HOMOLOGICAL STABILITY

Notes from a talk by: NATHALIE WAHL MSRI Women in Topology 2017 November 30, 2017

A sequence of spaces and maps $X_1 \to X_2 \to X_3 \to \ldots$ satisfies homological stability if $H_i(X_n) \to H_i(X_{n+1})$ is an isomorphism for $n \gg i$. Equivalently, $H_i(X_n) \cong H_i(X_\infty)$ for $n \gg i$, where $X_\infty := \bigcup_n X_n$. (This is because homology commutes with colimits.) This is good because $H_i(X_\infty)$ is often easier to compute.

Theorem 1 (McDuff, Segal, May, ... (1970's)). If $i < \frac{n}{2}$ then:

$$H_i(\underbrace{\operatorname{Conf}(n,\mathbb{R}^k)}_{X_n}) \cong H_i(\underbrace{\Omega_0^k S^k}_{X_\infty})$$

Theorem 2 (Harer (1980), Madsen-Weiss (00's), ...). If $\mathcal{M}_{g,k}$ denotes the moduli space of genus g Riemann surfaces with k boundary components,

$$H_i(\mathscr{M}_{g,k}) \cong H_i(\Omega_0^\infty \mathbb{C}\mathrm{P}_{-1}^\infty)$$

for $i \leq \frac{g-2}{3}$.

This is a really powerful theorem that woke up the subject: the LHS is one of the classical objects in mathematics.

Theorem 3 (Szymik-W.). If BV is Thompson's group $V \cong V_{2,1}$, then $\widetilde{H}_*(BV) = 0$. This the n = 2 case of

$$H_i(BV_{n,k}) \cong H_i(\Omega_0^\infty M_{n-1})$$

where M_{n-1} is the Moore spectrum for $\mathbb{Z}/(n-1)$.

 E_2 -algebras, stability, and the group completion theorem. The definitions in quotes will be slightly incorrect for expositional purposes.

Definition 4. An " E_2 -algebra" is a space X with a homotopy associative, homotopy commutative multiplication $X \times X \to X$. An " E_n -algebra" is more commutative if n > 2. An " E_{∞} -algebra" is as homotopy commutative as possible.

Example 5. Look at $X = \bigsqcup_{n \ge 0} \operatorname{Conf}(n, \mathbb{R}^2)$. Putting two configurations next to each other gives a map

$$\operatorname{Conf}(n, \mathbb{R}^2) \times \operatorname{Conf}(m, \mathbb{R}^3) \to \operatorname{Conf}(n+m, \mathbb{R}^2).$$

So we have a multiplication $X \times X \to X$.

Theorem 6 (Recognition principle). If X is an E_k -algebra then the group completion GX is $\simeq \Omega^k Y$, for some explicit Y.

Group completion makes π_0 a group. So if π_0 is not a group, then it has no chance of being a loop space.

Theorem 7 (Group completion theorem, special case). Suppose $X = \bigsqcup_{n\geq 0} X_n$ is an E_k -algebra for $k \geq 2$, with multiplication $\oplus : X_n \times X_m \to X_{n+m}$. Then

$$H_*(GX) \cong H_*(\mathbb{Z} \times X_\infty)$$

(same X_{∞} as before).

This gives a sequence $X_1 \xrightarrow{\oplus x} X_2 \xrightarrow{\oplus x} X_3 \to \dots$ for $x \in X_1$.

Theorem 8 (Randal-Williams–W., Kranich). Given an E_2 -algebra X and $x \in X$, there are spaces $W_n(X, x)$ and if $W_n(X, x)$ is $\frac{n-2}{k}$ -connected for each n, then

$$H_i(X) \xrightarrow{\oplus x} H_i(X)$$

is an isomorphism for $i \leq \frac{n-1}{k}$.

For example, take $X = \bigsqcup_n X_n$ and $x \in X_1$; then $H_i(X_n) \xrightarrow{\oplus x} H_i(X_{n+1})$ is an isomorphism.

Fact: Stability theorems are usually proved like this. (You associate some space and your theorem works if the space is highly connected.)

Summary: Suppose $X = \bigsqcup_{n \ge 0} X_n$ is an E_2 -algebra for $k \ge 2$. Then $H_i(X_n) \cong H_i(X_\infty)$ for $n \gg i$ if $W_n(X, x)$ is highly connective. Using the recognition principle and the group completion theorem, $H_i(X_n) \cong H_i(\Omega_0^k Y)$ for $n \gg i$.

We would like to study further the properties of the spaces $W_n(X, x)$.