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Sometimes the mathematical technology was just sitting there,
and sometimes it had fo be developed in tandem with theory.



100™ anniversary of General Relativity
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An international conference to celebrate 100 years of general relativity will be held at the Universit
Park campus from Sunday, June 7 through Friday, June 12, 2015 under the auspices of the

International Society on General Relativity and Gravitation (ISGRG) and the Topical Group ot
Gravitation (GGR) of the American Physical Society.

Einsteins equation

RN

spacetime matter
geomeftry

N

Riemannian geometry

"Spacetime (geometry) tells matter how to move; matter tells spacetime
how to curve.” - John Archibald Wheeler
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"Spacetime (geometry) tells matter how to move; matter tells spacetime
how to curve.” - John Archibald Wheeler



Plan of the talk

I will present 2 examples where I think we can benefit from
bringing mathematics into the loop.

Part I. network dynamics

Part II: data analysis



Part I: network dynamics
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Motivating Question: How does recurrent connectivity
shape population activity?



Recurrent network dynamics (cortex)
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Cortical connectivity and sensory coding Diverse coupling of neurons to populations
K.D. Harris & T.D. Mrsic-Flogel, Nature 2013 (Review) in sensory cortex. Okun et. al., Nature 2015



What does connectivity tell us about dynamics?
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What does connectivity tell us about dynamics?
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intrinsic neuron dynamics
cell types
neuromodulators
dendrites

stochasticity of spikes
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A mathematicians approach

"If you can't solve a problem, then there is an easier problem
you can solve: find it."
- George Polya, How to Solve It (1945)



Often, technology is developed on simple model systems

A good model system has:

Tractability
Transparency
Complex behavior

C elegans



Often, technology is developed on simple model systems

A good model system has:

Tractability
Transparency
Complex behavior

C elegans

We also need to study simple model systems in order to develop
mathematical technology.



A toy model of a recurrent network

A threshold-linear network:
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A toy model of a recurrent network

A threshold-linear network:
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A toy model of a recurrent network

A threshold-linear network:

= —I; + ZW’ijxj —|—(9
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dx i
dt

deftermined from a directed graph G.
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Is this model...

Tractable?

‘ ' / ‘ ‘ Transparent?
W Capable of complex behavior?
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The model (generically) exhibits complex behavior...
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The model (generically) exhibits complex behavior...
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Back to our problem...

TR

In our toy model, can we figure out what the network is going to do?



Activity converges to a limit cycle




Activity converges to a limit cycle

Could we have predicted ¥
the sequence from 7 0/7\'\{\\0 2

the graph? \




Activity converges to a limit cycle

Could we have predicted

the graph?
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Data from the Pastalkova lab at Janelia



Diversity of dynamics in hippocampus

Cell assembly sequences Ripple sequences (fast)
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Multiple dynamic behaviors in the same network
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Multiple dynamic behaviors in the same network

fixed point

firing rate
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Multiple dynamic behaviors in the same network
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Multiple dynamic behaviors in the same network

1 2 é (
'4—\5 /‘ 0
/?I/_'\,i
LN
6 Q’

ety

D= Ve
l‘ \ lx
i

40 120
time

Can we predict these various behaviors from the graph?



Some mathematical results
(tractability)

Theorem 1. For any G, a clique is the support of a stable fixed
point if and only if it is a targef-free clique.
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Some mathematical results
(tractability)

Theorem 1. For any G, a clique is the support of a stable fixed
point if and only if it is a targef-free clique.

123 is a target-free clique 123 is not target-free

Conjecture. A subset of neurons supports a stable fixed point
of the dynamics if and only if it is a target-free clique.




Sequence of overlapping cell assemblies

cell assembly sequence

40 80 120 160 200

time

0




Some mathematical results

Theorem 2. If G is an oriented graph with no sinks, then the
network has no stable fixed points.




Some mathematical results

Theorem 2. If G is an oriented graph with no sinks, then the
network has no stable fixed points.
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Model (50 neurons) Data (66 neurons)
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A word on the proofs...

We build on the theory of threshold-linear networks:

X. Xie, R. H. Hahnloser, and H.S. Seung. Selectively grouping neurons in recurrent networks of
lateral inhibition. Neural Computation, 2002.

R. H. Hahnloser, H.S. Seung, and J.J. Slotine. Permitted and forbidden sets in symmetric threshold-
linear networks. Neural Computation, 2003.

C. Curto, A. Degeratu, and V. Itskov. Flexible memory networks. Bull. Math. Biol., 2012.

C. Curto, A. Degeratu, and V. Itskov. Encoding binary neural codes in networks of threshold-linear
neurons. Neural Computation, 2013.

C. Curto and K. Morrison. Pattern completion in threshold-linear networks. In prep.

Some mathematical ingredients of this theory:

Combinatorics + matrix theory
Distance geometry (Cayley-Menger determinants)



Part II: data analysis
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Hunting for structure in pairwise correlations
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Geometric structure of correlations

correlation

distance

Each neuron has a position in a “feature space.”



Why hunting for structure is hard...

There is often a nonlinear relationship between observed variables
and underlying “structured” variables.

But, this relationship is typically monotonic.



Goal: to detect random or geometric structure
that is invariant under monotone transformations

= f(Aij)




What isnt invariant: eigenvalues

eigenvalues of A eigenvalues of C
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What is invariant: the ordering of matrix entries

Cij = f(A’L]) Cz'j < Oy & Az'j < Ay



Maybe surprising: geometric structure
is encoded in the ordering of matrix entries
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Repackaging the matrix ordering data...

GQCGlC...CG(g)
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Idea: measure the organization of cliques
across the sequence of graphs

Po Py
edge density ——

Intuition: geometric structure in the matrix
causes the holes o fill in more quickly



Idea: measure the organization of cliques
across the sequence of graphs

Betti curves
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Giusti, Pastalkova, Curto*, Itskov*. PNAS (in press)



Betti curves are invariant under
monotone transformations...




Betti curves are invariant under
monotone transformations...

But can they be used to detect
random or geomeftric structure?



Betti curves of random and geometric matrices
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Betti curves of random and geometric matrices

random geometric
60 88
1000¢
800 | B,(p) o | ~ : d
g soo] — P2lP) A S 4 e R
o ¥y U o
3 [33(p) i : +*
400 - W \ 20 r\
ool ) ’\\\\
4 1 \ \
0 - __,/.\ \ 0 _ \
0 0.2 0.4 0.6 0 0.2 04 0.6

edge density p edge density p

Giusti, Pastalkova, Curto*, Itskov*. PNAS (in press)



Betti curves of random and geometric matrices
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Software for computing Betti curves
for symmetric matrices

Custom-made software for generating clique complexes (Chad Giusti).

Perseus software for computing homology groups of clique complexes.
Vidit Nanda (while a student of Konstantin Mischaikow).

Software on GitHub:

https://github.com/nebneuron/clique-top



What happens when we feed in real data?

place cell place fields

We used multi-unit electrophysiological
recordings of CA1 pyramidal cells in

rat hippocampus during open field exploration.

Data provided by Eva Pastalkova'’s lab at
Janelia Research Campus, HHMI.



Pairwise correlations for place cells (open field)
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Betti curves for open field data

data vs. geometric
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Betti curves for open field data

data vs. geometric
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Results are consistent across data sets, and correlation timescales
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Simulated data from a simple PF model

place field model
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Simulated data from a simple PF model

place field model scrambled PF model S
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Simulated data from a simple PF model

place field model

integrated Betti (a.u.)
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Thanks!

Collaborators on this work:

Katie Morrison (University of Northern Colorado)
Anda Degeratu (Freiberg)

Chad Giusti (former postdoc at UNL, now at UPenn)
Vladimir Itskov (Penn State)

Eva Pastalkova (Janelia Research Campus, HHMI)

Funding: NSF DMS, Sloan Foundation, Janelia Visitor Program



What about non-spatial behaviors?

REM sleep
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The results look very similar across behavioral conditions...

open field wheel running
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Conclusion:

The “"geometric” correlation structure appears to be a
property of the network, not just of the inputs.



The results look very similar across behavioral conditions...

open field
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