Linear correlations of multiplicative functions

Lilian Matthiesen

KTH, Stockholm

Green–Tao type theorem for multiplicative functions?

Let
$$\varphi_1, \dots, \varphi_r \in \mathbb{Z}[X_1, \dots, X_s]$$
 linear forms,
pairwise non-proportional
 $a_1, \dots, a_r \in \mathbb{Z}$
 $h_1, \dots, h_r : \mathbb{N} \to \mathbb{C}$

and consider the linear correlation

$$\sum_{\mathbf{x}\in\mathbb{Z}^s\cap TK} h_1(\varphi_1(\mathbf{x})+a_1)\dots h_r(\varphi_r(\mathbf{x})+a_r) \qquad (*)$$

where $K \subset [-1, 1]^s$, convex. $(T \to \infty)$

Green–Tao type theorem for multiplicative functions?

Let
$$\varphi_1, \dots, \varphi_r \in \mathbb{Z}[X_1, \dots, X_s]$$
 linear forms,
pairwise non-proportional
 $a_1, \dots, a_r \in \mathbb{Z}$
 $h_1, \dots, h_r : \mathbb{N} \to \mathbb{C}$

and consider the linear correlation

$$\sum_{\mathbf{x}\in\mathbb{Z}^s\cap TK} h_1(\varphi_1(\mathbf{x})+a_1)\dots h_r(\varphi_r(\mathbf{x})+a_r) \qquad (*)$$

where $K \subset [-1, 1]^s$, convex. $(T \to \infty)$

Question: Can one evaluate (*) in general for multiplicative functions $h_i : \mathbb{N} \to \mathbb{R}$ (or \mathbb{C}); that is, if

 $h_i(nm) = h_i(n)h_i(m)$ whenever gcd(n,m) = 1?

Green–Tao type theorem for multiplicative functions?

Let
$$\varphi_1, \dots, \varphi_r \in \mathbb{Z}[X_1, \dots, X_s]$$
 linear forms,
pairwise non-proportional
 $a_1, \dots, a_r \in \mathbb{Z}$
 $h_1, \dots, h_r : \mathbb{N} \to \mathbb{C}$

and consider the linear correlation

$$\sum_{\mathbf{x}\in\mathbb{Z}^s\cap TK} h_1(\varphi_1(\mathbf{x})+a_1)\dots h_r(\varphi_r(\mathbf{x})+a_r) \qquad (*)$$

where $K \subset [-1, 1]^s$, convex. $(T \to \infty)$

Question: Can one evaluate (*) in general for multiplicative functions $h_i : \mathbb{N} \to \mathbb{R}$ (or \mathbb{C}); that is, if

$$h_i(nm) = h_i(n)h_i(m)$$
 whenever $gcd(n,m) = 1$?

Yes – at least for h_i satisfying the following conditions:

A class of multiplicative functions

Let \mathcal{M} denote the set of multiplicative functions $h : \mathbb{N} \to \mathbb{R}$ such that

- **1** there is $H \ge 1$ s.t. $|h(p^k)| \le H^k$ at all prime powers;
- 2 $|h(n)| \ll_{\varepsilon} n^{\varepsilon}$ for all $n \in \mathbb{N}, \varepsilon > 0$;
- 3 there is $\alpha_h > 0$ such that

$$\frac{1}{x}\sum_{p\leqslant x}|h(p)|\log p\geqslant \alpha_h;$$

4 for all $x' \in (x/(\log x)^C, x)$, *C* fixed, *x* sufficiently large, $q \leq (\log x)^C$ with $p < \log \log x \Rightarrow p | q$, (A, q) = 1, we have:

$$\frac{q}{x}\sum_{\substack{n\leqslant x\\n\equiv A\ (q)}}h(n) = \frac{q}{x'}\sum_{\substack{n\leqslant x'\\n\equiv A\ (q)}}h(n) + o\left(\frac{q}{\phi(q)}\frac{1}{\log x}\prod_{\substack{p\leqslant x\\p\nmid q}}\left(1+\frac{|h(p)|}{p}\right)\right)$$

Lemma (Shiu)

Suppose conditions (1) and (3) hold. If x is sufficiently large (w.r.t. *H*), *q* divisible by all primes $p < \log \log x$ and gcd(A, q) = 1, then

$$\frac{q}{x} \sum_{\substack{n \leq x \\ n \equiv A \pmod{q}}} |h(n)| \ll \frac{q}{\phi(q)} \frac{1}{\log x} \exp\left(\sum_{\substack{p \leq x \\ p \nmid q}} \frac{|h(p)|}{p}\right),$$

uniformly in A and q, provided that $q \leq x^{1/2}$.

multiplicative functions in arithmetic progressions

Theorem (Granville-Soundararajan). Let C > 0 be fixed, $h : \mathbb{N} \to \mathbb{C}$ multiplicative and bounded. For given *x* consider the primitive characters of conductor $\leq (\log x)^C$ and enumerate them as χ_1, χ_2, \ldots in such a way that

$$\left|\sum_{n\leqslant x}h(n)\overline{\chi_1}(n)\right| \ge \left|\sum_{n\leqslant x}h(n)\overline{\chi_2}(n)\right| \ge \dots$$

If *x* sufficiently large, $x^{1/2} \leq X \leq x$, $q \leq (\log x)^C$ and $k \geq 2$, then

$$\frac{q}{X} \sum_{\substack{n \leq X \\ n \equiv a(q)}} h(n) = \frac{q}{\phi(q)} \sum_{\substack{\chi(q) \\ \text{induced by} \\ \chi_1, \dots, \chi_k}} \chi(a) \frac{1}{X} \sum_{n \leq X} h(n) \overline{\chi}(n) + O_{C,\varepsilon} \left(\sqrt{k} (\log x)^{-1 + \frac{1}{\sqrt{k}} + \varepsilon} \right).$$

A class of multiplicative functions

Let \mathcal{M} denote the set of multiplicative functions $h : \mathbb{N} \to \mathbb{R}$ such that

- **1** there is $H \ge 1$ s.t. $|h(p^k)| \le H^k$ at all prime powers;
- 2 $|h(n)| \ll_{\varepsilon} n^{\varepsilon}$ for all $n \in \mathbb{N}, \varepsilon > 0$;
- 3 there is $\alpha_h > 0$ such that

$$\frac{1}{x}\sum_{p\leqslant x}|h(p)|\log p\geqslant \alpha_h;$$

4 for all $x' \in (x/(\log x)^C, x)$, *C* fixed, *x* sufficiently large, $q \leq (\log x)^C$ with $p < \log \log x \Rightarrow p | q$, (A, q) = 1, we have:

$$\frac{q}{x}\sum_{\substack{n\leqslant x\\n\equiv A\ (q)}}h(n) = \frac{q}{x'}\sum_{\substack{n\leqslant x'\\n\equiv A\ (q)}}h(n) + o\left(\frac{q}{\phi(q)}\frac{1}{\log x}\prod_{\substack{p\leqslant x\\p\nmid q}}\left(1+\frac{|h(p)|}{p}\right)\right)$$

Note: $h \in \mathcal{M}$ satisfies $\frac{1}{x} \sum_{p \leq x} |h(p)| \log p \ge \alpha_h$ and, hence,

$$\prod_{\substack{p \leq x \\ p \nmid q}} \left(1 + \frac{|h(p)|}{p} \right) \gg_{\varepsilon} (\log x)^{\alpha_h - \varepsilon},$$

so can take $k = 1 + \lceil \alpha_h^{-2} \rceil$. We may decompose $h = g * \cdots * g * g'$ into *H* bounded multiplicative functions (+ one with sparse support) by setting

$$g(p^k) = \begin{cases} h(p)/H & \text{if } k = 1\\ 0 & \text{if } k > 1 \end{cases}$$

Applying the above with *g* reduces the stability condition to studying

$$\frac{1}{x}\sum_{n\leqslant x}h(n)\chi(n).$$

for $\chi \pmod{q}$, $q \leq (\log x)^C$.

Write

$$S_f(x) = \frac{1}{x} \sum_{n \leqslant x} f(x).$$

Then the stability-condition is equivalent to:

$$S_{h\chi}(x) \sim S_{h\chi}(x')$$

for $x' \in (x(\log x)^{-C}, x)$ whenever

 $|S_{h\chi}(x)| \asymp S_{|h|}(x)$

for $\chi \pmod{q}$ with $1 < q \leq (\log x)^C$ and $p < \log \log x \implies p|q$.

Can show:

$$S_{|h|}(x) \sim S_{|h|}(x')$$

for $x' \in (x(\log x)^{-C}, x)$.

Using a Selberg–Delange type argument:

• general divisor functions $d_k = \underbrace{\mathbf{1} * \cdots * \mathbf{1}}_{k}$

the function

$$r(n) = \#\{(x, y) \in \mathbb{Z}^2 : x^2 + y^2 = n\}$$

- the indicator function of the set of sums of two squares
- characteristic function of set of numbers composed of primes that split completely in a given Galois extension *K*/Q of finite degree

all belong to \mathcal{M} .

For non-negative *h*: stability holds if the main term in [GS] is determined by trivial character, i.e. if

$$|S_{h\chi}(x)| = o(S_{|h|}(x))$$

for all non-trivial $\chi \pmod{q}$, $q \leq (\log x)^C$.

Example: $h(n) = |\lambda_f(n)|$, λ_f the normalised Hecke-eigenvalue of a primitive holomorphic cusp form of weight $k \in 2\mathbb{N}$ for which

$$|\lambda_f(n)| \leq d(n), \quad \sum_{p \leq x} |\lambda_f(p)| \log p \ge \frac{1}{2} \sum_{p \leq x} \lambda_f^2(p) \log p \sim \frac{x}{2}$$

For $\alpha \in [0, 2]$, # $\{p \leq x : 0 \leq |\lambda_f(p)| \leq \alpha\} \log x \sim x\mu(\alpha)$

[via Halász-Granville-Soundararajan (after decomposing $h\chi$), Sato-Tate, PNT in APs and a consideration of $(t \log p_n)_n \mod 1$]

Let $h_1, \ldots, h_r \in \mathcal{M}$, $\varphi_1, \ldots, \varphi_r$ be as before and $w(x) = \log \log x$. Then there are constants $B_1, B_2 > 0$ and $\widetilde{W} : \mathbb{R}_{>0} \to \mathbb{N}$,

$$orall x: \ \widetilde{W}(x) = \prod_{p < w(x)} p^{lpha(p,x)} \leqslant (\log x)^{B_1}, \quad lpha(p,x) \in \mathbb{N},$$

such that the following asymptotic holds as $T \to \infty$:

$$\frac{1}{\operatorname{vol} TK} \sum_{\mathbf{n} \in \mathbb{Z}^s \cap TK} \prod_{i=1}^r h_i(\varphi_i(\mathbf{n}) + a_i) + \left(\prod_{i=1}^r \frac{1}{T} \sum_{n \leq T} h_i(n)\right)$$

Let $h_1, \ldots, h_r \in \mathcal{M}$, $\varphi_1, \ldots, \varphi_r$ be as before and $w(x) = \log \log x$. Then there are constants $B_1, B_2 > 0$ and $\widetilde{W} : \mathbb{R}_{>0} \to \mathbb{N}$,

$$orall x: \ \widetilde{W}(x) = \prod_{p < w(x)} p^{\alpha(p,x)} \leqslant (\log x)^{B_1}, \quad \alpha(p,x) \in \mathbb{N},$$

such that the following asymptotic holds as $T \to \infty$:

$$\frac{1}{\operatorname{vol} TK} \sum_{\mathbf{n} \in \mathbb{Z}^s \cap TK} \prod_{i=1}^r h_i(\varphi_i(\mathbf{n}) + a_i) = \sum_{\substack{w_1, \dots, w_r \\ p \mid w_i \Rightarrow p < w(T) \\ w_i \leqslant (\log T)^{B_2}}} \sum_{\substack{A_1, \dots, A_r \in \\ (\mathbb{Z}/\widetilde{W}(T)\mathbb{Z})^* \\ w_i \leqslant (\log T)^{B_2}}} \left(\prod_{i=1}^r h_i(w_i) \frac{\widetilde{W}}{T} \sum_{\substack{n \leqslant T \\ n \leqslant A_i \ (\widetilde{W}(T))}} h_i(n) \right)$$

Let $h_1, \ldots, h_r \in \mathcal{M}$, $\varphi_1, \ldots, \varphi_r$ be as before and $w(x) = \log \log x$. Then there are constants $B_1, B_2 > 0$ and $\widetilde{W} : \mathbb{R}_{>0} \to \mathbb{N}$,

$$orall x: \ \widetilde{W}(x) = \prod_{p < w(x)} p^{lpha(p,x)} \leqslant (\log x)^{B_1}, \quad lpha(p,x) \in \mathbb{N},$$

such that the following asymptotic holds as $T \to \infty$:

$$\frac{1}{\operatorname{vol} TK} \sum_{\mathbf{n} \in \mathbb{Z}^s \cap TK} \prod_{i=1}^r h_i(\varphi_i(\mathbf{n}) + a_i) = \sum_{\substack{w_1, \dots, w_r \\ p \mid w_i \Rightarrow p < w(T) \\ w_i \leqslant (\log T)^{B_2}}} \sum_{\substack{A_1, \dots, A_r \in \\ (\mathbb{Z}/\widetilde{W}(T)\mathbb{Z})^* \\ w_i \leqslant (\log T)^{B_2}}} \left(\prod_{i=1}^r h_i(w_i) \frac{\widetilde{W}}{T} \sum_{\substack{n \leqslant T \\ n \equiv A_i \ (\widetilde{W}(T))}} h_i(n) \right) \frac{1}{(w\widetilde{W})^s} \sum_{\substack{\mathbf{v} \in \\ (\mathbb{Z}/w\widetilde{W}\mathbb{Z})^s}} \prod_{j=1}^r \mathbf{1}_{\varphi_j(\mathbf{v}) + a_j \equiv w_j A_j \ (w_j\widetilde{W})}}$$

 $w = \operatorname{lcm}(w_1,\ldots,w_r)$

Let $h_1, \ldots, h_r \in \mathcal{M}$, $\varphi_1, \ldots, \varphi_r$ be as before and $w(x) = \log \log x$. Then there are constants $B_1, B_2 > 0$ and $\widetilde{W} : \mathbb{R}_{>0} \to \mathbb{N}$,

$$orall x: \ \widetilde{W}(x) = \prod_{p < w(x)} p^{\alpha(p,x)} \leqslant (\log x)^{B_1}, \quad \alpha(p,x) \in \mathbb{N},$$

such that the following asymptotic holds as $T \to \infty$:

$$\frac{1}{\operatorname{vol} TK} \sum_{\mathbf{n} \in \mathbb{Z}^s \cap TK} \prod_{i=1}^r h_i(\varphi_i(\mathbf{n}) + a_i) = \sum_{\substack{w_1, \dots, w_r \\ p \mid w_i \Rightarrow p < w(T) \\ w_i \leqslant (\log T)^{B_2}}} \sum_{\substack{A_1, \dots, A_r \in \\ (\mathbb{Z}/\widetilde{W}(T)\mathbb{Z})^*}} \left(\prod_{i=1}^r h_i(w_i) \frac{\widetilde{W}}{T} \sum_{\substack{n \leqslant T \\ n \equiv A_i}} h_i(n) \right) \frac{1}{(w\widetilde{W})^s} \sum_{\substack{\mathbf{v} \in \\ (\mathbb{Z}/w\widetilde{W}\mathbb{Z})^s}} \prod_{j=1}^r \mathbf{1}_{\varphi_j(\mathbf{v}) + a_j \equiv w_j A_j} (w_j \widetilde{W}) \\ w = \operatorname{lcm}(w_1, \dots, w_r) + o\left(\frac{1}{(\log T)^r} \prod_{j=1}^r \prod_{p \leqslant T} \left(1 + \frac{|h_i(p)|}{p} \right) \right)$$

$$\frac{1}{\operatorname{vol} TK} \sum_{\mathbf{n} \in \mathbb{Z}^s \cap T\mathfrak{K}} \prod_{i=1}^r h_i(\varphi_i(\mathbf{n}) + a_i) = \sum_{\substack{w_1, \dots, w_r \\ p \mid w_i \Rightarrow p < w(T) \\ w_i \leqslant (\log T)^{B_2}}} \sum_{\substack{A_1, \dots, A_r \\ \in (\mathbb{Z}/\widetilde{W}(T)\mathbb{Z})^*}} \left(\prod_{i=1}^r h_i(w_i) \frac{\widetilde{W}}{T} \sum_{\substack{n \leqslant T \\ n \equiv A_i \ (\widetilde{W}(T))}} h_i(n) \right) \frac{1}{(w\widetilde{W})^s} \sum_{\substack{\mathbf{v} \in \\ (\mathbb{Z}/w\widetilde{W}\mathbb{Z})^s}} \prod_{j=1}^r \mathbf{1}_{\varphi_j(\mathbf{v}) + a_j \equiv w_j A_j \ (w_j \widetilde{W})} \\ w = \operatorname{lcm}(w_1, \dots, w_r) + o\left(\frac{1}{(\log T)^r} \prod_{j=1}^r \prod_{p \leqslant T} \left(1 + \frac{|h_i(p)|}{p} \right) \right).$$

$$\frac{1}{\operatorname{vol} TK} \sum_{\mathbf{n} \in \mathbb{Z}^s \cap T\mathfrak{K}} \prod_{i=1}^r h_i(\varphi_i(\mathbf{n}) + a_i) = \sum_{\substack{w_1, \dots, w_r \\ p \mid w_i \Rightarrow p < w(T) \\ w_i \leqslant (\log T)^{B_2}}} \sum_{\substack{A_1, \dots, A_r \\ \in (\mathbb{Z}/\widetilde{W}(T)\mathbb{Z})^*}} \left(\prod_{i=1}^r h_i(w_i) \frac{\widetilde{W}}{T} \sum_{\substack{n \leqslant T \\ n \equiv A_i}} h_i(n) \right) \frac{1}{(w\widetilde{W})^s} \sum_{\substack{\mathbf{v} \in \\ (\mathbb{Z}/w\widetilde{W}\mathbb{Z})^s}} \prod_{j=1}^r \mathbf{1}_{\varphi_j(\mathbf{v}) + a_j \equiv w_j A_j} (w_j \widetilde{W}) + w_j = \operatorname{lcm}(w_1, \dots, w_r) + o\left(\frac{1}{(\log T)^r} \prod_{j=1}^r \prod_{p \leqslant T} \left(1 + \frac{|h_i(p)|}{p} \right) \right).$$

Write

$$S_f(x) = \frac{1}{x} \sum_{n \leqslant x} f(x).$$

The error term dominates if $|S_{h_i}(x)| = o(S_{|h_i|}(x))$ for some *i*.

By recent work of Elliott / Tenenbaum, $|S_{h_j}(x)| \simeq S_{|h_j|}(x)$ if there exists $t \in \mathbb{R}$ such that

$$\sum_{p} \frac{|h_j(p)| - \Re(h_j(p)p^{it})}{p} < \infty,$$

and $|S_{h_i}(x)| = o(S_{|h_i|}(x))$ otherwise.

By recent work of Elliott / Tenenbaum, $|S_{h_j}(x)| \simeq S_{|h_j|}(x)$ if there exists $t \in \mathbb{R}$ such that

$$\sum_{p} \frac{|h_j(p)| - \Re(h_j(p)p^{it})}{p} < \infty,$$

and $|S_{h_i}(x)| = o(S_{|h_i|}(x))$ otherwise.

Frantzikinakis and Host (2016) studied correlations of bounded complex-valued h_i for which there are t_i and χ_i such that

$$\sum_{p} \frac{1 - \Re(h_j(p)\chi_j(p)p^{it_j})}{p} < \infty.$$

In the same setting, Klurman (2016) obtains asymptotics for

$$\sum_{n\leqslant x}h_1(P_1(n))\ldots h_r(P_r(n)).$$

Green and Tao's nilpotent Hardy-Littlewood method Aim: Asymptotic formulae for linear correlations of arithmetic functions

$$arphi_1, \dots, arphi_r \in \mathbb{Z}[X_1, \dots, X_s]$$
 pai
 $a_1, \dots, a_r \in \mathbb{Z}$
 $h_1, \dots, h_r : \mathbb{Z} \to \mathbb{C}$

linear forms, pairwise non-proportional

Consider the linear correlation

$$\sum_{\mathbf{x}\in\mathbb{Z}^s\cap tK}h_1(\varphi_1(\mathbf{x})+a_1)\ldots h_r(\varphi_r(\mathbf{x})+a_r)$$

where $K \subset [-1, 1]^s$, convex. (as $t \to \infty$)

Green and Tao's nilpotent Hardy-Littlewood method Aim: Asymptotic formulae for linear correlations of arithmetic functions

$$\varphi_1, \dots, \varphi_r \in \mathbb{Z}[X_1, \dots, X_s]$$
 linear forms,
pairwise non-proportional
 $a_1, \dots, a_r \in \mathbb{Z}$
 $h_1, \dots, h_r : \mathbb{Z} \to \mathbb{C}$

Consider the linear correlation

$$\sum_{\mathbf{x}\in\mathbb{Z}^s\cap tK} h_1(\varphi_1(\mathbf{x})+a_1)\dots h_r(\varphi_r(\mathbf{x})+a_r) = t^s\beta_{\infty}\prod_p\beta_p + o(t^s),$$

where $K \subset [-1,1]^s$, convex. (as $t \to \infty$)

Such asymptotic formulae hold, provided

- 1. there are simultaneous pseudo-random majorants for the functions $h_1|_{\{1,...,T\}}, \ldots, h_r|_{\{1,...,T\}}, T \to \infty$;
- 2. as $T \to \infty$,

$$h_i\Big|_{\{1,\dots,T\}} - \Big(\frac{1}{T}\sum_{m\leqslant T}h_i(m)\Big), \qquad (1\leqslant i\leqslant r),$$

is orthogonal to nilsequences.

Such asymptotic formulae hold, provided

- 1. there are simultaneous pseudo-random majorants for the functions $h_1|_{\{1,...,T\}}, \ldots, h_r|_{\{1,...,T\}}, T \to \infty$;
- 2. as $T \to \infty$,

$$h_i\Big|_{\{1,\dots,T\}} - \Big(\frac{1}{T}\sum_{m\leqslant T}h_i(m)\Big), \qquad (1\leqslant i\leqslant r),$$

is orthogonal to nilsequences.

" *h*_i has no non-trivial large Fourier coefficient."

Family of pseudo-random majorants

$$\left\{ \nu^{(T)} : \{1, \dots, T\} \to \mathbb{R}_{>0} \right\}_{T \in \mathbb{N}} \quad \text{such that} \quad \nu^{(T)} \quad \text{is}$$
 1. a pointwise majorant

 $|h(n)| \ll \nu^{(T)}(n)$ for $n \leq T$, uniformly in *T*,

Family of pseudo-random majorants

$$\begin{cases} \nu^{(T)} : \{1, \dots, T\} \to \mathbb{R}_{>0} \end{cases}_{T \in \mathbb{N}} & \text{such that} \quad \nu^{(T)} \text{ is} \\ 1. \text{ a pointwise majorant} & \\ |h(n)| \ll \nu^{(T)}(n) & \text{ for } n \leqslant T, & \text{uniformly in } T, \end{cases}$$

2. of correct average order

$$\frac{1}{T}\sum_{n\leqslant T}\nu^{(T)}(n)\ll \frac{1}{T}\sum_{n\leqslant T}|h(n)|,$$

Family of pseudo-random majorants

$$\begin{cases} \nu^{(T)} : \{1, \dots, T\} \to \mathbb{R}_{>0} \end{cases}_{T \in \mathbb{N}} & \text{such that} \quad \nu^{(T)} \text{ is} \\ 1. \text{ a pointwise majorant} & \\ |h(n)| \ll \nu^{(T)}(n) & \text{ for } n \leqslant T, \quad \text{uniformly in } T, \end{cases}$$

2. of correct average order

$$\frac{1}{T}\sum_{n\leqslant T}\nu^{(T)}(n)\ll \frac{1}{T}\sum_{n\leqslant T}|h(n)|,$$

3. satisfies the linear forms condition: As $T \to \infty$,

$$\frac{1}{T^d} \sum_{\mathbf{n} \in [1,T]^d} \prod_{i=1}^t \nu^{(T)}(\psi_i(\mathbf{n})) = (1+o(1)) \prod_{i=1}^t \frac{1}{T} \sum_{n \leq T} \nu^{(T)}(n)$$

for $\psi_i(\mathbf{n}) = \varphi_i(\mathbf{n}) + a_i$ with $\varphi_i \in \mathbb{Z}[u_1, \dots, u_s]$ pw linearly independed linear forms where *t*, *d*, and the coeff's are bounded.

For multiplicative arith. functions one can hope for

$$\nu^{(T)}(m) = \sum_{d \leqslant T^{\gamma}} \mathbf{1}_{d|m} \lambda_d,$$

where $\gamma \in (0, 1/2)$ can be chosen as small as necessary.

Goldston-Yıldırım, Green-Tao:

$$\nu^{(T)}(m) = \left(\sum_{d|m} \mu(d)\chi\left(\frac{\log d}{\log T^{\gamma}}\right)\right)^2.$$

For multiplicative arith. functions one can hope for

$$\nu^{(T)}(m) = \sum_{d \leqslant T^{\gamma}} \mathbf{1}_{d|m} \lambda_d,$$

where $\gamma \in (0, 1/2)$ can be chosen as small as necessary.

Goldston-Yıldırım, Green-Tao:

$$\nu^{(T)}(m) = \left(\sum_{d|m} \mu(d)\chi\left(\frac{\log d}{\log T^{\gamma}}\right)\right)^2.$$

 $h = \mathbf{1} \ast (\mu \ast h)$

Suppose $h : \mathbb{N} \to \mathbb{R}_{>0}$ is multiplicative

Suppose $h : \mathbb{N} \to \mathbb{R}_{>0}$ is multiplicative and satisfies (a) $h(p^k) \leq H^k$ for all prime powers, (b) $h(m) \ll_{\delta} m^{\delta}$ as $m \to \infty$ for any $\delta > 0$, and (c) $h(p^{k-1}) \leq h(p^k)$ for all prime powers. (Thus $g = \mu * h$ is non-negative.)

Suppose $h : \mathbb{N} \to \mathbb{R}_{>0}$ is multiplicative and satisfies (a) $h(p^k) \leq H^k$ for all prime powers, (b) $h(m) \ll_{\delta} m^{\delta}$ as $m \to \infty$ for any $\delta > 0$, and (c) $h(p^{k-1}) \leq h(p^k)$ for all prime powers. (Thus $g = \mu * h$ is non-negative.)

Define
$$h_{\gamma}^{(T)}: \{1, \dots, T\} \to \mathbb{R}_{\geq 0}$$
 via
 $h_{\gamma}^{(T)}(m) = \sum_{d \leq T^{\gamma}} \mathbf{1}_{d|m} g(d).$

Suppose $h : \mathbb{N} \to \mathbb{R}_{>0}$ is multiplicative and satisfies (a) $h(p^k) \leq H^k$ for all prime powers, (b) $h(m) \ll_{\delta} m^{\delta}$ as $m \to \infty$ for any $\delta > 0$, and (c) $h(p^{k-1}) \leq h(p^k)$ for all prime powers. (Thus $g = \mu * h$ is non-negative.)

Define
$$h_{\gamma}^{(T)}: \{1, \dots, T\} \to \mathbb{R}_{\geq 0}$$
 via
 $h_{\gamma}^{(T)}(m) = \sum_{d \leq T^{\gamma}} \mathbf{1}_{d|m} g(d).$

Would like $h(m) \ll h_{\gamma}^{(T)}(m)$ for $m \leqslant T$.

Suppose $h : \mathbb{N} \to \mathbb{R}_{>0}$ is multiplicative and satisfies (a) $h(p^k) \leq H^k$ for all prime powers, (b) $h(m) \ll_{\delta} m^{\delta}$ as $m \to \infty$ for any $\delta > 0$, and (c) $h(p^{k-1}) \leq h(p^k)$ for all prime powers. (Thus $g = \mu * h$ is non-negative.)

Define
$$h_{\gamma}^{(T)}: \{1, \dots, T\} \to \mathbb{R}_{\geq 0}$$
 via
 $h_{\gamma}^{(T)}(m) = \sum_{d \leq T^{\gamma}} \mathbf{1}_{d|m} g(d).$

Would like $h(m) \ll h_{\gamma}^{(T)}(m)$ for $m \leqslant T$. Consider *bad* sets $S(\kappa) = \{m \leqslant T : h(m) > H^{\kappa}h_{\gamma}^{(T)}(m)\}.$

Suppose $h : \mathbb{N} \to \mathbb{R}_{>0}$ is multiplicative and satisfies (a) $h(p^k) \leq H^k$ for all prime powers, (b) $h(m) \ll_{\delta} m^{\delta}$ as $m \to \infty$ for any $\delta > 0$, and (c) $h(p^{k-1}) \leq h(p^k)$ for all prime powers. (Thus $g = \mu * h$ is non-negative.)

Define
$$h_{\gamma}^{(T)}: \{1, \dots, T\} \to \mathbb{R}_{\geq 0}$$
 via
 $h_{\gamma}^{(T)}(m) = \sum_{d \leq T^{\gamma}} \mathbf{1}_{d|m} g(d).$

Would like $h(m) \ll h_{\gamma}^{(T)}(m)$ for $m \leq T$. Consider *bad* sets $S(\kappa) = \{m \leq T : h(m) > H^{\kappa}h_{\gamma}^{(T)}(m)\}$. Note that

 $\forall m \exists \kappa : m \in S(\kappa) \setminus S(\kappa+1) \quad \text{thus} \quad h(m) \leqslant \sum_{\kappa \geqslant 0} H^{\kappa+1} \mathbf{1}_{S(\kappa)}(m) h_{\gamma}^{(T)}(m).$

With the help of a structure theorem (due to Erdős) for $S(\kappa)$, this yields a pseudo-random majorant

$$|h(n)| \ll \nu^{\sharp}(n)$$

for $h \in \mathcal{M}$ with

$$1\leqslant |h(p^{k-1})|\leqslant |h(p^k)|\;,\quad (k\geqslant 1).$$

Decomposing *h*

Suppose $h : \mathbb{N} \to \mathbb{R}_{\geq 0}$.

$$h(n) = h^{\sharp}(n)h^{\flat}(n),$$

where

$$h^{\sharp}(p^k) = \max(1, h(p), \dots, h(p^k)),$$
 i.e. $h^{\sharp}(p^{k-1}) \leqslant h^{\sharp}(p^k)$, and

$$h^{\flat}(p^k) = h(p^k)/h^{\sharp}(p^k) \quad (\leqslant 1)$$

Then

$$h(n) \ll \nu(n) = \nu^{\sharp}(n)\nu^{\flat}(n)$$

if

 $h^{\flat}(n) \ll \nu^{\flat}(n).$

Note: If $n = m_1 m_2$ and $(m_1, m_2) = 1$, then $h(n) \leq h(m_1)$.

Note: If $n = m_1m_2$ and $(m_1, m_2) = 1$, then $h(n) \leq h(m_1)$. Aim: Assign to any $n \leq T$ a suitable divisor $m(n) \leq T^{\gamma}$ and set $\nu^{\flat}(n) = h(m(n))$.

Note: If $n = m_1m_2$ and $(m_1, m_2) = 1$, then $h(n) \leq h(m_1)$.

Aim: Assign to any $n \leq T$ a suitable divisor $m(n) \leq T^{\gamma}$ and set $\nu^{\flat}(n) = h(m(n))$.

Problem: Need to be able to reconstruct for any divisor *m*, the set $\{n : m(n) = m\}$.

Note: If $n = m_1m_2$ and $(m_1, m_2) = 1$, then $h(n) \leq h(m_1)$.

Aim: Assign to any $n \leq T$ a suitable divisor $m(n) \leq T^{\gamma}$ and set $\nu^{\flat}(n) = h(m(n))$.

Problem: Need to be able to reconstruct for any divisor *m*, the set $\{n : m(n) = m\}$.

Solution:

$$n = p_1^{a_1} \dots p_k^{a_k}, \quad \prod_{i < j} p_i^{a_i} > T^{\gamma}$$

Note: If $n = m_1 m_2$ and $(m_1, m_2) = 1$, then $h(n) \leq h(m_1)$.

Aim: Assign to any $n \leq T$ a suitable divisor $m(n) \leq T^{\gamma}$ and set $\nu^{\flat}(n) = h(m(n))$.

Problem: Need to be able to reconstruct for any divisor *m*, the set $\{n : m(n) = m\}$.

Solution:

$$n = p_1^{a_1} \dots p_k^{a_k}, \quad \prod_{i < j} p_i^{a_i} > T^{\gamma}$$

$$\nu^{\nu}(n) = \sum_{\substack{Q \leqslant T^{\gamma} \\ p \mid m \Rightarrow p < Q}} \sum_{\substack{\mathbf{1}_{Qm \mid n} \ \mathbf{1}_{Qm > T^{\gamma}} \ \mathbf{1}_{(p \mid \frac{n}{Qm} \Rightarrow p > Q)} h(Qm)} h(Qm) .$$

Green and Tao's nilpotent Hardy-Littlewood method

- 1. there are simultaneous pseudo-random majorants for the functions $h_1|_{\{1,...,t\}}, \ldots, h_r|_{\{1,...,t\}}, t \to \infty$;
- 2. as $t \to \infty$,

$$h_i\Big|_{\{1,\ldots,t\}} - \Big(\frac{1}{t}\sum_{m\leqslant t}h_i(m)\Big), \qquad (1\leqslant i\leqslant r),$$

is orthogonal to nilsequences. " h_i has no non-trivial large Fourier coefficient."

Combined with a proof of part 2, this allows us to evaluate

$$\sum_{\mathbf{x}\in\mathbb{Z}^s\cap TK}h_1(\varphi_1(\mathbf{x})+a_1)\ldots h_r(\varphi_r(\mathbf{x})+a_r)$$

with $h_1, \ldots, h_r \in \mathcal{M}$.