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Idea of (∞, 1)-categories

There are two ways to think conceptually about (∞, 1)-categories.

One is homotopy-theoretic: An (∞, 1)-category is the data of a
homotopy theory, usually thought of as a category with some
choice of weak equivalences. (Think of topological spaces and
weak homotopy equivalences.)

The other is more categorical: an (∞, 1)-category is some kind of
higher categorical structure which models the structure of a
category “up to homotopy”.
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Why the name?

A category has objects and morphisms between objects, and those
morphisms are required to compose when appropriate, and that
composition is associative. Objects also have identity morphisms.

We can extend this idea to higher categories, which have
2-morphisms between (1-)morphisms, 3-morphisms between
2-morphisms, and so forth.

If we have n-morphisms for arbitrarily large n, then we have an
∞-category.

In an (∞, 1)-category, the n-morphisms are (weakly) invertible for
all n > 1.
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Taking a step back: (∞, 0)-categories

How can we think about such a structure concretely?

Let’s start one level down, where all morphisms are weakly
invertible: (∞, 0)-categories, or ∞-groupoids.

A general principle is that ∞-groupoids should just be topological
spaces.

Points in a space are objects, paths are 1-morphisms, homotopies
are 2-morphisms, and so forth. But paths and homotopies are
invertible up to homotopy.
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(∞, 1)-categories as enriched categories

Another general principle for higher categories is that an
n-category should be a category enriched in (n − 1)-categories,
perhaps in some weak sense. In other words, an the morphisms
between two objects in an n-category should be equipped with the
structure of an (n − 1)-category.

Similarly, an (∞, 1)-category should be a category enriched in
(∞, 0)-categories, or a category enriched in spaces.

We could extend to more general (∞, n)-categories as categories
enriched in (∞, n − 1)-categories.
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Simplicial categories

This idea leads to our first model for (∞, 1)-categories.

But, instead of topological spaces we use simplicial sets.

Definition

A simplicial category is a category enriched in simplicial sets.

But, for many examples we’d like models which are not so strict,
for example for which composition is only defined up to homotopy.
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Model categories for (∞, 1)-categories

We’ll look at several different ways of thinking about
(∞, 1)-categories, and the respective model structure for each. All
these model structures are equivalent to one another.

Recall that a model category is a category together with a choice
of weak equivalences, as well as other distinguished morphisms
called fibrations and cofibrations, satisfying some axioms.

The idea is that, between objects which are “fibrant” and
“cofibrant”, one can take homotopy classes of maps and obtain a
good homotopy category.

Sometimes we have explicit descriptions of these nice objects, but
not always.
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Other properties of model categories

Model categories can also have additional structures.

A model category is left proper if pushouts of weak
equivalences along cofibrations are weak equivalences.

It is right proper if pullbacks of weak equivalences along
fibrations are weak equivalences.

It is proper if it is both left and right proper.

A model category is simplicial if the underlying category is
enriched in simplicial sets, in a way compatible with the model
structure.

It is cartesian if it is enriched in itself, again in a compatible
way.
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Weak equivalences for simplicial categories

Now let’s go back to simplicial categories. We need a good
definition of weak equivalence between them.

The following definition is a natural extension of the definition of
equivalence of categories.

Definition

A functor f : C → D between simplicial categories is a Dwyer-Kan
equivalence if

for any x , y ∈ ob(C), MapC(x , y)→ MapD(fx , fy) is a weak
equivalence of simplicial sets, and

the functor π0C → π0D is an equivalence of categories.
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The model structure for simplicial categories

Theorem (B.)

There is a model structure on the category of small simplicial
categories in which the weak equivalences are the Dwyer-Kan
equivalences.

This model structure is proper but neither simplicial nor cartesian.

Both its fibrant and cofibrant objects are well-understood.
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Simplicial spaces

Now we want to consider models with composition which is not
defined so strictly.

As a foundation, we work in the setting of simplical spaces.

Definition

A simplicial space is a bisimplicial set, or functor ∆op → SSets.

The category of simplicial spaces can be given the Reedy model
structure, whose weak equivalences are levelwise weak equivalences
of simplicial sets.
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The Segal condition

Given any simplicial space X , there are associated Segal maps

Xn → X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
n

.

If X is the nerve of a simplicial category, then these maps are all
isomorphisms. We relax this condition.

Definition

A Segal space is a Reedy fibrant simplicial space such that the
Segal maps for n ≥ 2 are all weak equivalences of simplicial sets.

Thus Segal spaces have a kind of weak composition law.
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Discretizing objects

However, a Segal space in some sense has a space, rather than a
set, of objects.

One way to remedy this issue is simply to require the space in
degree zero to be discrete.

Definition

A Segal category is a Segal space X such that X0 is discrete.
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A model structure for Segal categories

Theorem (Pelissier, B.)

There is a model structure on the category of simplicial spaces
with discrete 0-space such that the fibrant objects are Segal
categories. The weak equivalences are analogous to Dwyer-Kan
equivalences of simplicial categories, and all objects are cofibrant.

This model structure is left proper, simplicial, and cartesian.
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Another model structure for Segal categories

For technical reasons, it is nice to have another model structure for
Segal categories with the same weak equivalences.

Theorem (B.)

There is an analogous model structure in which the fibrant objects
are projective, rather than Reedy, fibrant.

In this model structure, not all objects are cofibrant, but it is still
left proper. It is still simplicial, but it is not cartesian.

Julie Bergner Model structures for (∞, 1)-categories



The completeness condition

However, actual discreteness is a difficult requirement when doing
homotopy theory. An alternative is given by complete Segal spaces.

In a Segal space X , we can think of X1 as the “morphisms” of X .

There is also a subspace of homotopy equivalences Xheq ⊆ X1.

The image of the degeneracy map s0 : X0 → X1 lies in Xheq.

Definition

A Segal space is complete if this map X0 → Xheq is a weak
equivalence of simplicial sets.

Julie Bergner Model structures for (∞, 1)-categories



The model structure for complete Segal spaces

Theorem (Rezk)

There is a model structure on the category of simplicial spaces in
which the fibrant objects are the complete Segal spaces. It is
obtained as a localization of the Reedy model structure.

This model structure is left proper, simplicial, and cartesian. All its
objects are cofibrant.
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Quasi-categories

Another model is given in the context of simplicial sets.

Recall that we have the following simplicial sets:

the n-simplex ∆[n];

its boundary ∂∆[n]; and

for each 0 ≤ k ≤ n, the k-horn V [n, k], given by removing the
edge opposite the kth vertex of ∂∆[n].

Definition

A quasi-category is a simplicial set K such that a lift exists in any
diagram

V [n, k] //

��

K

∆[n]

<<y
y

y
y

y

where n ≥ 2 and 0 < k < n.
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The model structure for quasi-categories

Theorem (Joyal, Lurie, Dugger-Spivak)

There is a model structure on the category of simplicial sets in
which the fibrant objects are the quasi-categories. Again, the weak
equivalences are analogous to Dwyer-Kan equivalences.

This model structure is left proper and cartesian. All its objects are
cofibrant. It is not simplicial.
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Relative categories

Returning to the homotopy-theoretic motivation for
(∞, 1)-categories, we can also simply think of categories equipped
with a choice of weak equivalences, also called relative categories.

Theorem (Barwick-Kan)

There is a model structure on the category of relative categories.
Weak equivalences and fibrations are described via a nerve-type
functor to the complete Segal space model structure.

This model structure is known to be left proper, and we can
describe the cofibrant objects. We don’t know much about other
properties, however.
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What will we be doing?

The purpose of our team’s investigations will be to look at some of
these model structures and their properties.

Relative categories and the second model structure for Segal
categories, have been investigated much less than the others, and
some of their properties are either unknown or not
well-documented in the literature.

In other cases, proofs of certain properties are consequences of
more abstract results, for example that the model category for
simplicial categories is left proper.

We’d like to give explicit proofs of these properties, establish ones
that are known, and give explicit counterexamples for properties
which do not hold.
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