Attention and decisions

Jacqueline Gottlieb Department of Neuroscience The Kavli Institute for Brain Science Columbia University, USA

Experience is given

Experience is constructed through selective attention

Millions of items ... are present to my senses which never properly enter into my experience ... because they have no interest for me.

My experience is what I agree to attend to... Without selective interest, experience is an utter chaos.

– William James

Feedback is critical

Complicated!

But we have a good handle.

Eye movements show us how we construct our evidence

Experience

Evidence

Eye movements show us how we construct our evidence

How wealthy is the family?

How old are the people?

Yarbus, 1950s

Eye movements show us how we construct our evidence

Johansson et al, 2001

Oculomotor decisions are made in FEF and LIP

LIP & FEF: oculomotor decisions

Spatial receptive fields.

Very selective for attention worthy stimuli

Priority maps

Itti and Koch, 2000

LIP is at the center of this intellectual storm

Decision-related activity has been interpreted in the feedforward view Value Evidence accumulation

In parallel, there is an "attention" (feedback) view – but it is incomplete.

Feedforward: Value

"Offers" + learning (RL) >> choice

Sugrue et al., 2005

Feedforward: Evidence

"Evidence" (given) + evaluation >> choice

Roitman and Shadlen, 1999

Feedback: attention

Feedback: attention

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO." How does the brain decide which source of information to sample?

How do we begin?

Exp 1: Information sampling in an instrumental context: select task-relevant information

Exp 2: Information sampling in noninstrumental context: select *interesting* information

Instrumental sampling: what does "task-relevant" mean?

The task is known. The reward is known. The uncertainty is known. Sampling requires forward planning based on a task model.

Uncertainty reduction or reward?

Entropy	1.0	1.0	0.0	0.0
P(R)	0.5	1.0	1.0	1.0
RPE		+	0	0

Devise two step task: sample, act

Show that LIP neurons (and monkeys) distinguish between informative and uninformative cues

Test whether responses can be explained by cumulative future rewards

Test whether responses can be explained by reward prediction errors (RPE)

The 2-step task

Info 1st saccade & motion info sampling 3 validities (expected information gain) black:100% validity: 1.0 bit green: 80% validity: 0.278 bits blue: 55% validity: 0.0007 bits 2nd saccade Decision to target outcome

(R or NR)

PLIP neurons encode relative validity

Validity difference

Time from cue onset (ms)

Are rewards sufficient?

Uninformative cues

Neurons modulate only for informative cues

informative

Model: Cumulative future rewards

Neurons:

z-scored FR

4

2

0

-100

100

0

200

300

400

500

uninformative

Time from cue onset (ms)

Neurons modulate only for informative cues Not explained by cumulative future rewards

Time from Cue Onset (ms)

Cymelatain ty wedavaioris on Rafficient

Generate artificial RPEs for informative cues

Prior "Feint" expectation Change of Δ expectation cue Info sampling Decision Feints are outcome infrequent (R or NR) (20% trials)

Critical trials

Neurons do not modulate with RPE

Time from cue onset (ms)

Neurons do not modulate with RPE

Time from cue onset (ms)

Entropy reduction is involved in target selection

Information sampling in an instrumental context: The brain encodes the expected gain in information of competing cues.

Information sampling in noninstrumental context: interest

Intrinsically motivated exploration

Cue 1: Priors

0%,50%,100% reward probability Cue 2: *more reward info* Intrinsically motivated

Outcome

How does search depend on priors?

Motivation to sample depends on priors

Operant and entropy rewards

Operant and Pavlovian rewards

Operant, Pavlovian and entropy rewards

Understanding the construction

Experience is constructed

Experience is *constructed* Decision making: * The informational basis of a decision is actively constructed.

* Is (most likely) imperfect and biased.

* Are adaptations for natural actions optimal for reasoning?

* A potential new explanation for nonnormative decisions (behavioral economics).

Experience is constructed

Vision and sensation:

* Active sampling is (most likely) critical for building visual representations. Feedback!

Learning & development: * Active; learner decides which data to seek out. * Curiosity and creativity.

Thank you for your attention

