusion until samples become Gaussian blob

3

Modeling Complex Data



Swiss Roll

Reverse diffusion process
« Start at Gaussian blob

« Run Gaussian diffusion until samples become data distribution

3

Modeling Complex Data



Swiss Roll

Diffusion

—

Diffusion with neural network
determining mean and covariance
of each step

—




Dead Leaf Model

« Training data




Diffusion Probabilistic Model
on Dead Leaves

og likelihood og likelihood
.24 bits/pixe .49 bits/pixe

Sample from Sample from

Training Data [Theis et al, 2012] diffusion model

Modeling Complex Data



Natural Images

« Training data




Diffusion Probabilistic Model
Inpainting

0 50 100 150 200 250 300

Modeling Complex Data



-lexible and Tractable Learning
of Probabilistic Models

« Flexible
« Every distribution has a diffusion process (ongoing work applying to
binary spike trains, and full color natural images from diverse
scenes)

e [ractable

Training: Estimate mean and covariance of Gaussian

Sampling: Exact - model defined by sampling chain

Inference: Via sampling

Evaluation: Cheap - compute probability of sequence of Gaussians
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Other Research: A Useful
Tool for Optimization

Jascha Sohl-Dickstein Modeling Complex Data



Other Research: A Useful
Tool for Optimization

Flexible tool for training functions on minibatches
»  Open source Python and MATLAB packages

 No hyperparameters to tune

Jascha Sohl-Dickstein Modeling Complex Data



Optimizer Performance

----- ADAGrad »=0.001 --- SAG L=1000
= ADAGrad n=0.01 = SFO
---  ADAGrad n=0.1 SGD 7=0.001
- LBFGS === SGD n=0.01
----- LBFGS minibatch SGD 5=0.1
SAG L=10 we  SGD+mom 1=0.001, £ =0.95
= SAG L=100

Full Batch Objective - Minimum
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Jascha Sohl-Dickstein

Full Batch Objective
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Modeling Complex Data



Other Research: A Useful
Tool for Optimization

Flexible tool for training functions on minibatches
»  Open source Python and MATLAB packages

 No hyperparameters to tune

Jascha Sohl-Dickstein Modeling Complex Data



Reverse Trajectory

o Use multilayer neural network to estimate mean and covariance

p (x(t_1)|x(t)) —N (x(t—l); " (x(t)) 5, (x(t)))

Jascha Sohl-Dickstein
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101 x 101 pixels

Modeling Complex Data



Results

« Inpainting

200 250

Jascha Sohl-Dickstein Modeling Complex Data
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