Determination of elliptic curves by their adjoint *p*-adic *L*-functions

Maria Nastasescu

February 2, 2017

Based on:

Journal of Number Theory 152 (2015) 156–181

Complex L-function of an elliptic curve

Given *E*/ℚ an elliptic curve with conductor *N*, define the complex *L*-function of *E* by the Euler product for Re(*s*) > ³/₂:

$$L(E, s) = \prod_{r \mid N} \frac{1}{1 - a_r r^{-s}} \prod_{r \nmid N} \frac{1}{1 - a_r r^{-s} + r^{1-2s}}$$

where $a_r = r + 1 - \#E(\mathbb{F}_r)$ if $r \nmid N$.

Complex L-function of an elliptic curve

Given *E*/ℚ an elliptic curve with conductor *N*, define the complex *L*-function of *E* by the Euler product for Re(*s*) > ³/₂:

$$L(E, s) = \prod_{r \mid N} \frac{1}{1 - a_r r^{-s}} \prod_{r \nmid N} \frac{1}{1 - a_r r^{-s} + r^{1-2s}}$$

where $a_r = r + 1 - \#E(\mathbb{F}_r)$ if $r \nmid N$.

If *r*|*N* then *a_r* depends on the reduction of *E* at *r*. More specifically, *a_r* = 1 if *E* has split multiplicative reduction at *r*, *a_r* = −1 if *E* has non-split multiplicative reduction at *r* and *a_r* = 0 if *E* has additive reduction at *r*.

Complex L-function of an elliptic curve

Given *E*/ℚ an elliptic curve with conductor *N*, define the complex *L*-function of *E* by the Euler product for Re(*s*) > ³/₂:

$$L(E, s) = \prod_{r \mid N} \frac{1}{1 - a_r r^{-s}} \prod_{r \nmid N} \frac{1}{1 - a_r r^{-s} + r^{1-2s}}$$

where $a_r = r + 1 - \#E(\mathbb{F}_r)$ if $r \nmid N$.

- If r|N then a_r depends on the reduction of E at r. More specifically, a_r = 1 if E has split multiplicative reduction at r, a_r = −1 if E has non-split multiplicative reduction at r and a_r = 0 if E has additive reduction at r.
- L(E, s) extends to a holomorphic function on C satisfying a functional equation between s and 2 s.

Complex adjoint L-function of an elliptic curve

• The symmetric square *L*-function of *E* for Re(s) > 2:

$$L(Sym^{2}E, s) = \prod_{r \text{ prime}} P_{r}(r^{-s})^{-1}.$$

Complex adjoint L-function of an elliptic curve

The symmetric square *L*-function of *E* for Re(s) > 2:

$$L(Sym^2E, s) = \prod_{r \text{ prime}} P_r(r^{-s})^{-1}$$

When E has good reduction at r, we have

$$P_r(X) = (1 - \alpha_r^2 X)(1 - \beta_r^2 X)(1 - rX).$$

Here α_r and β_r are the roots of the polynomial

$$X^2 - a_r X + r$$

with a_r the trace of the Frobenius at r.

Complex adjoint L-function of an elliptic curve

The symmetric square *L*-function of *E* for Re(s) > 2:

$$L(Sym^2E, s) = \prod_{r \text{ prime}} P_r(r^{-s})^{-1}$$

When E has good reduction at r, we have

$$P_r(X) = (1 - \alpha_r^2 X)(1 - \beta_r^2 X)(1 - rX).$$

Here α_r and β_r are the roots of the polynomial

$$X^2 - a_r X + r$$

with a_r the trace of the Frobenius at r.

Let χ be an even Dirichlet character. Then L(Sym²E, χ, s) has a holomorphic continuation over C and satisfies a functional equation between s and 3 − s.

Maria Nastasescu

Faltings: L(E, s) determines the elliptic curve E up to isogeny.

- Faltings: L(E, s) determines the elliptic curve E up to isogeny.
- **Luo-Ramakrishnan**: a *p*-adic analogue $L_p(E, s)$ also determines the elliptic curve *E* up to isogeny.

- Faltings: L(E, s) determines the elliptic curve E up to isogeny.
- Luo-Ramakrishnan: a *p*-adic analogue L_p(E, s) also determines the elliptic curve E up to isogeny.
- Question: Does the symmetric square *L*-function of *E* determine the elliptic curve? What about its *p*-adic analogue?

- Faltings: L(E, s) determines the elliptic curve E up to isogeny.
- **Luo-Ramakrishnan**: a *p*-adic analogue $L_p(E, s)$ also determines the elliptic curve *E* up to isogeny.
- Question: Does the symmetric square *L*-function of *E* determine the elliptic curve? What about its *p*-adic analogue?
- Answer: The values $\{L_{\rho}(Sym^{2}E, c_{n}\}_{n\geq 0}$ determine *E* up to quadratic twists.

Theorem (N.)

Let E, E' be elliptic curves over \mathbb{Q} with semistable reduction at p. Suppose

$$L_{p}(Sym^{2}E, n) = CL_{p}(Sym^{2}E', n)$$

for infinitely many integers n prime to p and some constant $C \in \overline{\mathbb{Q}}$. Then E' is isogenous to a quadratic twist E_D of E. If E and E' have square free conductors, then E and E' are isogenous over \mathbb{Q} .

To an elliptic curve E of conductor N we can associate a holomorphic newform f of weight 2 and level N.

- To an elliptic curve E of conductor N we can associate a holomorphic newform f of weight 2 and level N.
- If c_n denote the Fourier coefficients of f then

$$L(E,s)=\sum_{n=1}^{\infty}c_nn^{-s}.$$

- To an elliptic curve E of conductor N we can associate a holomorphic newform f of weight 2 and level N.
- If *c_n* denote the Fourier coefficients of *f* then

$$L(E,s)=\sum_{n=1}^{\infty}c_nn^{-s}.$$

We associate to *f* a unitary cuspidal automorphic form π of GL(2, A_Q) with trivial character and conductor *N*.

- To an elliptic curve E of conductor N we can associate a holomorphic newform f of weight 2 and level N.
- If *c_n* denote the Fourier coefficients of *f* then

$$L(E,s)=\sum_{n=1}^{\infty}c_nn^{-s}.$$

- We associate to *f* a unitary cuspidal automorphic form π of GL(2, A_Q) with trivial character and conductor *N*.
- We set

$$L_u(\pi, s) = (2\pi)^{-s-1/2} L\left(E, s + \frac{1}{2}\right).$$

$$L(Sym^{2}E, s) = L(\pi, s - 1, sym^{2}) = L(Sym^{2}\pi, s - 1)$$

- $L(Sym^{2}E, s) = L(\pi, s 1, sym^{2}) = L(Sym^{2}\pi, s 1)$
- Gelbart-Jacquet: Sym²(π) an isobaric representation of GL(3, A_Q)

- $L(Sym^{2}E, s) = L(\pi, s 1, sym^{2}) = L(Sym^{2}\pi, s 1)$
- Gelbart-Jacquet: Sym²(π) an isobaric representation of GL(3, A_Q)
- Sym²(π) is cuspidal only if *E* is not of CM-type

- $L(Sym^2E, s) = L(\pi, s 1, sym^2) = L(Sym^2\pi, s 1)$
- Gelbart-Jacquet: Sym²(π) an isobaric representation of GL(3, A_Q)
- Sym²(π) is cuspidal only if *E* is not of CM-type
- Suppose an elliptic curve *E* over \mathbb{Q} is of CM-type. This means that $\operatorname{End}(E) \otimes \mathbb{Q} = K$ for some $K = \mathbb{Q}(\sqrt{-D})$

- $L(Sym^2E, s) = L(\pi, s 1, sym^2) = L(Sym^2\pi, s 1)$
- Gelbart-Jacquet: Sym²(π) an isobaric representation of GL(3, A_Q)
- Sym²(π) is cuspidal only if *E* is not of CM-type
- Suppose an elliptic curve *E* over \mathbb{Q} is of CM-type. This means that $\text{End}(E) \otimes \mathbb{Q} = K$ for some $K = \mathbb{Q}(\sqrt{-D})$
- In this case, $L(E, s) = L(\eta, s \frac{1}{2})$ for some unitary Hecke character η of the idele class group C_{K}

- $L(Sym^2E, s) = L(\pi, s 1, sym^2) = L(Sym^2\pi, s 1)$
- Gelbart-Jacquet: Sym²(π) an isobaric representation of GL(3, A_Q)
- Sym²(π) is cuspidal only if *E* is not of CM-type
- Suppose an elliptic curve *E* over \mathbb{Q} is of CM-type. This means that $\text{End}(E) \otimes \mathbb{Q} = K$ for some $K = \mathbb{Q}(\sqrt{-D})$
- In this case, $L(E, s) = L(\eta, s \frac{1}{2})$ for some unitary Hecke character η of the idele class group C_{κ}
- Then π = I^Q_K(η) will be the cuspidal representation of GL(2, A_Q) associated to *E*.

- $L(Sym^2E, s) = L(\pi, s 1, sym^2) = L(Sym^2\pi, s 1)$
- Gelbart-Jacquet: Sym²(π) an isobaric representation of GL(3, A_Q)
- Sym²(π) is cuspidal only if *E* is not of CM-type
- Suppose an elliptic curve *E* over \mathbb{Q} is of CM-type. This means that $\text{End}(E) \otimes \mathbb{Q} = K$ for some $K = \mathbb{Q}(\sqrt{-D})$
- In this case, $L(E, s) = L(\eta, s \frac{1}{2})$ for some unitary Hecke character η of the idele class group C_{κ}
- Then π = I^Q_K(η) will be the cuspidal representation of GL(2, A_Q) associated to *E*.
- Sym²(π) \cong $I_{\mathcal{K}}^{\mathbb{Q}}(\eta^2) \boxplus \eta_0$, with η_0 the restriction of η to \mathbb{Q} .

- $L(Sym^2E, s) = L(\pi, s 1, sym^2) = L(Sym^2\pi, s 1)$
- Gelbart-Jacquet: Sym²(π) an isobaric representation of GL(3, A_Q)
- Sym²(π) is cuspidal only if *E* is not of CM-type
- Suppose an elliptic curve *E* over \mathbb{Q} is of CM-type. This means that $\text{End}(E) \otimes \mathbb{Q} = K$ for some $K = \mathbb{Q}(\sqrt{-D})$
- In this case, $L(E, s) = L(\eta, s \frac{1}{2})$ for some unitary Hecke character η of the idele class group C_{κ}
- Then π = I^Q_K(η) will be the cuspidal representation of GL(2, A_Q) associated to *E*.
- **Sym**²(π) \cong $I_{\mathcal{K}}^{\mathbb{Q}}(\eta^2) \boxplus \eta_0$, with η_0 the restriction of η to \mathbb{Q} .
- $L(Sym^2\pi, s) = L(\pi', s)L(\eta_0, s)$, with $\pi' = I_K^{\mathbb{Q}}(\eta^2)$ cuspidal automorphic representation of GL(2, A_Q)

Step 1: Reduce the problem to showing that the values {L(Sym²E, χ, 2)} for infinitely many χ p-power characters determine E up to quadratic twists.

- Step 1: Reduce the problem to showing that the values {L(Sym²E, χ, 2)} for infinitely many χ p-power characters determine E up to quadratic twists.
- Step 2: Reduce the problem to showing that the values {L(π ⊗ χ, 1, sym²)} for infinitely many χ p-power characters determine π up to a twist by a quadratic character. Here π is the cuspidal automorphic representation of GL(2, A_Q) associated to E.

- Step 1: Reduce the problem to showing that the values {L(Sym²E, χ, 2)} for infinitely many χ p-power characters determine E up to quadratic twists.
- Step 2: Reduce the problem to showing that the values {L(π ⊗ χ, 1, sym²)} for infinitely many χ p-power characters determine π up to a twist by a quadratic character. Here π is the cuspidal automorphic representation of GL(2, A_Q) associated to E.
- **Step 3:** $L(\pi \otimes \chi, 1, sym^2) \neq 0$ for infinitely many χp -power characters.

- Step 1: Reduce the problem to showing that the values {L(Sym²E, χ, 2)} for infinitely many χ p-power characters determine E up to quadratic twists.
- Step 2: Reduce the problem to showing that the values {L(π ⊗ χ, 1, sym²)} for infinitely many χ p-power characters determine π up to a twist by a quadratic character. Here π is the cuspidal automorphic representation of GL(2, A_Q) associated to E.
- **Step 3:** $L(\pi \otimes \chi, 1, sym^2) \neq 0$ for infinitely many χp -power characters.
- **Step 4:** The values { $L(\pi \otimes \chi, 1, sym^2)$ } with χ a p-power character determine π up to twists by quadratic characters.

■ Fix *p* an odd prime and let *E*/ℚ be an elliptic curve with semistable reduction at *p*.

- Fix *p* an odd prime and let *E*/ℚ be an elliptic curve with semistable reduction at *p*.
- Let X_p be the set of continuous characters of \mathbb{Z}_p^{\times} into \mathbb{C}_p^{\times} .

- Fix *p* an odd prime and let *E*/ℚ be an elliptic curve with semistable reduction at *p*.
- Let X_p be the set of continuous characters of \mathbb{Z}_p^{\times} into \mathbb{C}_p^{\times} .

 $\blacksquare \mathbb{Z}_p^{\times} \cong (1 + p\mathbb{Z}_p) \times (\mathbb{Z}/p)^{\times}$

- Fix *p* an odd prime and let *E*/ℚ be an elliptic curve with semistable reduction at *p*.
- Let X_p be the set of continuous characters of \mathbb{Z}_p^{\times} into \mathbb{C}_p^{\times} .
- $\blacksquare \mathbb{Z}_p^{\times} \cong (1 + p\mathbb{Z}_p) \times (\mathbb{Z}/p)^{\times}$
- X_p is a product of X((ℤ/p)[×]) with X(1 + pℤ_p), which are called wild *p*-adic characters.

- Fix *p* an odd prime and let *E*/ℚ be an elliptic curve with semistable reduction at *p*.
- Let X_p be the set of continuous characters of \mathbb{Z}_p^{\times} into \mathbb{C}_p^{\times} .
- $\blacksquare \mathbb{Z}_p^{\times} \cong (1 + p\mathbb{Z}_p) \times (\mathbb{Z}/p)^{\times}$
- X_p is a product of X((ℤ/p)[×]) with X(1 + pℤ_p), which are called wild *p*-adic characters.
- Given *χ* a nontrivial even wild *p*-adic character of conductor *p<sup>m_χ*, we can identify it with a Dirichlet character.
 </sup>

- Fix *p* an odd prime and let *E*/ℚ be an elliptic curve with semistable reduction at *p*.
- Let X_p be the set of continuous characters of \mathbb{Z}_p^{\times} into \mathbb{C}_p^{\times} .
- $\blacksquare \mathbb{Z}_p^{\times} \cong (1 + p\mathbb{Z}_p) \times (\mathbb{Z}/p)^{\times}$
- X_p is a product of X((ℤ/p)[×]) with X(1 + pℤ_p), which are called wild *p*-adic characters.
- Given *χ* a nontrivial even wild *p*-adic character of conductor *p<sup>m_χ*, we can identify it with a Dirichlet character.
 </sup>
- **Dabrowski-Delbourgo:** construct a *p*-adic analogue to $L(Sym^2E, \chi, s)$ with $s \in \mathbb{Z}_p$ by the Mellin transform of a *p*-adic distribution μ_p on \mathbb{Z}_p^{\times} .

- Fix *p* an odd prime and let *E*/ℚ be an elliptic curve with semistable reduction at *p*.
- Let X_p be the set of continuous characters of \mathbb{Z}_p^{\times} into \mathbb{C}_p^{\times} .
- $\blacksquare \mathbb{Z}_p^{\times} \cong (1 + p\mathbb{Z}_p) \times (\mathbb{Z}/p)^{\times}$
- X_p is a product of X((ℤ/p)[×]) with X(1 + pℤ_p), which are called wild *p*-adic characters.
- Given *χ* a nontrivial even wild *p*-adic character of conductor *p^{m_χ}*, we can identify it with a Dirichlet character.
- **Dabrowski-Delbourgo:** construct a *p*-adic analogue to $L(Sym^2E, \chi, s)$ with $s \in \mathbb{Z}_p$ by the Mellin transform of a *p*-adic distribution μ_p on \mathbb{Z}_p^{\times} .
- This distribution µ_p is defined by interpolating the values of the complex symmetric square *L*-function at all twists by Dirichlet characters of *p*-power order

Višik's theory of *h*-admissible measures

Assume that μ takes values in C_ρ. We say that μ is a bounded measure if

$$\Big|\int_{a+p^n\mathbb{Z}_p}\mathsf{d}\mu\Big|_p$$

is bounded for all $n \in \mathbb{N}$ and (a, p) = 1.

Višik's theory of *h*-admissible measures

Assume that µ takes values in C_p. We say that µ is a bounded measure if

$$\Big|\int_{a+p^n\mathbb{Z}_p}\mathsf{d}\mu\Big|_p$$

is bounded for all $n \in \mathbb{N}$ and (a, p) = 1.

A measure µ is called *h*-admissible if it satisfies the following growth condition:

$$\sup_{\boldsymbol{a}\in\mathbb{Z}_p^\times}\left\|\int_{\boldsymbol{a}+\boldsymbol{p}^n\mathbb{Z}_p}(\boldsymbol{x}-\boldsymbol{a})^i\mathsf{d}\mu\right\|=o(\boldsymbol{p}^{n(i-h)})$$

for all integers $0 \le i < h$ and all *n*.

Višik's theory of *h*-admissible measures

Assume that µ takes values in C_p. We say that µ is a bounded measure if

$$\Big|\int_{a+p^n\mathbb{Z}_p}\mathsf{d}\mu\Big|_p$$

is bounded for all $n \in \mathbb{N}$ and (a, p) = 1.

A measure µ is called *h*-admissible if it satisfies the following growth condition:

$$\sup_{\boldsymbol{a}\in\mathbb{Z}_p^\times}\left\|\int_{\boldsymbol{a}+\boldsymbol{p}^n\mathbb{Z}_p}(\boldsymbol{x}-\boldsymbol{a})^i\mathsf{d}\boldsymbol{\mu}\right\|=o(\boldsymbol{p}^{n(i-h)})$$

for all integers $0 \le i < h$ and all *n*.

The set of *h*-admissible measures with *h* = 1 is strictly larger, but contains the bounded measures.

Maria Nastasescu

Suppose first that E has good reduction at p.

• We define a distribution μ_p on *E* such that

$$\int_{\mathbb{Z}_p^{\times}} \chi d\mu_p = C_E \cdot \alpha_p(E)^{-2m_{\chi}} \tau(\overline{\chi})^2 p^{m_{\chi}} L(Sym^2 E, \chi, 2)$$

with α_{p} the root of $X^{2} - a_{p}X + p$ with $a_{p} = p + 1 - \#E(\mathbb{F}_{p})$.

Suppose first that E has good reduction at p.

• We define a distribution μ_p on *E* such that

$$\int_{\mathbb{Z}_p^{\times}} \chi d\mu_p = C_E \cdot \alpha_p(E)^{-2m_{\chi}} \tau(\overline{\chi})^2 p^{m_{\chi}} L(Sym^2 E, \chi, 2)$$

with α_p the root of $X^2 - a_p X + p$ with $a_p = p + 1 - \#E(\mathbb{F}_p)$.

If *E* has good ordinary reduction at *p*, the distribution µ_p is a bounded measure on Z[×]_p.

Suppose first that E has good reduction at p.

• We define a distribution μ_p on *E* such that

$$\int_{\mathbb{Z}_{p}^{\times}} \chi d\mu_{p} = C_{E} \cdot \alpha_{p}(E)^{-2m_{\chi}} \tau(\overline{\chi})^{2} p^{m_{\chi}} L(Sym^{2}E, \chi, 2)$$

with α_p the root of $X^2 - a_p X + p$ with $a_p = p + 1 - \#E(\mathbb{F}_p)$.

- If *E* has good ordinary reduction at *p*, the distribution µ_p is a bounded measure on Z[×]_p.
- If *E* has supersingular reduction at *p* then μ_p is a 2-admissible measure.

Suppose now that E has bad multiplicative reduction at p.

• We define a distribution μ_p on *E* such that

$$\int_{\mathbb{Z}_{\rho}^{\times}} \chi \mathrm{d}\mu_{\rho} = C'_{E} \tau(\overline{\chi})^{2} \rho^{m_{\chi}} L(Sym^{2}E, \chi, 2).$$

Suppose now that *E* has bad multiplicative reduction at *p*.

• We define a distribution μ_p on *E* such that

$$\int_{\mathbb{Z}_{\rho}^{\times}} \chi d\mu_{\rho} = C'_{E} \tau(\overline{\chi})^{2} \rho^{m_{\chi}} L(Sym^{2}E, \chi, 2).$$

In this case, μ_p is a bounded measure.

Suppose now that *E* has bad multiplicative reduction at *p*.

• We define a distribution μ_p on *E* such that

$$\int_{\mathbb{Z}_{\rho}^{\times}} \chi d\mu_{\rho} = C'_{E} \tau(\overline{\chi})^{2} \rho^{m_{\chi}} L(Sym^{2}E, \chi, 2).$$

In this case, μ_p is a bounded measure.

Define

$$L_{p}(Sym^{2}E, \chi, s) := \int_{\mathbb{Z}_{p}^{\times}} \chi(x) \langle x \rangle^{s} \mathrm{d}\mu_{p}$$

where $\langle \cdot \rangle : \mathbb{Z}_{\rho}^{\times} \to 1 + \rho \mathbb{Z}_{\rho}, \langle x \rangle = \frac{x}{\omega(x)}$ with $\omega : \mathbb{Z}_{\rho}^{\times} \to \mathbb{Z}_{\rho}^{\times}$ the Teichmüller character.

Determination of cuspidal automorphic representations of GL(3)

Using properties of *h*-admissible measures, we prove:

Determination of cuspidal automorphic representations of GL(3)

Using properties of *h*-admissible measures, we prove:

Lemma

If $L_p(Sym^2E, n) = CL_p(Sym^2E', n)$ for infinitely many (n, p) = 1 then

$$L(Sym^{2}E, \chi, 2) = C_{1}C_{2}^{a}L_{p}(Sym^{2}E', \chi, 2)$$

for infinitely many χ p-power characters of conductor p^a .

Determination of cuspidal automorphic representations of GL(3)

Using properties of *h*-admissible measures, we prove:

Lemma

If $L_p(Sym^2E, n) = CL_p(Sym^2E', n)$ for infinitely many (n, p) = 1 then

$$L(Sym^2E, \chi, 2) = C_1 C_2^a L_p(Sym^2E', \chi, 2)$$

for infinitely many χ p-power characters of conductor p^a .

 Can reduce the proof of the main result to showing that if π is a cuspidal automorphic representation of GL(3, A_Q)

$$L(\pi\otimes\chi,\mathbf{1})
eq \mathbf{0}$$

for infinitely many Dirichlet *p*-power characters, and that moreover these values determine π up to isomorphism.

Maria Nastasescu

F a number field, π a cuspidal automorphic representation of $GL(n, \mathbb{A}_F)$.

■ Rohrlich: For n = 2, there exist infinitely many ray class characters χ of F such that L(π ⊗ χ, s₀) ≠ 0, for any fixed s₀ ∈ ℂ.

F a number field, π a cuspidal automorphic representation of $GL(n, \mathbb{A}_F)$.

- **Rohrlich**: For *n* = 2, there exist infinitely many ray class characters *χ* of *F* such that *L*(*π* ⊗ *χ*, *s*₀) ≠ 0, for any fixed *s*₀ ∈ ℂ.
- **Barthel-Ramakrishnan**: For $n \ge 3$, there exist infinitely many ray class characters χ of F such that $L(\pi \otimes \chi, s_0) \ne 0$, for any $\text{Re}(s_0) \notin T$, with $T = \begin{bmatrix} \frac{1}{n}, 1 \frac{1}{n} \end{bmatrix}$.

F a number field, π a cuspidal automorphic representation of $GL(n, \mathbb{A}_F)$.

- **Rohrlich**: For *n* = 2, there exist infinitely many ray class characters *χ* of *F* such that *L*(*π* ⊗ *χ*, *s*₀) ≠ 0, for any fixed *s*₀ ∈ ℂ.
- **Barthel-Ramakrishnan**: For $n \ge 3$, there exist infinitely many ray class characters χ of F such that $L(\pi \otimes \chi, s_0) \ne 0$, for any $\text{Re}(s_0) \notin T$, with $T = \left[\frac{1}{n}, 1 \frac{1}{n}\right]$.
- Moreover if π is tempered then *T* can be replaced by $T_1 = \left[\frac{2}{n+1}, 1 \frac{2}{n+1}\right].$

F a number field, π a cuspidal automorphic representation of $GL(n, \mathbb{A}_F)$.

- **Rohrlich**: For *n* = 2, there exist infinitely many ray class characters *χ* of *F* such that *L*(*π* ⊗ *χ*, *s*₀) ≠ 0, for any fixed *s*₀ ∈ ℂ.
- **Barthel-Ramakrishnan**: For $n \ge 3$, there exist infinitely many ray class characters χ of F such that $L(\pi \otimes \chi, s_0) \ne 0$, for any $\text{Re}(s_0) \notin T$, with $T = \left[\frac{1}{n}, 1 \frac{1}{n}\right]$.
- Moreover if π is tempered then T can be replaced by $T_1 = \left[\frac{2}{n+1}, 1 \frac{2}{n+1}\right].$
- **Luo**: For $n \ge 3$ and $F = \mathbb{Q}$, the interval *T* can be replaced by $T_2 = \begin{bmatrix} 2 \\ n \end{bmatrix}$, $1 \frac{2}{n} \end{bmatrix}$ unconditionally.

F a number field, π a cuspidal automorphic representation of $GL(n, \mathbb{A}_F)$.

- **Rohrlich**: For *n* = 2, there exist infinitely many ray class characters *χ* of *F* such that *L*(*π* ⊗ *χ*, *s*₀) ≠ 0, for any fixed *s*₀ ∈ ℂ.
- **Barthel-Ramakrishnan**: For $n \ge 3$, there exist infinitely many ray class characters χ of F such that $L(\pi \otimes \chi, s_0) \ne 0$, for any $\text{Re}(s_0) \notin T$, with $T = \left[\frac{1}{n}, 1 \frac{1}{n}\right]$.
- Moreover if π is tempered then T can be replaced by $T_1 = \left[\frac{2}{n+1}, 1 \frac{2}{n+1}\right].$
- **Luo**: For $n \ge 3$ and $F = \mathbb{Q}$, the interval *T* can be replaced by $T_2 = \begin{bmatrix} 2 \\ n \end{bmatrix}, 1 \frac{2}{n} \end{bmatrix}$ unconditionally.

Later work focused on twists by sparser sets of characters.

Theorem 2

Theorem (N.)

Suppose π, π' are two unitary cuspidal representations of $GL(3, \mathbb{A}_{\mathbb{Q}})$ with the same central character ω . Suppose there exist $B, C \in \mathbb{C}$ such that

$$L(\pi \otimes \chi, \beta) = B^a C L(\pi' \otimes \chi, \beta)$$
(1)

for some fixed $1 \ge \beta > \frac{2}{3}$ and for all p-power order characters of conductor p^a for all but finitely many a. Then $\pi \cong \pi'$.

Theorem 2

Theorem (N.)

Suppose π , π' are two unitary cuspidal representations of $GL(3, \mathbb{A}_{\mathbb{Q}})$ with the same central character ω . Suppose there exist $B, C \in \mathbb{C}$ such that

$$L(\pi \otimes \chi, \beta) = B^a C L(\pi' \otimes \chi, \beta)$$
(1)

for some fixed $1 \ge \beta > \frac{2}{3}$ and for all p-power order characters of conductor p^a for all but finitely many a. Then $\pi \cong \pi'$.

Note: if π , π' are tempered unitary cuspidal automorphic representations then the same result holds if (1) is satisfied for some fixed $1 \ge \beta > \frac{1}{2}$. (If the generalized Ramanujan conjecture is true then this condition is automatically satisfied)

Maria Nastasescu

Corollary of Theorem 2

Corollary

Suppose π , π' are two unitary cuspidal automorphic representations of $GL(2, \mathbb{A}_{\mathbb{Q}})$ with the same central character ω . Suppose there exist constants B, $C \in \mathbb{C}$ such that

$$L(Ad(\pi) \otimes \chi, \beta) = B^{a}CL(Ad(\pi') \otimes \chi, \beta)$$
(2)

for some fixed $1 \ge \beta > \frac{2}{3}$ and for all primitive p-power order characters of conductor p^a for all but a finite number of a. Then there exists quadratic character ν such that $\pi \cong \pi' \otimes \nu$.

Corollary of Theorem 2

Corollary

Suppose π , π' are two unitary cuspidal automorphic representations of $GL(2, \mathbb{A}_{\mathbb{Q}})$ with the same central character ω . Suppose there exist constants $B, C \in \mathbb{C}$ such that

$$L(Ad(\pi) \otimes \chi, \beta) = B^{a}CL(Ad(\pi') \otimes \chi, \beta)$$
(2)

for some fixed $1 \ge \beta > \frac{2}{3}$ and for all primitive p-power order characters of conductor p^a for all but a finite number of a. Then there exists quadratic character ν such that $\pi \cong \pi' \otimes \nu$.

Note: If π , π' are tempered then the same result holds if (2) is true for some fixed $1 \ge \beta > \frac{1}{2}$.

The difficulty of proving such a result comes from the fact that the set of wild *p*-power characters is **sparse**.

- The difficulty of proving such a result comes from the fact that the set of wild *p*-power characters is **sparse**.
- The first steps hold in a more general setting, for cuspidal representations of GL(n, A_Q) for n ≥ 3.

- The difficulty of proving such a result comes from the fact that the set of wild *p*-power characters is **sparse**.
- The first steps hold in a more general setting, for cuspidal representations of GL(n, A_Q) for n ≥ 3.
- Let $n \ge 3$ and let π be a unitary cuspidal automorphic representations of $GL(n, \mathbb{A}_{\mathbb{Q}})$.

- The difficulty of proving such a result comes from the fact that the set of wild *p*-power characters is **sparse**.
- The first steps hold in a more general setting, for cuspidal representations of GL(n, A_Q) for n ≥ 3.
- Let $n \ge 3$ and let π be a unitary cuspidal automorphic representations of $GL(n, \mathbb{A}_{\mathbb{Q}})$.
- The *L*-function is defined for Re(s) > 1 by the absolutely convergent Dirichlet series

$$L(\pi, s) = \sum_{m=1}^{\infty} \frac{a_{\pi}(m)}{m^s}$$
(3)

with $a_{\pi}(1) = 1$.

- The difficulty of proving such a result comes from the fact that the set of wild *p*-power characters is **sparse**.
- The first steps hold in a more general setting, for cuspidal representations of GL(n, A_Q) for n ≥ 3.
- Let $n \ge 3$ and let π be a unitary cuspidal automorphic representations of $GL(n, \mathbb{A}_{\mathbb{Q}})$.
- The *L*-function is defined for Re(s) > 1 by the absolutely convergent Dirichlet series

$$L(\pi, s) = \sum_{m=1}^{\infty} \frac{a_{\pi}(m)}{m^s}$$
(3)

with $a_{\pi}(1) = 1$. Ramanujan conjecture: $a_{\pi}(m) \ll_{\epsilon} m^{\epsilon}$

 Jacquet, Shalika: The coefficients a_π(m) of the Dirichlet series satisfy

$$\sum_{m\leq M}|a_{\pi}(m)|^2\ll_{\epsilon}M^{1+\epsilon}$$

for $M \geq 1$.

 Jacquet, Shalika: The coefficients a_π(m) of the Dirichlet series satisfy

$$\sum_{m\leq M} |a_{\pi}(m)|^2 \ll_{\epsilon} M^{1+\epsilon}$$

for $M \geq 1$.

Lemma (Twisted average)

$$\lim_{a\to\infty} p^{-a} \sum_{\chi \bmod p^a}^* \overline{\chi}(s) \chi(r) L(\pi \otimes \chi, \beta) = \frac{1}{p} \left(1 - \frac{1}{p}\right) \frac{a_{\pi}(s/r)}{(s/r)^{\beta}}$$

where \sum^{*} denotes the sum over primitive p-power order characters of conductor p^{a} and $1 \ge \beta > \frac{n-1}{n+1}$ if π is a tempered unitary cuspidal automorphic representations and $1 \ge \beta > \frac{n-1}{n}$ in general.

 Jacquet, Shalika: The coefficients a_π(m) of the Dirichlet series satisfy

$$\sum_{m\leq M} |a_{\pi}(m)|^2 \ll_{\epsilon} M^{1+\epsilon}$$

for $M \geq 1$.

Lemma (Twisted average)

$$\lim_{a\to\infty} p^{-a} \sum_{\chi \bmod p^a}^* \overline{\chi}(s) \chi(r) L(\pi \otimes \chi, \beta) = \frac{1}{p} \left(1 - \frac{1}{p}\right) \frac{a_{\pi}(s/r)}{(s/r)^{\beta}}$$

where \sum^{*} denotes the sum over primitive p-power order characters of conductor p^{a} and $1 \ge \beta > \frac{n-1}{n+1}$ if π is a tempered unitary cuspidal automorphic representations and $1 \ge \beta > \frac{n-1}{n}$ in general.

To prove the twisted average, we use an approximate functional equation.

- To prove the twisted average, we use an approximate functional equation.
- For any $\frac{1}{2} \le \beta \le 1$, χ of conductor q and y > 0

$$L(\pi \otimes \chi, \beta) = \sum_{m=1}^{\infty} \frac{a_{\pi}(m)\chi(m)}{m^{\beta}} F_1\left(\frac{my}{f_{\pi}q^n}\right) +$$

$$+\omega_{\pi}(\boldsymbol{q})\epsilon(\boldsymbol{0},\pi)\tau(\chi)^{n}(f_{\pi}\boldsymbol{q}^{n})^{-\beta}\sum_{m=1}^{\infty}\frac{a_{\tilde{\pi}}(m)\overline{\chi}(mf_{\pi}')}{m^{1-\beta}}F_{2}\left(\frac{m}{y}\right),$$

where f'_{π} is the multiplicative inverse of the conductor f_{π} modulo q and ω_{π} is the central character of π .

- To prove the twisted average, we use an approximate functional equation.
- For any $\frac{1}{2} \le \beta \le 1$, χ of conductor q and y > 0

$$L(\pi \otimes \chi, \beta) = \sum_{m=1}^{\infty} \frac{a_{\pi}(m)\chi(m)}{m^{\beta}} F_1\left(\frac{my}{f_{\pi}q^n}\right) +$$

$$+\omega_{\pi}(\boldsymbol{q})\epsilon(\boldsymbol{0},\pi)\tau(\chi)^{n}(f_{\pi}\boldsymbol{q}^{n})^{-\beta}\sum_{m=1}^{\infty}\frac{a_{\tilde{\pi}}(m)\overline{\chi}(mf_{\pi}')}{m^{1-\beta}}F_{2}\left(\frac{m}{y}\right),$$

where f'_{π} is the multiplicative inverse of the conductor f_{π} modulo q and ω_{π} is the central character of π .

Here F_1 and F_2 are rapidly decreasing functions.

Maria Nastasescu

• Consider now n = 3.

• Consider now n = 3.

From the twisted average and the hypothesis of Theorem 2:

1

$$a_{\pi}(m) = a_{\pi'}(m)$$

for all (m, p) = 1.

Consider now n = 3.

From the twisted average and the hypothesis of Theorem 2:

$$a_{\pi}(m) = a_{\pi'}(m)$$

for all (m, p) = 1.

The local components π_l of π are determined by the set of nonzero complex numbers {α_l, β_l, γ_l}.

- Consider now n = 3.
- From the twisted average and the hypothesis of Theorem 2:

$$a_{\pi}(m) = a_{\pi'}(m)$$

for all (m, p) = 1.

- The local components π_l of π are determined by the set of nonzero complex numbers {α_l, β_l, γ_l}.
- The local *L*-factor of π at a prime *l* is given by

$$L(\pi_{l}, s) = (1 - \alpha_{l} l^{-s})^{-1} (1 - \beta_{l} l^{-s})^{-1} (1 - \gamma_{l} l^{-s})^{-1}.$$

- Consider now n = 3.
- From the twisted average and the hypothesis of Theorem 2:

$$a_{\pi}(m) = a_{\pi'}(m)$$

for all (m, p) = 1.

- The local components π_l of π are determined by the set of nonzero complex numbers {α_l, β_l, γ_l}.
- The local *L*-factor of π at a prime *l* is given by

$$L(\pi_{l}, s) = (1 - \alpha_{l} l^{-s})^{-1} (1 - \beta_{l} l^{-s})^{-1} (1 - \gamma_{l} l^{-s})^{-1}.$$

We show that $\{\alpha_I \beta_I, \gamma_I\} = \{\alpha'_I, \beta'_I, \gamma'_I\}$ and then apply the Strong Multiplicity One Theorem to obtain the result.

Maria Nastasescu

If we look at GL(n, A_Q) for n ≥ 4, a_π(n) will no longer be enough to determine π.

- If we look at GL(n, A_Q) for n ≥ 4, a_π(n) will no longer be enough to determine π.
- If π is an arbitrary cuspidal automorphic representation of GL(2, A_F), it is known that Sym^mπ is automorphic only when m ≤ 4.

- If we look at GL(n, A_Q) for n ≥ 4, a_π(n) will no longer be enough to determine π.
- If π is an arbitrary cuspidal automorphic representation of GL(2, A_F), it is known that Sym^mπ is automorphic only when m ≤ 4.
- If F = Q and π is holomorphic of weight 2, these results have been extended to small m ≥ 5 by recent work of Clozel and Thorne, and of Dieulefait.

- If we look at GL(n, A_Q) for n ≥ 4, a_π(n) will no longer be enough to determine π.
- If π is an arbitrary cuspidal automorphic representation of GL(2, A_F), it is known that Sym^mπ is automorphic only when m ≤ 4.
- If F = Q and π is holomorphic of weight 2, these results have been extended to small m ≥ 5 by recent work of Clozel and Thorne, and of Dieulefait.
- There are no known constructions of *p*-adic *L*-functions for Sym^mE with m ≥ 3

- If we look at GL(n, A_Q) for n ≥ 4, a_π(n) will no longer be enough to determine π.
- If π is an arbitrary cuspidal automorphic representation of GL(2, A_F), it is known that Sym^mπ is automorphic only when m ≤ 4.
- If F = Q and π is holomorphic of weight 2, these results have been extended to small m ≥ 5 by recent work of Clozel and Thorne, and of Dieulefait.
- There are no known constructions of *p*-adic *L*-functions for *Sym^mE* with *m* ≥ 3
- A *p*-adic *L*-function was constructed for certain automorphic representations π of GL(2*n*, A_Q) under certain conditions.

Thank you!