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Warning: below “anything in quotes” is a heuristic,
not a careful definition.



An introduction to stable homotopy
theory

“Abelian groups up to homotopy”
spectra ()generalized cohomology theories

Examples:

1. Ordinary cohomology:

For A any abelian group, Hn(X ; A) = [X+, K(A, n)].

Eilenberg-Mac Lane spectrum, denoted HA.
HAn = K(A, n) for n � 0.

The coe�cients of the theory are given by

HA⇤(pt) =

⇢
A ⇤ = 0
0 ⇤ 6= 0
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2. Hypercohomology:
For C. any chain complex of abelian groups,
Hs(X ; C.) ⇠= �q�p=sH

p(X ; Hq(C.)).
Just a direct sum of shifted ordinary cohomologies.

HC.⇤(pt) = H⇤(C.).

3. Complex K-theory:
K⇤(X); associated spectrum denoted K.

Kn =

⇢
U n = odd
BU ⇥ Z n = even

K⇤(pt) =

⇢
0 ⇤ = odd
Z ⇤ = even

4. Stable cohomotopy:
⇡⇤S(X); associated spectrum denoted S.

Sn = Sn, S is the sphere spectrum.

⇡⇤S(pt) = ⇡S
�⇤(pt) = stable homotopy groups of

spheres. These are only known in a range.



“Rings up to homotopy”
ring spectra ()gen. coh. theories with a product

1. For R a ring, HR is a ring spectrum.
The cup product gives a graded product:
HRp(X)⌦HRq(X)! HRp+q(X)

Induced by K(R, p) ^K(R, q)! K(R, p + q).

2. For A. a di↵erential graded algebra (DGA),
HA. is a ring spectrum. Product induced by
µ : A.⌦ A.! A., or Ap ⌦ Aq ! Ap+q.

The groups H(X ; A.) are still determined by H⇤(A),
but the product structure is not determined H⇤(A).

3. K is a ring spectrum;
Product induced by tensor product of vector bundles.

4. S is a commutative ring spectrum.



Definition. A “ring spectrum” is a sequence of
pointed spaces R = (R0, R1, · · · , Rn, · · · ) with
compatibly associative and unital products
Rp ^Rq ! Rp+q.

Definition. A “spectrum” F is a sequence of
pointed spaces (F0, F1, · · · , Fn, · · · ) with structure
maps ⌃Fn ! Fn+1. Equivalently, adjoint maps
Fn ! ⌦Fn+1.

Example: S a commutative ring spectrum

Structure maps: ⌃Sn = S1 ^ Sn
⇠=�! Sn+1.

Product maps: Sp ^ Sq
⇠=�! Sp+q.

Actually, must be more careful here. For example:

S1 ^ S1 twist���! S1 ^ S1 is a degree �1 map.



History of spectra and ^

Boardman in 1965 defined spectra and ^. ^ is
only commutative and associative up to homotopy.

A1 ring spectrum = best approximation to associa-
tive ring spectrum.

E1 ring spectrum = best approximation to commu-
tative ring spectrum.

Lewis in 1991: No good ^ exists.
Five reasonable axioms =) no such ^.

Since 1997, lots of monoidal categories of spectra
exist! (with ^ that is commutative and associative.)
1. 1997: Elmendorf, Kriz, Mandell, May
2. 2000: Hovey, S., Smith
3, 4 and 5 ... Lydakis, Schwede, ...

Theorem.(Mandell, May, Schwede, S. ’01;
Schwede ’01)
All above models define the same homotopy theory.



Spectral Algebra

Given the good categories of spectra with ^, one can
easily do algebra with spectra.

Definitions:

A ring spectrum is a spectrum R with an associative
and unital multiplication µ : R ^R! R (with unit
S! R).

An R-module spectrum is a spectrum M with an
associative and unital action ↵ : R ^M !M .

S-modules are spectra.
S1 ^ Fn ! Fn+1 iterated gives Sp ^ Fq ! Fp+q.
Fits together to give S ^ F ! F .

S-algebras are ring spectra.
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Waldhausen’s Algebraic K-theory:

Theorem. (Geisser, Hesselholdt ’99) Waldhausen’s
S•-construction for a Waldhausen category C of cofi-
brations and weak equivalences naturally produces a
symmetric spectrum K(C).

If C is also a symmetric monoidal category with a
bi-exact product (i.e. the product interacts well with
the cofibrations and weak equivalences), then K(C)
is a symmetric ring spectrum.



(Hovey ’01) generalized the definition of symmetric
spectra to consider spectra over any monoidal model
category C. Here instead of a sequence of spaces, one
considers a sequence of objects (C0, C1, · · · , Cn, · · · )
in C with structure maps K ∧ Cn → Cn+1.



(Hovey ’01) generalized the definition of symmetric
spectra to consider spectra over any monoidal model
category C. Here instead of a sequence of spaces, one
considers a sequence of objects (C0, C1, · · · , Cn, · · · )
in C with structure maps K ∧ Cn → Cn+1.

Theorem. (Jardine ’00) Symmetric spectra of mo-
tivic spaces (simplicial presheaves) model the motivic
stable category.
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Richter-S. 2017)
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(2) Assoc. DGA 'Quillen Assoc. HZ-Alg

(3) E∞ DGA 'Quillen Commutative HZ-Alg

Central step of the proofs: Each of these
statements uses (Hovey ’01) to produce the stabi-
lization of the Dold-Kan equivalence between non-
negatively graded chain complexes and simplicial
abelian groups.
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(See Dugger - S. 2007; Bayindir 2017)
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1. Topological equivalences of DGAs. Consider
S-algebra equivalences between HZ-algebra spectra.
(See Dugger - S. 2007; Bayindir 2017)

2. The establishment of simple, practical algebraic
models for rational G-equivariant stable homotopy
theories involves the equivalence of rational DGAs
and HQ-algebra spectra. (See Greenlees - S. 2017)

For G a compact Lie group that is not finite, we
use orthogonal spectra to model G-equivariant stable
homotopy theory.


