
The Challenge of Constructing a  
Robust Short-Term Memory Network 

Mark Goldman 
Center for Neuroscience 

UC Davis 
 



Long-term memory  
§  Can last a lifetime 
§  Large capacity—can hold many memories 
§  Mechanism: physical changes in neurons & synapses 

Short vs. Long-Term Memory 

Short-term (a.k.a. “working”) memory 
§  Lasts ~1-10’s of seconds 
§  Small capacity—only can hold a small number of memories at any time 
§  Mechanism: neural activity that is sustained in the absence of a stimulus 
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Another Analog Memory System 
Integrators: Store the running total of an input 

Input stream 

Output 
= ∫ (Input) dt 

Memory of running total  
in absence of input 

Examples of integrators:  
§  Decision making: -Accumulate noisy evidence over time;  

                    -Make a decision when threshold is reached   
§  Navigation: Position is determined by integrating velocity signals 

∫
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Eye position: 

excitatory 

inhibitory 

(data from Aksay et al., Nature Neuroscience, 2001) 

Eye velocity coding 
command neurons 
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The Oculomotor Neural Integrator: 
A Network that Stabilizes our Eye Position 

Integrator 
neurons: 

time 

persistent activity: stores running total of input commands 
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“Tuning curve” 
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v  In many memory & decision-making circuits, neurons  
    accumulate and/or maintain signals for ~1-10 seconds 

Issue:  How do neurons accumulate & store  
  signals in working memory?  

stimulus 

neuronal activity 
(firing rates) 

time 
accumulation 

storage (working memory) 

v  Most neurons are intrinsically “forgetful” 
Puzzle: 

synapse 
r 

τneuron 

  synaptic 
  input 

  firing rate r 

Input stimulus 

~10-100 ms 



Traditional model:  Tuned Positive Feedback 

Transient 
Input 

Synaptic 
     input: 

time 

Firing rate: 

Isolated neuron 

Isolated neuron: 



Transient 
Input 

Memory network 

Synaptic 
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time 

Firing rate: 

exc. 
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cancels neuron’s 
intrinsic “leakiness” 

Traditional model:  Tuned Positive Feedback 



Transient 
Input 

Memory network 

Synaptic 
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time 

Firing rate: 
If too much feedback 

Too little feedback 
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Traditional model:  Tuned Positive Feedback 



Oculomotor Integrator Network 

Recurrent excitation 
within each side    

midline 

4 neuron  
populations: 

Inhibitory 

Excitatory 
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background inputs 
& eye movement commands 

Recurrent 
(dis)inhibition 
between sides 



Model can be Tuned to Integrate its Inputs and 
Reproduce the Tuning Curves of Every Neuron 

solid lines: experimental tuning curves 
boxes: model rates (& variability) 

Network integrates its inputs …and all neurons precisely  
match tuning curve data 

gray: raw firing rate  
  (black: smoothed rate) 
green: perfect integral 
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Example model  
neuron voltage trace: 
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τ = − + +Integrator equation: 

Experimental values: 

Synaptic feedback w must be tuned to accuracy of: 

| | ~ 0.3w1 %bio

network

τ
τ
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Single isolated neuron: 

Integrator circuit: 

|1 |w
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τ
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w
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Back of the Envelope Calculation:   
Robustness of Analog Memory Network 

τbio ~ 100 ms 

τnetwork ~ 30 sec 
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r(t) external 
input 
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Robustness Problem in Positive Feedback Memory Models 

Fine-tuned model: 
wneuron rdr external inpur t

dt
τ = +− +

decay feedback 

Leaky behavior Unstable behavior 
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wr (feedback) 
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Geometrical (“Line attractor”) Picture of Analog 
Memory Storage & the Robustness Problem 

Network state maintained 
stably at any point along 
trough of “energy” surface 

Activity decays along 
other directions 

r1 

r2 

“Line attractor”, or 
“Line of fixed points” 



Geometrical (“Line attractor”) Picture of Analog 
Memory Storage & the Robustness Problem 

Network state maintained 
stably at any point along 
trough of “energy” surface 

Activity decays along 
other directions 

r1 

r2 

“Line attractor”, or 
“Line of fixed points” 

  Problem: 1) Noise à diffusion of memory representation 
       2) If surface isn’t flat (network isn’t tuned perfectly), 
            network activity state slips! 

(H.S. Seung, D. Lee) 

Fish oculomotor integrator 



Geometry of Robustness 
 & Hypotheses for Robustness on Faster Time Scales 

1) Plasticity on slow time scales: 
    Reshapes the trough to make it flat 

2) To control on faster time scales: 
Add ridges to surface to add 
“friction”-like slowing of drift 

                  -OR- 
    Fill attractor with viscous  
    fluid to slow drift  



Idea 1: Neurons may have intrinsic properties 
that help to maintain the persistent neural activity 

Real integrator neuron: 

v  Concept: Dendritic branchlets may act as bistable, digital elements 
                        (i.e. flip-flops) that add robustness to the circuit 

Terminal dendritic branches 

= 

Ratchet:  
resists slippage 



1) Dendritic bistability has been observed experimentally 
    -Due to the self-sustaining properties of, e.g., NMDA, NaP, or Ca++ channels 

Evidence for dendritic bistability & independence 

2) Anatomically realistic models suggest that different dendritic branches 
    may behave approximately independently (Koch et al., 1983; Poirazi et al., 2003) 

Ca2+	channels	
ac,vate	

Ca2+	channels	
inac,vate	

Steady-state	voltage-firing	rate	rela,on	
V D
	=
	f(
r)
			
(m

V)
	

presynap,c	input	rate		(Hz)	
(Lee, Aksay, & Goldman,  

in preparation) 



Network of N neurons, each with N identical dendrites: 
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Network with Bistable Dendrites 
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Bistable dendritic response 



3η
N →∞

Hysteretic band of stability 

Ê
maxÊ

width of band % mistuning 
tolerated ~ 

maxÊ

r (decay) 
Feedback: sum of 
 bistable inputs 

dr/dt 

threshold to 
turn dendrite 
#3 on 

threshold to 
turn dendrite 
#3 off 

r 

Graphical Solution of Balanced Leak & Feedback 

1
( )N

ijj
i

ji W D rdr
dt

rτ
=

= − +∑During fixations: 

(Goldman et al., 2003; see also Koulakov et al., 2002) 



Comparison of Robustness With & Without Bistability 

10% mistuning, no bistability 

Ê

decay > feedback 

Ê
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10% mistuning, w/ bistability 



Idea 2: Designing Networks to be Robust  
to Common Perturbations 

Fundamental control theory result:   
   Strong negative feedback of a signal produces an output equal to the  
   inverse of the negative feedback signal 

x y  
g 

- 

+

d
dt

∝

( )x t dt∝ ∫
Integrator! 



Persistent Activity from Negative-Derivative Feedback 
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Math: Picture: 



Negative derivative feedback arises 
naturally in balanced cortical networks 

Derivative feedback arises when: 
  1) Positive feedback is slower 
        than negative feedback 
  2) Excitation & Inhibition are balanced 
 

slow fast 

Lim & Goldman, Nature Neuroscience, 2013 
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Networks Maintain Analog Memory  
and Integrate their Inputs 



Robustness to Loss of Cells or 
Perturbations in Intrinsic or Synaptic Gains 

Change: 
  -intrinsic  
      gains 
  -synaptic  
      gains 
  -Exc. cell  
      death 
  -Inh. cell  
     death 



Summary 
§  Short-term memory (~10’s seconds) is maintained by persistent  
    neural activity following the offset of a remembered stimulus 

§  Classic model:  Line Attractor made from Positive Feedback 
 

      à Open Issue:  Inherently requires fine-tuning/is not  
           robust to perturbations 

§  Possible missing concepts (for memory & more generally…) 

      à Neurons are smarter than simple linear filters 
 plus static nonlinearites  
  

à  Well-designed systems aren’t robust to everything, but are  
 robust to the most common perturbations they experience 
 (…but how do we determine what these are???)  
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Idea 3:  
· Are attractors, created through feedback loops, 
    even necessary? 

· Could there be advantages to alternative,  
 higher-dimensional representations? 



Working memory task not easily explained 
by traditional feedback models 

5 neurons recorded during a PFC delay task (Batuev et al., 1979, 1994): 



Response of Individual Neurons in 
Line Attractor Networks 

All neurons exhibit  
similar slow decay: 
Due to strong coupling that  
mediates positive feedback 
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Problem 2: To generate stable activity 
 for 2 seconds (+/- 5%) requires  
 10-second long exponential decay 

Problem: Does not reproduce 
 the differences between  
 neurons seen experimentally! 



Feedforward Networks Can Integrate! 

Chain of neuron clusters that  
successively filter an input 

Simplest example: (Goldman, Neuron, 2009) 



Feedforward Networks Can Integrate! 

Chain of neuron clusters that  
successively filter an input 

Simplest example: 

Integral of input! 
(up to duration ~Nτ) 
(can prove this works analytically) 

(Goldman, Neuron, 2009) 



Recent data:  “Time cells” observed in rat hippocampal 
recordings during delayed-comparison task 

Data courtesy 
of H. Eichenbaum 

[Similar to data 
of Pastalkova et al., 

Science, 2008;  
Harvey et al., 
Nature, 2012] 

(Goldman, Neuron, 2009) 



Same Network Integrates Any Input for ~Nτ



Improvement in Required Precision of Tuning 
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Feedback-based Line Attractor: 
10 sec decay to hold 2 sec of activity 
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Feedforward Integrator 
2 sec decay to hold 2 sec of activity 



Generalization to Coupled Networks:  
Feedforward transitions between patterns of activity 

Feedforward  
network 

0 0 0
1 0 0
0 1 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

W
Connectivity  
   matrix Wij: 

Geometric picture: 

Recurrent (coupled) 
 network 

recurrent =
-1RWRW

Map each neuron to 
a combination of 
neurons by applying 
a coordinate rotation 
matrix R 

(Schur decomposition) 

(Math of Schur: See Goldman, Neuron, 2009; Murphy & Miller, Neuron, 2009; Ganguli et al., PNAS, 2008) 



Responses of functionally feedforward networks 

Feedforward  
network activity patterns 

Functionally feedforward  
    activity patterns… 

Effect of stimulating pattern 1: 

& neuronal firing rates 

Goldman, Neuron, 2009 
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