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An international conference to celebrate 100 years of general relativity will be held at the University
Park campus from Sunday, June 7 through Friday, June 12, 2015 under the auspices of the
International Society on General Relativity and Gravitation (ISGRG) and the Topical Group on
Gravitation (GGR) of the American Physical Society.

ISGRG has commissioned a volume to celebrate the centennial, to be published by the Cambridge
University Press. This volume will be released at the conference. Please see the Table of Contents
for more information.

Scientific Structure of the Conference

The scientific program has a dual goal: To assess the current status of our field in broad terms, and
discuss future directions. Therefore the plenary part of the conference will feature invited talks on
various areas as well as perspective sessions in which 3‑4 panelists will share their vision on a
single theme. The invited talks will consist of broad overviews summarizing major developments
over the past 2‑3 decades. The perspective sessions will feature topics such as Future Technologies
in Gravitational Wave Physics; Frontiers of Relativistic Astrophysics; The Next Decade in Cosmology;
Future Directions in Computational Gravity; and, Gravity Meets the Quantum.

Parallel sessions will be divided into four themes following the tradition of the GRn conferences of
the ISGRG: i) Mathematical and Numerical GR; ii) Relativistic Astrophysics and Cosmology; iii)
Experimental and Observational Gravity; and, iv) Quantum Aspects of Gravity. They will feature
contributed talks, as well as a few invited talks providing introductions to broad sub‑areas. Some
sessions will be dedicated to the interface between these areas. There will also be a special Poster
Session one afternoon featuring not only contributed presentations but also posters summarizing
the invited talks at parallel sessions for the benefit of the participants who could not attend those
specific sessions.

General Information

The conference will offer ample opportunities for informal discussions and social interactions.
There will be a welcome reception in the evening on Sunday, June 7, a poster session (with
refreshments) in the afternoon on Tuesday, June 9 and a conference banquet on Thursday, June 11.
The conference will end late afternoon on Friday, June 12.

The regular registration fee is $150 with a student rate of $75. This fee includes all social events
including the banquet. Early registration is strongly recommended since the total number of
participants is limited by the capacity of the main auditorium. Please see Conference Registration
for more information about registration.

Arrival Information

Conference venue map
Restaurant list and map
Hotel and taxi information
Access to the PSU Visitor Wireless Network
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"Spacetime (geometry) tells matter how to move; matter tells spacetime 
how to curve.”   - John Archibald Wheeler 

spacetime!
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Plan of the talk!

Part I: network dynamics 

Part II: data analysis 

I will present 2 examples where I think we can benefit from !
bringing mathematics into the loop.  



Part I: network dynamics!

Motivating Question: How does recurrent connectivity !
shape population activity? 
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Recurrent network dynamics (cortex)!

more complex feature integration in sensory scenes. Although connec-
tion probabilities are elevated between neurons of the same feature pref-
erence, substantial connectivity also exists among neurons with different
feature preference. If these connections link neurons driven by features
whose combination is of particular behavioural relevance (for example,
features forming extended visual contours or spectrally complex sounds),
recurrent connectivity may allow the subnetwork to specifically amplify
responses to these combinations.

Establishment of cortical connectivity patterns
Cortical circuits are wired by a combination of molecular cues and
activity-dependent synaptic plasticity. Recent research is beginning to
reveal the molecular signals governing the incidence and synaptic prop-
erties of connections between specific cell classes (Box 1). However, a
key question is what determines the non-uniform connectivity patterns
within a principal cell class. The first possibility is that interconnected
subnetworks reflect still-undiscovered neuronal subtypes. For example,
connection probabilities within the apparently uniform class of callosally
projecting layer 5 (L5) principal cells could be predicted by similarity
of physiological characteristics17, suggesting preferential connectivity
between cryptic subclasses. Recent work suggests that clonal sister neu-
rons (that is, neurons arising from divisions of a common progenitor cell)
are more likely to be synaptically connected and share orientation pref-
erence than unrelated cells28. A single progenitor can give rise to pref-
erentially connected principal cells of multiple subclasses, suggesting that
early developmental processes beyond subclass specification contribute
to wiring intracortical circuits. Transient electrical synapses between
clonal sisters before eye opening have been implicated in this process29.

These early developmental processes, however, seem to simply provide
a starting point for activity-dependent refinement of cortical circuitry
after the onset of sensory experience. Indeed, studies in superficial visual
cortex suggest the relationship between principal cell connectivity and
visual feature preference is weak at eye-opening, only becoming strong
after visual experience, which suggests that sensory input leads to the
formation of functionally specific subnetworks30. An intuitive argument
suggests that Hebbian plasticity—strengthening of connections between
principal cells that fire together—should lead to interconnected subnet-
works of cells tuned to similar or commonly co-occurring features;

BOX 2

Classes of inhibitory interneuron
The cortex contains three major families of interneuron, each of which
divides into multiple subclasses. The figure shows a current
understanding of the synaptic targets of five classes of cortical
interneuron, with the green neuron representing a principal cell.
Question marks indicate connections that appear likely but have not
yet been directly demonstrated.

Parvalbumin-expressing interneurons (PVs) are capable of firing
rapidly and with high temporal precision. They consist of two main
subgroups: basket cells (BCs) that target the soma and proximal
dendrites of principal cells, and chandelier cells (ChCs) that target the
axon initial segment. PV cells receive strong excitatory inputs from
thalamus and cortex114, as well as inhibition from other PVs115. A key
role of these cells is to stabilize the activity of cortical networks: their
absence leads to epileptiform activity, whereas more moderate
chronic dysfunction of these cells has been implicated in diseases
such as schizophrenia116.

Somatostatin-expressing interneurons (SOMs) consist largely, but
not exclusively, of Martinotti cells that target the tuft dendrites of
principal cells, as well as inhibiting other interneurons115,117.
Consistent with their targeting of dendritic tufts, these cells have
been implicated in behaviour-dependent control of dendritic
integration88,118, as well as in more general lateral inhibition47.
Connections from principal cells to SOMs show facilitating
synapses119,120, whose establishment depends on postsynaptic
expression of the cell-surface protein Elfn1 (ref. 121). In contrast to
PVs, SOMs receive the majority of their input from local principal cells
but little inhibition or thalamic drive47,115,117.

5HT3A-receptor-expressing interneurons are the most numerous
interneuron of the superficial layers122. Although the classification of
these neurons is still incomplete, they contain two prominent
subgroups: neurogliaform cells (NGs), which are thought to release
GABA by volume transmission123; and cells that express vasoactive
intestinal peptide (VIP) and preferentially target SOMs89,115. Putative
5HT3A-receptor-expressing cells have been implicated in learning124

and control of cortical circuits by higher-order cortex and
thalamus89,125.
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Figure 1 | Proposed fine structure of neocortical connections. Connectivity
analyses suggest that cortical circuits contain multiple interdigitated
subnetworks of highly interconnected principal cells. Red, blue and green
triangles represent principal cells in three subnetworks; arrows of the
corresponding colour represent synaptic connections within each subnetwork.
Not all cells within a subnetwork are connected, and any cell can belong to more
than one subnetwork (striped triangles). Unlike principal cells, parvalbumin-
expressing interneurons (grey circles) connect nonspecifically to principal cells
in their local area.
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Cortical connectivity and sensory coding!
K.D. Harris & T.D. Mrsic-Flogel, Nature 2013 (Review) 

rate, with coupling strengths that vary between neurons. The underly-
ing model is parsimonious, requiring only order n parameters to pre-
dict order n2 pairwise correlations. Moreover, the model is intuitive,
involving procedures among the simplest in neuroscience—summing
the activity of multiple neurons, and correlating the spike train of each
neuron with the result. To assess whether more advanced procedures
would yield different results, we used a variant of latent variable ana-
lysis designed for discrete spike count data4,21 to obtain the weights of

individual neurons to the first detected factor. Reassuringly, these weights
were highly correlated with population coupling (Extended Data Fig. 5a);
latent variable analysis found the same basic structure as our simple
coupling model.

The ability of the model to predict correlations may appear surprising
given that it operates without knowledge of the neurons’ sensory tuning.
In primary sensory areas, neurons with similar sensory selectivity show
stronger stimulus-independent correlations1,3,5,22, and we observed a
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Figure 2 | A simple model based on population coupling predicts the
structure of pairwise correlations in a cortical population. a, The model
generates random spike patterns subject to three constraints: that the
population coupling of each neuron, the mean firing rate of each neuron, and
the distribution of the population rate must match those in the original data.
b, Random activity generated by the model produces pairwise correlations that
are similar to those measured in the original spike trains (n 5 67 units in
one experiment; correlations computed in 20-ms bins). The upper triangle
shows observed pairwise correlations, and the lower one shows pairwise
correlations predicted by the model. Neurons are arranged in order of
population coupling. The values on the diagonal (all 1s) have been removed.
Similarity of observed and predicted correlations is indicated by the symmetry
of the upper and lower triangles. c, Percentage of explainable correlation
structure predicted, as a function of the variability of population rate (filled
symbols, see Methods). The model captures pairwise correlations, but only in

experiments in which the population rate fluctuates. It cannot predict them
when population rate is mostly constant (a highly desynchronized cortical
state). Recordings were obtained from mouse V1 in wakefulness (diamonds)
or under anaesthesia (circles), or from A1 of awake rat (squares), all
spontaneous activity; note that a variety of states is observed in all conditions.
Open symbols show predictions of a model that ignores population coupling.
The example experiment in b is shown in red. d, Same as b for predictions
made without using population coupling. Such predictions fail to capture the
structure of pairwise correlations (open markers in c). e, The model cannot
predict a relationship between similarity of preferred orientation and
spontaneous pairwise correlations (P 5 0.15, Pearson correlation). f, As a
result, this correlation is retained in the residual pairwise correlations obtained
by subtracting the modelled from actual correlations (r 5 0.26, P , 1023,
Pearson correlation), indicating that the predictions of coupling and
orientation sum linearly. The black line in f shows regression on cos 2Dhð Þ.
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Figure 1 | Neighbouring neurons differ markedly in population coupling
during spontaneous activity. a, Schematic of a single shank of silicon
electrode array, and spike waveforms of four example wide-spiking neighbour
neurons measured with the array in deep layers of V1 of an awake mouse.
b, Population raster of spontaneous activity in 66 neurons recorded from the
whole array. Cells are arranged vertically in order of population coupling.
Arrows indicate the four example neurons shown in a. c, Population rate
measured by summing all the spikes detected on the entire array. d, LFP
measured on a shank adjacent to that on which the example neurons were
recorded (LFP waveforms were similar across shanks). e, Spike-triggered
population rate (stPR) for the four example neurons. The spike train of each

neuron was excluded from the population rate before computing its stPR.
f, The spike-triggered local field potential (stLFP) for the four example cells
(inverted for ease of comparison) resembles their stPR (shown in e). Inset,
normalized magnitudes of stPR and stLFP (see Methods) are highly correlated
across cells (r 5 20.71, P , 102100, rank correlation, n 5 431 neurons).
g, Differences in population coupling disappear after shuffling spikes in a
manner that preserves each neuron’s mean firing rate and the population rate.
Inset, population couplings in the actual spike trains (red) and after shuffling
(grey), for neurons from all experiments. h, stPR of four example neurons
simultaneously recorded in primate area V4, computed as in e.
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Diverse coupling of neurons to populations !
in sensory cortex.  Okun et. al., Nature 2015 
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What does connectivity tell us about dynamics?!
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Suppose we had the connectome !
for a network.!
!
Q: What can we say about the dynamics?!

complex synapses!
intrinsic neuron dynamics!
cell types!
neuromodulators!
dendrites!
stochasticity of spikes!
noise!
etc.!

A: It’s complicated.!
!



A mathematician’s approach!

"If you can't solve a problem, then there is an easier problem !
you can solve: find it."!
            !! ! ! ! !   - George Polya, How to Solve It (1945)!



Often, technology is developed on simple model systems!

C elegans 

A good model system has:!
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Tractability!
Transparency!
Complex behavior!



Often, technology is developed on simple model systems!

C elegans 

A good model system has:!
!
Tractability!
Transparency!
Complex behavior!

We also need to study simple model systems in order to develop!
mathematical technology. 



A toy model of a recurrent network!

A threshold-linear network: 
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A toy model of a recurrent network!
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A threshold-linear network: 

determined from a directed graph G.  

A toy model of a recurrent network!

Is this model…!
!

!Tractable?!
!

!Transparent?!
!

!Capable of complex behavior?!



The model (generically) exhibits complex behavior…!
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rate, with coupling strengths that vary between neurons. The underly-
ing model is parsimonious, requiring only order n parameters to pre-
dict order n2 pairwise correlations. Moreover, the model is intuitive,
involving procedures among the simplest in neuroscience—summing
the activity of multiple neurons, and correlating the spike train of each
neuron with the result. To assess whether more advanced procedures
would yield different results, we used a variant of latent variable ana-
lysis designed for discrete spike count data4,21 to obtain the weights of

individual neurons to the first detected factor. Reassuringly, these weights
were highly correlated with population coupling (Extended Data Fig. 5a);
latent variable analysis found the same basic structure as our simple
coupling model.

The ability of the model to predict correlations may appear surprising
given that it operates without knowledge of the neurons’ sensory tuning.
In primary sensory areas, neurons with similar sensory selectivity show
stronger stimulus-independent correlations1,3,5,22, and we observed a
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Figure 2 | A simple model based on population coupling predicts the
structure of pairwise correlations in a cortical population. a, The model
generates random spike patterns subject to three constraints: that the
population coupling of each neuron, the mean firing rate of each neuron, and
the distribution of the population rate must match those in the original data.
b, Random activity generated by the model produces pairwise correlations that
are similar to those measured in the original spike trains (n 5 67 units in
one experiment; correlations computed in 20-ms bins). The upper triangle
shows observed pairwise correlations, and the lower one shows pairwise
correlations predicted by the model. Neurons are arranged in order of
population coupling. The values on the diagonal (all 1s) have been removed.
Similarity of observed and predicted correlations is indicated by the symmetry
of the upper and lower triangles. c, Percentage of explainable correlation
structure predicted, as a function of the variability of population rate (filled
symbols, see Methods). The model captures pairwise correlations, but only in

experiments in which the population rate fluctuates. It cannot predict them
when population rate is mostly constant (a highly desynchronized cortical
state). Recordings were obtained from mouse V1 in wakefulness (diamonds)
or under anaesthesia (circles), or from A1 of awake rat (squares), all
spontaneous activity; note that a variety of states is observed in all conditions.
Open symbols show predictions of a model that ignores population coupling.
The example experiment in b is shown in red. d, Same as b for predictions
made without using population coupling. Such predictions fail to capture the
structure of pairwise correlations (open markers in c). e, The model cannot
predict a relationship between similarity of preferred orientation and
spontaneous pairwise correlations (P 5 0.15, Pearson correlation). f, As a
result, this correlation is retained in the residual pairwise correlations obtained
by subtracting the modelled from actual correlations (r 5 0.26, P , 1023,
Pearson correlation), indicating that the predictions of coupling and
orientation sum linearly. The black line in f shows regression on cos 2Dhð Þ.
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Figure 1 | Neighbouring neurons differ markedly in population coupling
during spontaneous activity. a, Schematic of a single shank of silicon
electrode array, and spike waveforms of four example wide-spiking neighbour
neurons measured with the array in deep layers of V1 of an awake mouse.
b, Population raster of spontaneous activity in 66 neurons recorded from the
whole array. Cells are arranged vertically in order of population coupling.
Arrows indicate the four example neurons shown in a. c, Population rate
measured by summing all the spikes detected on the entire array. d, LFP
measured on a shank adjacent to that on which the example neurons were
recorded (LFP waveforms were similar across shanks). e, Spike-triggered
population rate (stPR) for the four example neurons. The spike train of each

neuron was excluded from the population rate before computing its stPR.
f, The spike-triggered local field potential (stLFP) for the four example cells
(inverted for ease of comparison) resembles their stPR (shown in e). Inset,
normalized magnitudes of stPR and stLFP (see Methods) are highly correlated
across cells (r 5 20.71, P , 102100, rank correlation, n 5 431 neurons).
g, Differences in population coupling disappear after shuffling spikes in a
manner that preserves each neuron’s mean firing rate and the population rate.
Inset, population couplings in the actual spike trains (red) and after shuffling
(grey), for neurons from all experiments. h, stPR of four example neurons
simultaneously recorded in primate area V4, computed as in e.
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Okun et. al., Nature 2015 



The model (generically) exhibits complex behavior…!

(play song) 

0 10 20 30 40 50 60 70
time

fir
ing

 ra
te

2

4

6

8

projection of 
trajectoryGraph adjacency matrix 



In our toy model, can we figure out what the network is going to do? 
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Activity converges to a limit cycle!
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Data from the Pastalkova lab at Janelia 



Diversity of dynamics in hippocampus!
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(available at www.jneurosci.org as supplemental material) for a more
detailed description of the time prediction models.

Threshold adaptation model. We modeled network dynamics using a
standard firing rate model, with threshold nonlinearity [y]! "
max( y,0). At any point in time, the vector x!(t) " (x1(t),. . . ,xN(t)) rep-
resents a population vector of firing rates for each of N neurons. A key

ingredient of the model is the activity-
dependent adaptation of the “spike” thresh-
olds of individual neurons, represented by the
dynamic variables h!(t) " (h1(t),. . . ,hN(t)).
The model can thus be described by a system of
2 N equations:

! !mẋi " #xi # "#
j"1

N

Jijxj # Ii $ hi$
!

$1%

!aḣi " #hi # cxi, $2%

where !m " 30 ms and !a " 2 s are membrane
and threshold-adaptation time constants, re-
spectively, J is the matrix of synaptic weights
for the recurrent network, and I is a (time-
dependent) vector of external inputs. The con-
stant c " 0.5 controls the strength of the
activity-dependent adaptation, whereas !a de-
termines the time scale with which the thresh-
olds recover in the absence of firing.

The connectivity matrix J is constant in time
and can be written as a sum of two compo-
nents, J " J 0!J het, where J 0 has Mexican-hat-
type connectivity on a two-dimensional lattice
of neurons with periodic (torus) boundary
conditions, and Jhet is a matrix of heteroge-
neous weights, sampled randomly and inde-
pendently from a normal distribution with
mean zero. In simulations, we generated three
different instances of Jhet, resulting in three dif-
ferent connectivity matrices J1, J2, and J3.

In simulations, two types of behavioral con-
ditions were distinguished: “task” and “home
cage.” In all cases, initial conditions consisted
of the same “bump” of firing rate activity
x!(0) " x!0 in the center of the two-dimensional
lattice of neurons, and differed in the adapta-
tion variables h!(0) " h!0 only. Neurons with
adapted thresholds were chosen to lie at the
left, bottom, right, or top of the initial bump of
activity, resulting in initial conditions A to D,
respectively. For task trials, the initial condi-
tions were consistent from trial to trial, and the
model was driven by temporally and spatially
unstructured noise I(t); different instances of
noise was thus the only difference between tri-
als of the same initial condition type. In the
home cage trials, the initial conditions A to D
were randomized across trials, and the model
was driven by spatially unstructured noise that
had temporal correlations on the order of 125
ms (see supplemental Text, available at www.
jneurosci.org as supplemental material, for
further information).

Layer 2 simulations. To investigate the ability
of a downstream layer to “inherit” the se-
quence generated by the threshold adaptation
model (“layer 1”), we simulated activity in a
second layer connected to the first via sparse
and random feedforward projections. The dy-
namics in this layer were governed by the same
Equations 1 and 2 in the previous layer, with

two differences. First, the connectivity matrix J in layer 2 represented an
overall global inhibition (to ensure sparse firing) and had no spatial struc-
ture. Second, the input vector I(t) had two components: temporally and
spatially unstructured noise; and feedforward input derived from the activity
in the previous layer via random and sparse connections (10% connection
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Figure 1. Time prediction from sequential neural activity in a memory task. A, Average raster over 18 s for a population of
simultaneously recorded neurons during wheel runs after preceding left trials in a spontaneous alternation task. The rat was
required to make a correct choice for water reward on the basis of its previous choice. Neurons are ordered according to the time of
peak firing rate in the PSTH. B, Population raster for a single trial, using the same neuron ordering as in A. C, Time prediction for a
single trial (shown in B) using time prediction models fit from all other trials. In each time bin, elapsed time in the running wheel
is inferred either from the population firing rate vector (red) or the firing phases of active cells with respect to the theta oscillation
(purple). In each case, the prediction approximates well the true time (black). D, Average errors (in seconds) of the time prediction
for three rats (green, blue, and red) as a function of time, using the time prediction model via rate. E, A reliability measure was
computed for each trial. At each time t, the measure quantifies the extent to which population vectors from single trials resemble
trial-averaged population vectors at time t better than trial-averaged population vectors at other times (see Materials and Meth-
ods). Both the average reliability across trials (black) and the reliability for the single trial (blue) from B are well above 0, the value
expected for completely unreliable data. Gray lines denote a SD above and below the mean for the distribution of reliabilities across
trials. F, Reliability of individual trials in the control, home cage condition. The wheel was placed next to the animal’s home cage,
and the animal ran in the wheel without memory requirement or reward contingency. Conventions as in E; the single trial (blue)
has been chosen at random.
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Cell assembly sequences 

Associative memory; place coding 

Data from the Pastalkova lab at Janelia 

McNaughton et. al., Nature Rev. Neurosci. 2006!



Multiple dynamic behaviors in the same network!
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Multiple dynamic behaviors in the same network!



Some mathematical results"
(tractability)!

Theorem 1.  For any G, a clique is the support of a stable fixed 
point if and only if it is a target-free clique. !
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Some mathematical results"
(tractability)!

Theorem 1.  For any G, a clique is the support of a stable fixed 
point if and only if it is a target-free clique. !
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Conjecture. A subset of neurons supports a stable fixed point 
of the dynamics if and only if it is a target-free clique.!



Sequence of overlapping cell assemblies!
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Some mathematical results!

Theorem 2.  If G is an oriented graph with no sinks, then the!
network has no stable fixed points.!
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spontaneous state transition

rate, with coupling strengths that vary between neurons. The underly-
ing model is parsimonious, requiring only order n parameters to pre-
dict order n2 pairwise correlations. Moreover, the model is intuitive,
involving procedures among the simplest in neuroscience—summing
the activity of multiple neurons, and correlating the spike train of each
neuron with the result. To assess whether more advanced procedures
would yield different results, we used a variant of latent variable ana-
lysis designed for discrete spike count data4,21 to obtain the weights of

individual neurons to the first detected factor. Reassuringly, these weights
were highly correlated with population coupling (Extended Data Fig. 5a);
latent variable analysis found the same basic structure as our simple
coupling model.

The ability of the model to predict correlations may appear surprising
given that it operates without knowledge of the neurons’ sensory tuning.
In primary sensory areas, neurons with similar sensory selectivity show
stronger stimulus-independent correlations1,3,5,22, and we observed a
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Figure 2 | A simple model based on population coupling predicts the
structure of pairwise correlations in a cortical population. a, The model
generates random spike patterns subject to three constraints: that the
population coupling of each neuron, the mean firing rate of each neuron, and
the distribution of the population rate must match those in the original data.
b, Random activity generated by the model produces pairwise correlations that
are similar to those measured in the original spike trains (n 5 67 units in
one experiment; correlations computed in 20-ms bins). The upper triangle
shows observed pairwise correlations, and the lower one shows pairwise
correlations predicted by the model. Neurons are arranged in order of
population coupling. The values on the diagonal (all 1s) have been removed.
Similarity of observed and predicted correlations is indicated by the symmetry
of the upper and lower triangles. c, Percentage of explainable correlation
structure predicted, as a function of the variability of population rate (filled
symbols, see Methods). The model captures pairwise correlations, but only in

experiments in which the population rate fluctuates. It cannot predict them
when population rate is mostly constant (a highly desynchronized cortical
state). Recordings were obtained from mouse V1 in wakefulness (diamonds)
or under anaesthesia (circles), or from A1 of awake rat (squares), all
spontaneous activity; note that a variety of states is observed in all conditions.
Open symbols show predictions of a model that ignores population coupling.
The example experiment in b is shown in red. d, Same as b for predictions
made without using population coupling. Such predictions fail to capture the
structure of pairwise correlations (open markers in c). e, The model cannot
predict a relationship between similarity of preferred orientation and
spontaneous pairwise correlations (P 5 0.15, Pearson correlation). f, As a
result, this correlation is retained in the residual pairwise correlations obtained
by subtracting the modelled from actual correlations (r 5 0.26, P , 1023,
Pearson correlation), indicating that the predictions of coupling and
orientation sum linearly. The black line in f shows regression on cos 2Dhð Þ.
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Figure 1 | Neighbouring neurons differ markedly in population coupling
during spontaneous activity. a, Schematic of a single shank of silicon
electrode array, and spike waveforms of four example wide-spiking neighbour
neurons measured with the array in deep layers of V1 of an awake mouse.
b, Population raster of spontaneous activity in 66 neurons recorded from the
whole array. Cells are arranged vertically in order of population coupling.
Arrows indicate the four example neurons shown in a. c, Population rate
measured by summing all the spikes detected on the entire array. d, LFP
measured on a shank adjacent to that on which the example neurons were
recorded (LFP waveforms were similar across shanks). e, Spike-triggered
population rate (stPR) for the four example neurons. The spike train of each

neuron was excluded from the population rate before computing its stPR.
f, The spike-triggered local field potential (stLFP) for the four example cells
(inverted for ease of comparison) resembles their stPR (shown in e). Inset,
normalized magnitudes of stPR and stLFP (see Methods) are highly correlated
across cells (r 5 20.71, P , 102100, rank correlation, n 5 431 neurons).
g, Differences in population coupling disappear after shuffling spikes in a
manner that preserves each neuron’s mean firing rate and the population rate.
Inset, population couplings in the actual spike trains (red) and after shuffling
(grey), for neurons from all experiments. h, stPR of four example neurons
simultaneously recorded in primate area V4, computed as in e.
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A word on the proofs…!

We build on the theory of threshold-linear networks: 
X. Xie, R. H. Hahnloser, and H.S. Seung. Selectively grouping neurons in recurrent networks of 
lateral inhibition. Neural Computation, 2002.!

R. H. Hahnloser, H.S. Seung, and J.J. Slotine. Permitted and forbidden sets in symmetric threshold-
linear networks. Neural Computation, 2003.!

C. Curto, A. Degeratu, and V. Itskov. Flexible memory networks. Bull. Math. Biol., 2012.!

C. Curto, A. Degeratu, and V. Itskov. Encoding binary neural codes in networks of threshold-linear 
neurons. Neural Computation, 2013.!

C. Curto and K. Morrison. Pattern completion in threshold-linear networks. In prep.!

Some mathematical ingredients of this theory:!
!
Combinatorics + matrix theory!
Distance geometry (Cayley-Menger determinants)!
 



Part II: data analysis!



Hunting for structure in pairwise correlations!
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Why hunting for structure is hard...!

There is often a nonlinear relationship between observed variables  
and underlying “structured” variables. 
 
 
 
But, this relationship is typically monotonic. 



Goal: to detect random or geometric structure "
that is invariant under monotone transformations!

f(x)

A C

Cij = f(Aij)



What isn’t invariant: eigenvalues!
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f(x)
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Cij = f(Aij)



What is invariant: the ordering of matrix entries!
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Maybe surprising: geometric structure "
is encoded in the ordering of matrix entries!
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 Repackaging the matrix ordering data…!
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Idea: measure the organization of cliques 
across the sequence of graphs!

ρ0 ρ1 ρ2 ρ3

edge density!�!

Intuition: geometric structure in the matrix 
causes the holes to fill in more quickly!



Idea: measure the organization of cliques 
across the sequence of graphs!

�!

Betti curves!

Topological!
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Persistent homology!
!
Computational !
algebraic topology 



Betti curves are invariant under 
monotone transformations…!

f(x)

A C



Betti curves are invariant under 
monotone transformations…!

f(x)

A C

But can they be used to detect 
random or geometric structure?!



Betti curves of random and geometric matrices!
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Betti curves of random and geometric matrices!
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Betti curves of random and geometric matrices!

Intuition: geometric structure in the matrix 
causes the holes to fill in more quickly!
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Software for computing Betti curves "
for symmetric matrices!

 
•  Custom-made software for generating clique complexes (Chad Giusti). 

•  Perseus software for computing homology groups of clique complexes. 
     Vidit Nanda (while a student of Konstantin Mischaikow). 
 
 

•  Software on GitHub:  
       
                   https://github.com/nebneuron/clique-top



What happens when we feed in real data?!

place cell place fields 

We used multi-unit electrophysiological 
recordings of CA1 pyramidal cells in  
rat hippocampus during open field exploration. 
 
 
 
 
Data provided by Eva Pastalkova’s lab at 
Janelia Research Campus, HHMI. 



Pairwise correlations for place cells (open field)!
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Betti curves for open field data!
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Betti curves for open field data!
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Simulated data from a simple PF model!
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Simulated data from a simple PF model!
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Simulated data from a simple PF model!
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Geometric structure of correlations can be explained by place fields alone,!
but not if they are scrambled and non-geometric. 
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Thanks!!
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What about non-spatial behaviors?!

running wheel! REM sleep!



Betti curves: wheel running vs. controls!
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a               Wheel-running data vs. shuffled 
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Betti curves: REM sleep vs. controls!
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The results look very similar across behavioral conditions...!

The “geometric” correlation structure appears to be a 
property of the network, not just of the inputs.!

open field wheel running REM sleep 
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The results look very similar across behavioral conditions...!
open field wheel running REM sleep 
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