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butyraldehyde hexanone

Bozza et.al., Neuron, 2004Odorant-Evoked SpH Signals 
in the Mouse Olfactory Bulb

Odorants are represented by patterns 
of glomerular activation



Odorants are represented by patterns 
of glomerular activation

Glomeruli in the olfactory bulb (OB)



Odorant are represented by patterns of 
glomerular activation

1C 2C 3C 

How can odor identity be constant?



Solution – primacy coding
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Template representing an odorant includes a very small 
number of glomeruli of highest affinity to the odorant 
(activated at the smallest concentration)

1C 2C 3C 

p (= 2) is an important parameter of the code



Different smells are represented by 
their ‘primacy’ glomeruli



Temporal codes
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Temporal codes in the olfactory bulb

Cury and Uchida (2010)
Shusterman, Smear, Koulakov, and Rinberg (2011) 10



Odor identity is represented in the sequence 
of sharp events generated by MCs 

Odorant 1
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Primacy coding
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First set of p active mitral cells 
determines odorant identity

p=2

Prediction: odor identity is determined early in 
the sniff cycle



Smell A vs smell B
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Primacy coding:
Shazam service for the brain?
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evolution of olfactory receptors
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2D odorspace
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2D odorspace
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2D odorspace
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2D odorspace
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2D odorspace
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p=2 primacy model
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Individual odor identities are 
represented by simplexes

22

p=2 p=3 p=4 . . .



D=3, p=3 primacy hull
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D=6, p=7 primacy hull
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Prediction: Higher-order correlations in the 
response matrix
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Overlap in odorant representation 
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Primacy structure in the response 
matrix
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Fly data: Hallem and Carlson (2006)
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Number of nearest neighbors, p=5 

28

Overlap in odorant representation 
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Number of nearest neighbors, p=6 
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Overlap in odorant representation 
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Conclusions 
(OR evolution model)
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- Primacy model predicts that OR affinities occupy a 
narrow shell called primacy hull. 

- Topmost p responses of olfactory receptors share 
substantial overlaps

- Increased overlaps are present in fly data (p=5)

- These findings suggest substantial higher-order 
correlations in OR responses



Network models
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Expand, sparsen, and decorrelate
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Connectivity between glomeruli and 
simplexes is given by the simplectic
matrix 
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Dual networks
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How does decoding work?
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  α=1: 
Compressed 
sensing



PP

Primacy (relativity) principle
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Non-parametric 
conditions:
Intensity invariance
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Non-parametric problem:

Fix the scale:

min ,x x
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Primary problem is difficult to implement:

min ,x x
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Duality: Lagrange coefficients become 
variables
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Dual cost-function:
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Dual problem:

max ( )  
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Primal problem:
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+ a bunch of very 
complex inequalities
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Dual problem can be easily solved 
by a neural network
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Dual network
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Non-negativity constraint, 

42




u

y Ŝ
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Granule cells



Features of dual networks:
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• Operate with Lagrange-Karush-Kuhn-Tucker 
multipliers rather than with original stimulus 
variables

• Rely on inequalities -> intensity-invariant 
encoding

• Implement inequalities easily

• Sparse activity vectors 

• New set of inequalities -> new set of λ-s -> new 
cell type

( 0)n 
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Conclusions:

•Primacy model: small number of receptors activated first 
code for odorant identity

• More general idea – neural relativity – the implementation of 
invariant stimulus percepts in dual networks. 
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Smell A vs smell B
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Mouse+human OR Isomap algorithm
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Isomap algorithm 
OR – OR distance matrix

Tenenbaum, de Silva and Langford (2000) 



Mouse+human OR Isomap space
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Included Dimensions

Can primacy model provide insight into the emergence of low-
dimensional olfactory manifolds?



Dimension of olfactory space, D
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Primacy model (p~D)
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Primacy and connectivity
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Fly olfactory system

51

PNs
KCs

Antennal lobe Mushroom body

Simplexes (p=2)Vertices



Connectivity between glomeruli (PN, 
vertices) and KC (simplexes) looks random
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Higher-order correlations in connectivity
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Conclusions:

•Primacy model: small number of receptors activated first 
code for odorant identity

•Primacy code favors the representation of low-dimensional 
olfactory manifolds 

• The network architecture based on sparse connectivity 
between AL and MB is ideal for implementing primacy coding
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