Applications of monoidal model categories of spectra

Brooke Shipley November 30, 2017 MSRI WIT

- 1. A gentle introduction to spectra
- 2. Applications

Applications of monoidal model categories of spectra

November 30, 2017 MSRI WIT

- 1. A gentle introduction to spectra
- 2. Applications

Warning: below "anything in quotes" is a heuristic, not a careful definition.

An introduction to stable homotopy theory

"Abelian groups up to homotopy" spectra ⇔generalized cohomology theories

Examples:

1. Ordinary cohomology:

For A any abelian group, $H^n(X; A) = [X_+, K(A, n)].$

Eilenberg-Mac Lane spectrum, denoted HA. $HA_n = K(A, n)$ for $n \ge 0$.

The coefficients of the theory are given by $HA^*(\text{pt}) = \begin{cases} A & * = 0 \\ 0 & * \neq 0 \end{cases}$

2. Hypercohomology:

For C. any chain complex of abelian groups, $\mathbb{H}^{s}(X; C.) \cong \bigoplus_{q-p=s} H^{p}(X; H_{q}(C.)).$ Just a direct sum of shifted ordinary cohomologies.

 $HC.^{*}(\text{pt}) = H_{*}(C.).$

3. Complex K-theory:

 $K^*(X)$; associated spectrum denoted K.

$$K_n = \begin{cases} U & n = \text{odd} \\ BU \times \mathbb{Z} & n = \text{even} \end{cases}$$

$$K^*(\text{pt}) = \begin{cases} 0 & * = \text{odd} \\ \mathbb{Z} & * = \text{even} \end{cases}$$

4. Stable cohomotopy: $\pi_S^*(X)$; associated spectrum denoted S.

 $\mathbb{S}_n = S^n$, \mathbb{S} is the sphere spectrum.

 $\pi_S^*(\text{pt}) = \pi_{-*}^S(\text{pt}) = \text{stable homotopy groups of spheres.}$ These are only known in a range.

"Rings up to homotopy"

ring spectra \iff gen. coh. theories with a product

1. For R a ring, HR is a ring spectrum. The cup product gives a graded product: $HR^{p}(X) \otimes HR^{q}(X) \to HR^{p+q}(X)$

Induced by $K(R,p) \wedge K(R,q) \rightarrow K(R,p+q)$.

2. For A. a differential graded algebra (DGA), HA. is a ring spectrum. Product induced by $\mu : A. \otimes A. \rightarrow A.$, or $A_p \otimes A_q \rightarrow A_{p+q}$.

The groups $\mathbb{H}(X; A)$ are still determined by $H_*(A)$, but the product structure is *not* determined $H_*(A)$.

3. K is a ring spectrum;

Product induced by tensor product of vector bundles.

4. S is a commutative ring spectrum.

Definition. A "*ring spectrum*" is a sequence of pointed spaces $R = (R_0, R_1, \dots, R_n, \dots)$ with compatibly associative and unital products $R_p \wedge R_q \to R_{p+q}$.

Definition. A "spectrum" F is a sequence of pointed spaces $(F_0, F_1, \dots, F_n, \dots)$ with structure maps $\Sigma F_n \to F_{n+1}$. Equivalently, adjoint maps $F_n \to \Omega F_{n+1}$.

Example: S a commutative ring spectrum

Structure maps: $\Sigma S^n = S^1 \wedge S^n \xrightarrow{\cong} S^{n+1}$.

Product maps: $S^p \wedge S^q \xrightarrow{\cong} S^{p+q}$.

Actually, must be more careful here. For example: $S^1 \wedge S^1 \xrightarrow{\text{twist}} S^1 \wedge S^1$ is a degree -1 map.

History of spectra and \wedge

Boardman in 1965 defined spectra and \wedge . \wedge is only commutative and associative up to homotopy.

 A_{∞} ring spectrum = best approximation to associative ring spectrum.

 E_{∞} ring spectrum = best approximation to commutative ring spectrum.

Lewis in 1991: No good \land exists. Five reasonable axioms \implies no such \land .

Since 1997, lots of monoidal categories of spectra exist! (with ∧ that is commutative and associative.)
1. 1997: Elmendorf, Kriz, Mandell, May
2. 2000: Hovey, S., Smith
3, 4 and 5 ... Lydakis, Schwede, ...

Theorem.(Mandell, May, Schwede, S. '01; Schwede '01) All above models define the same homotopy theory.

Spectral Algebra

Given the good categories of spectra with \wedge , one can easily do algebra with spectra.

Definitions:

A ring spectrum is a spectrum R with an associative and unital multiplication $\mu : R \wedge R \to R$ (with unit $\mathbb{S} \to R$).

An *R*-module spectrum is a spectrum M with an associative and unital action $\alpha : R \land M \to M$.

 \mathbb{S} -modules are spectra. $S^1 \wedge F_n \to F_{n+1}$ iterated gives $S^p \wedge F_q \to F_{p+q}$. Fits together to give $\mathbb{S} \wedge F \to F$.

 $\mathbb{S}\text{-}algebras$ are ring spectra.

Applications of monoidal model categories of spectra:

We'll focus on applications of Symmetric spectra and Orthogonal spectra.

Applications of monoidal model categories of spectra:

We'll focus on applications of Symmetric spectra and Orthogonal spectra.

Waldhausen's Algebraic K-theory:

Theorem. (Geisser, Hesselholdt '99) Waldhausen's S_{\bullet} -construction for a Waldhausen category C of cofibrations and weak equivalences naturally produces a symmetric spectrum K(C).

Applications of monoidal model categories of spectra:

We'll focus on applications of Symmetric spectra and Orthogonal spectra.

Waldhausen's Algebraic K-theory:

Theorem. (Geisser, Hesselholdt '99) Waldhausen's S_{\bullet} -construction for a Waldhausen category C of cofibrations and weak equivalences naturally produces a symmetric spectrum K(C).

If C is also a symmetric monoidal category with a bi-exact product (i.e. the product interacts well with the cofibrations and weak equivalences), then K(C) is a symmetric ring spectrum.

(Hovey '01) generalized the definition of symmetric spectra to consider spectra over any monoidal model category \mathfrak{C} . Here instead of a sequence of spaces, one considers a sequence of objects $(C_0, C_1, \dots, C_n, \dots)$ in \mathfrak{C} with structure maps $K \wedge C_n \to C_{n+1}$. (Hovey '01) generalized the definition of symmetric spectra to consider spectra over any monoidal model category \mathfrak{C} . Here instead of a sequence of spaces, one considers a sequence of objects $(C_0, C_1, \dots, C_n, \dots)$ in \mathfrak{C} with structure maps $K \wedge C_n \to C_{n+1}$.

Theorem. (Jardine '00) Symmetric spectra of motivic spaces (simplicial presheaves) model the motivic stable category. **Theorem.** (Robinson '87, Schwede-S. '03, S. '07, Richter-S. 2017)

- (1) $\mathcal{C}h \simeq_{\text{Quillen}} H\mathbb{Z}\text{-Mod}$
- (2) Assoc. $DGA \simeq_{\text{Quillen}} \text{Assoc. } H\mathbb{Z}\text{-Alg}$
- (3) $E_{\infty} DGA \simeq_{\text{Quillen}} \text{Commutative } H\mathbb{Z}\text{-Alg}$

Theorem. (Robinson '87, Schwede-S. '03, S. '07, Richter-S. 2017)

(1) $\mathcal{C}h \simeq_{\text{Quillen}} H\mathbb{Z}\text{-Mod}$

(2) Assoc. $DGA \simeq_{\text{Quillen}} \text{Assoc. } H\mathbb{Z}\text{-Alg}$

(3) $E_{\infty} DGA \simeq_{\text{Quillen}} \text{Commutative } H\mathbb{Z}\text{-Alg}$

Central step of the proofs: Each of these statements uses (Hovey '01) to produce the stabilization of the Dold-Kan equivalence between non-negatively graded chain complexes and simplicial abelian groups.

Two applications of $DGA \simeq_{\text{Quillen}} H\mathbb{Z}$ -Alg:

1. Topological equivalences of DGAs. Consider S-algebra equivalences between $H\mathbb{Z}$ -algebra spectra. (See Dugger - S. 2007; Bayindir 2017)

Two applications of $DGA \simeq_{\text{Quillen}} H\mathbb{Z}$ -Alg:

1. Topological equivalences of DGAs. Consider S-algebra equivalences between $H\mathbb{Z}$ -algebra spectra. (See Dugger - S. 2007; Bayindir 2017)

2. The establishment of simple, practical algebraic models for rational G-equivariant stable homotopy theories involves the equivalence of rational DGAs and $H\mathbb{Q}$ -algebra spectra. (See Greenlees - S. 2017)

For G a compact Lie group that is not finite, we use orthogonal spectra to model G-equivariant stable homotopy theory.