The Challenge of Constructing a Robust Short-Term Memory Network

> Mark Goldman Center for Neuroscience UC Davis

Short vs. Long-Term Memory

Long-term memory

- Can last a lifetime
- Large capacity—can hold many memories
- Mechanism: physical changes in neurons & synapses

Short-term (a.k.a. "working") memory

- Lasts ~1-10's of seconds
- Small capacity—only can hold a small number of memories at any time
- Mechanism: neural activity that is sustained in the absence of a stimulus

Memory-related Neural Activity

Tactile discrimination task:

0

1

2

з

sec

4

5

6

(adapted from Romo et al.)

Memory-related Neural Activity

Tactile discrimination task:

Neuronal response (prefrontal cortex):

Another Analog Memory System Integrators: Store the running total of an input

Examples of integrators:

Decision making: -Accumulate noisy evidence over time;
 -Make a decision when threshold is reached

Navigation: Position is determined by integrating velocity signals

The Oculomotor Neural Integrator: A Network that Stabilizes our Eye Position

(data from Aksay et al., *Nature Neuroscience*, 2001)

Issue: How do neurons accumulate & store signals in working memory?

In many memory & decision-making circuits, neurons accumulate and/or maintain signals for ~1-10 seconds

Traditional model: Tuned Positive Feedback

Traditional model: Tuned Positive Feedback

Traditional model: Tuned Positive Feedback

Oculomotor Integrator Network

Model can be Tuned to Integrate its Inputs and Reproduce the Tuning Curves of Every Neuron

Example model neuron voltage trace:

Network integrates its inputs

gray: raw firing rate (black: smoothed rate) green: perfect integral

...and all neurons precisely match tuning curve data

solid lines: experimental tuning curves boxes: model rates (& variability)

Back of the Envelope Calculation: Robustness of Analog Memory Network

Experimental values:

Single isolated neuron: $\tau_{bio} \sim 100 \text{ ms}$ Integrator circuit: $\tau_{network} \sim 30 \text{ sec}$

Synaptic feedback w must be tuned to accuracy of:

$$|1 - \mathbf{w}| = \frac{\tau_{bio}}{\tau_{network}} \sim 0.3\%$$

Robustness Problem in Positive Feedback Memory Models

Geometrical ("Line attractor") Picture of Analog Memory Storage & the Robustness Problem

Activity decays along other directions

Network state maintained stably at any point along trough of "energy" surface

"Line attractor", or "Line of fixed points"

Geometrical ("Line attractor") Picture of Analog Memory Storage & the Robustness Problem

Activity decays along other directions

⁽H.S. Seung, D. Lee)

 Network state maintained stably at any point along trough of "energy" surface

> "Line attractor", or "Line of fixed points"

Problem: 1) Noise → diffusion of memory representation

If surface isn't flat (network isn't tuned perfectly), network activity state slips!

Geometry of Robustness & Hypotheses for Robustness on Faster Time Scales

 Plasticity on slow time scales: Reshapes the trough to make it flat

> 2) To control on faster time scales: Add ridges to surface to add "friction"-like slowing of drift

> > -OR-Fill attractor with viscous fluid to slow drift

Idea 1: Neurons may have intrinsic properties that help to maintain the persistent neural activity

Concept: Dendritic branchlets may act as <u>bistable</u>, <u>digital elements</u> (i.e. <u>flip-flops</u>) that add robustness to the circuit

resists slippage

Evidence for dendritic bistability & independence

Dendritic bistability has been observed experimentally

 Due to the self-sustaining properties of, e.g., NMDA, NaP, or Ca⁺⁺ channels

2) Anatomically realistic models suggest that different dendritic branches may behave approximately independently (Koch et al., 1983; Poirazi et al., 2003)

Network with Bistable Dendrites

Network of *N* neurons, each with *N* identical dendrites:

r_{on}

Graphical Solution of Balanced Leak & Feedback

During fixations:

$$\tau \frac{dr_i}{dt} = -r_i + \sum_{j=1}^N W_{ij} D(r_j)$$

r (decay)

(Goldman et al., 2003; see also Koulakov et al., 2002)

Comparison of Robustness With & Without Bistability

Idea 2: Designing Networks to be Robust to Common Perturbations

Fundamental control theory result:

Strong negative feedback of a signal produces an output equal to the inverse of the negative feedback signal

Persistent Activity from Negative-Derivative Feedback

Negative derivative feedback arises naturally in balanced cortical networks

Network structure

Derivative feedback arises when:
1) Positive feedback is slower
than negative feedback
2) Excitation & Inhibition are balanced

Lim & Goldman, Nature Neuroscience, 2013

Negative derivative feedback arises naturally in balanced cortical networks

Network structure

Derivative feedback arises when:
1) Positive feedback is slower
than negative feedback
2) Excitation & Inhibition are balanced

Lim & Goldman, Nature Neuroscience, 2013

Networks Maintain Analog Memory and Integrate their Inputs

Robustness to Loss of Cells or Perturbations in Intrinsic or Synaptic Gains

Summary

- Short-term memory (~10's seconds) is maintained by *persistent* neural activity following the offset of a remembered stimulus
- Classic model: Line Attractor made from Positive Feedback

→ Open Issue: Inherently requires fine-tuning/is not robust to perturbations

- Possible missing concepts (for memory & more generally...)
 → Neurons are smarter than simple linear filters plus static nonlinearites
 - → Well-designed systems aren't robust to everything, but are robust to the most common perturbations they experience (...but how do we determine what these are???)

Acknowledgments

Theory (Goldman lab, UCD)

Michiel Berends Itsaso Olasagasti (USZ) Dimitry Fisher (Brain Corp.) Sukbin Lim (U. Chicago/ NYU-Shanghai)

Experiments

David Tank (Princeton Univ.) Emre Aksay (Cornell Med.) Guy Major (Cardiff Univ.) Robert Baker (NYU Medical)

Idea 3:

- Are attractors, created through feedback loops, even necessary?
- Could there be advantages to alternative, higher-dimensional representations?

Working memory task not easily explained by traditional feedback models

5 neurons recorded during a PFC delay task (Batuev et al., 1979, 1994):

Early stage neuron?

Middle stage neuron?

Late stage neuron?

Sum early, mid, late stage neurons?

Sum all stages?

Response of Individual Neurons in Line Attractor Networks

All neurons exhibit similar slow decay: Due to strong coupling that mediates positive feedback

> Problem: Does not reproduce the differences between neurons seen experimentally!

Feedforward Networks Can Integrate!

Simplest example:

(Goldman, Neuron, 2009)

Chain of neuron clusters that successively filter an input

Feedforward Networks Can Integrate!

Simplest example:

(Goldman, Neuron, 2009)

Chain of neuron clusters that successively filter an input

Integral of input! (up to duration ~Nτ)

(can prove this works analytically)

Recent data: "Time cells" observed in rat hippocampal recordings during delayed-comparison task

Data courtesy of H. Eichenbaum [Similar to data of Pastalkova et al., *Science*, 2008; Harvey et al., *Nature*, 2012]

(Goldman, Neuron, 2009)

Same Network Integrates Any Input for $\sim N\tau$

Improvement in Required Precision of Tuning

Feedforward Integrator 2 sec decay to hold 2 sec of activity

Generalization to Coupled Networks: Feedforward transitions between *patterns* of activity

Feedforward network

Connectivity
matrix W_{ij}:
$$\mathbf{W} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Geometric picture:

Map each neuron to a combination of neurons by applying a coordinate rotation matrix **R**

Recurrent (coupled) network

 $W_{recurrent} = \mathbf{R} \mathbf{W} \mathbf{R}^{-1}$ (Schur decomposition)

(Math of Schur: See Goldman, Neuron, 2009; Murphy & Miller, Neuron, 2009; Ganguli et al., PNAS, 2008)

Responses of functionally feedforward networks

Goldman, Neuron, 2009