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Complex L-function of an elliptic curve

Given E/Q an elliptic curve with conductor N, define the
complex L-function of E by the Euler product for Re(s) > 3

2 :

L(E , s) =
∏
r |N

1
1− ar r−s

∏
r -N

1
1− ar r−s + r 1−2s

where ar = r + 1− #E(Fr ) if r - N.

If r |N then ar depends on the reduction of E at r . More
specifically, ar = 1 if E has split multiplicative reduction at r ,
ar = −1 if E has non-split multiplicative reduction at r and
ar = 0 if E has additive reduction at r .

L(E , s) extends to a holomorphic function on C satisfying a
functional equation between s and 2− s.
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Complex adjoint L-function of an elliptic curve

The symmetric square L-function of E for Re(s) > 2:

L(Sym2E , s) =
∏

r prime

Pr (r−s)−1.

When E has good reduction at r , we have

Pr (X ) = (1− α2
r X )(1− β2

r X )(1− rX ).

Here αr and βr are the roots of the polynomial

X 2 − ar X + r

with ar the trace of the Frobenius at r .
Let χ be an even Dirichlet character. Then L(Sym2E ,χ, s)
has a holomorphic continuation over C and satisfies a
functional equation between s and 3− s.
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Determining elliptic curves by their
L-functions

Faltings: L(E , s) determines the elliptic curve E up to
isogeny.

Luo-Ramakrishnan: a p-adic analogue Lp(E , s) also
determines the elliptic curve E up to isogeny.
Question: Does the symmetric square L-function of E
determine the elliptic curve? What about its p-adic
analogue?
Answer: The values {Lp(Sym2E , cn}n≥0 determine E up to
quadratic twists.
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Main result

Theorem (N.)

Let E, E ′ be elliptic curves over Q with semistable reduction at
p. Suppose

Lp(Sym2E , n) = CLp(Sym2E ′, n)

for infinitely many integers n prime to p and some constant
C ∈ Q. Then E ′ is isogenous to a quadratic twist ED of E. If E
and E ′ have square free conductors, then E and E ′ are
isogenous over Q.
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Cuspidal automorphic representations
associated to elliptic curves

To an elliptic curve E of conductor N we can associate a
holomorphic newform f of weight 2 and level N.

If cn denote the Fourier coefficients of f then

L(E , s) =
∞∑

n=1

cnn−s.

We associate to f a unitary cuspidal automorphic form π of
GL(2,AQ) with trivial character and conductor N.
We set

Lu(π, s) = (2π)−s−1/2L
(

E , s +
1
2

)
.
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Cuspidal automorphic representations
associated to elliptic curves

L(Sym2E , s) = L(π, s − 1, sym2) = L(Sym2π, s − 1)

Gelbart-Jacquet: Sym2(π) an isobaric representation of
GL(3,AQ)
Sym2(π) is cuspidal only if E is not of CM-type
Suppose an elliptic curve E over Q is of CM-type. This
means that End(E)⊗Q = K for some K = Q(

√
−D)

In this case, L(E , s) = L
(
η, s − 1

2

)
for some unitary Hecke

character η of the idele class group CK

Then π = IQK (η) will be the cuspidal representation of
GL(2,AQ) associated to E .
Sym2(π) ∼= IQK (η2) � η0, with η0 the restriction of η to Q.
L(Sym2π, s) = L(π′, s)L(η0, s), with π′ = IQK (η2) cuspidal
automorphic representation of GL(2,AQ)
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Overview proof

Step 1: Reduce the problem to showing that the values
{L(Sym2E ,χ, 2)} for infinitely many χ p-power characters
determine E up to quadratic twists.

Step 2: Reduce the problem to showing that the values
{L(π ⊗ χ, 1, sym2)} for infinitely many χ p-power characters
determine π up to a twist by a quadratic character. Here π is
the cuspidal automorphic representation of GL(2,AQ)
associated to E .
Step 3: L(π ⊗ χ, 1, sym2) 6= 0 for infinitely many χ p-power
characters.
Step 4: The values {L(π ⊗ χ, 1, sym2)} with χ a p-power
character determine π up to twists by quadratic characters.
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Adjoint p-adic L-function of an elliptic curve
Fix p an odd prime and let E/Q be an elliptic curve with
semistable reduction at p.

Let Xp be the set of continuous characters of Z×p into C×p .
Z×p ∼= (1 + pZp)× (Z/p)×

Xp is a product of X ((Z/p)×) with X (1 + pZp), which are
called wild p-adic characters.
Given χ a nontrivial even wild p-adic character of conductor
pmχ, we can identify it with a Dirichlet character.
Dabrowski-Delbourgo: construct a p-adic analogue to
L(Sym2E ,χ, s) with s ∈ Zp by the Mellin transform of a
p-adic distribution µp on Z×p .
This distribution µp is defined by interpolating the values of
the complex symmetric square L-function at all twists by
Dirichlet characters of p-power order
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Višik’s theory of h-admissible measures

Assume that µ takes values in Cp. We say that µ is a
bounded measure if ∣∣∣ ∫

a+pnZp

dµ
∣∣∣
p

is bounded for all n ∈ N and (a, p) = 1.

A measure µ is called h-admissible if it satisfies the
following growth condition:

sup
a∈Z×p

∥∥∥∫
a+pnZp

(x − a)idµ
∥∥∥ = o(pn(i−h))

for all integers 0 ≤ i < h and all n.
The set of h-admissible measures with h = 1 is strictly
larger, but contains the bounded measures.
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Adjoint p-adic L-function of an elliptic curve

Suppose first that E has good reduction at p.
We define a distribution µp on E such that∫

Z×p
χdµp = CE · αp(E)−2mχτ (χ)2pmχL(Sym2E ,χ, 2)

with αp the root of X 2 − apX + p with ap = p + 1− #E(Fp).

If E has good ordinary reduction at p, the distribution µp is a
bounded measure on Z×p .
If E has supersingular reduction at p then µp is a
2-admissible measure.
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Adjoint p-adic L-function of an elliptic curve

Suppose now that E has bad multiplicative reduction at p.

We define a distribution µp on E such that∫
Z×p
χdµp = C ′Eτ (χ)2pmχL(Sym2E ,χ, 2).

In this case, µp is a bounded measure.

Define
Lp(Sym2E ,χ, s) :=

∫
Z×p
χ(x)〈x〉sdµp

where 〈·〉 : Z×p → 1 + pZp, 〈x〉 = x
ω(x) with ω : Z×p → Z×p the

Teichmüller character.
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Determination of cuspidal automorphic
representations of GL(3)
Using properties of h-admissible measures, we prove:

Lemma
If Lp(Sym2E , n) = CLp(Sym2E ′, n) for infinitely many (n, p) = 1
then

L(Sym2E ,χ, 2) = C1Ca
2Lp(Sym2E ′,χ, 2)

for infinitely many χ p-power characters of conductor pa.
Can reduce the proof of the main result to showing that if π
is a cuspidal automorphic representation of GL(3,AQ)

L(π ⊗ χ, 1) 6= 0

for infinitely many Dirichlet p-power characters, and that
moreover these values determine π up to isomorphism.
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Motivation

F a number field, π a cuspidal automorphic representation of
GL(n,AF ).

Rohrlich: For n = 2, there exist infinitely many ray class
characters χ of F such that L(π ⊗ χ, s0) 6= 0, for any fixed
s0 ∈ C.

Barthel-Ramakrishnan: For n ≥ 3, there exist infinitely
many ray class characters χ of F such that L(π ⊗ χ, s0) 6= 0,
for any Re(s0) 6∈ T , with T =

[
1
n , 1− 1

n

]
.

Moreover if π is tempered then T can be replaced by
T1 =

[
2

n+1 , 1− 2
n+1

]
.

Luo: For n ≥ 3 and F = Q, the interval T can be replaced
by T2 =

[
2
n , 1− 2

n

]
unconditionally.

Later work focused on twists by sparser sets of characters.
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Theorem 2

Theorem (N.)

Suppose π, π′ are two unitary cuspidal representations of
GL(3,AQ) with the same central character ω. Suppose there
exist B, C ∈ C such that

L(π ⊗ χ, β) = BaCL(π′ ⊗ χ, β) (1)

for some fixed 1 ≥ β > 2
3 and for all p-power order characters of

conductor pa for all but finitely many a. Then π ∼= π′.

Note: if π, π′ are tempered unitary cuspidal automorphic
representations then the same result holds if (1) is satisfied for
some fixed 1 ≥ β > 1

2 . (If the generalized Ramanujan conjecture
is true then this condition is automatically satisfied)
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Corollary of Theorem 2

Corollary

Suppose π, π′ are two unitary cuspidal automorphic
representations of GL(2,AQ) with the same central character ω.
Suppose there exist constants B, C ∈ C such that

L(Ad(π)⊗ χ, β) = BaCL(Ad(π′)⊗ χ, β) (2)

for some fixed 1 ≥ β > 2
3 and for all primitive p-power order

characters of conductor pa for all but a finite number of a. Then
there exists quadratic character ν such that π ∼= π′ ⊗ ν.

Note: If π, π′ are tempered then the same result holds if (2) is
true for some fixed 1 ≥ β > 1

2 .
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Idea of proof for Theorem 2

The difficulty of proving such a result comes from the fact
that the set of wild p-power characters is sparse.

The first steps hold in a more general setting, for cuspidal
representations of GL(n,AQ) for n ≥ 3.
Let n ≥ 3 and let π be a unitary cuspidal automorphic
representations of GL(n,AQ).
The L-function is defined for Re(s) > 1 by the absolutely
convergent Dirichlet series

L(π, s) =
∞∑

m=1

aπ(m)
ms (3)

with aπ(1) = 1.
Ramanujan conjecture: aπ(m)�ε mε
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Idea of proof for Theorem 2
Jacquet, Shalika: The coefficients aπ(m) of the Dirichlet
series satisfy ∑

m≤M

|aπ(m)|2 �ε M1+ε

for M ≥ 1.

Lemma (Twisted average)

lim
a→∞

p−a
∑∗

χ mod pa
χ(s)χ(r )L(π ⊗ χ, β) =

1
p

(
1− 1

p

)
aπ(s/r )
(s/r )β

where
∑∗ denotes the sum over primitive p-power order

characters of conductor pa and 1 ≥ β > n−1
n+1 if π is a tempered

unitary cuspidal automorphic representations and 1 ≥ β > n−1
n

in general.

The twisted average also gives non-vanishing of the
twisted L-values for GL(n) in the above intervals.
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Idea of proof for Theorem 2

To prove the twisted average, we use an approximate
functional equation.

For any 1
2 ≤ β ≤ 1, χ of conductor q and y > 0

L(π ⊗ χ, β) =
∞∑

m=1

aπ(m)χ(m)
mβ

F1

(
my
fπqn

)
+

+ωπ(q)ε(0, π)τ (χ)n(fπqn)−β
∞∑

m=1

aπ̃(m)χ(mf ′π)
m1−β F2

(
m
y

)
,

where f ′π is the multiplicative inverse of the conductor fπ
modulo q and ωπ is the central character of π.
Here F1 and F2 are rapidly decreasing functions.
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Idea of proof for Theorem 2

Consider now n = 3.

From the twisted average and the hypothesis of Theorem 2:

aπ(m) = aπ′(m)

for all (m, p) = 1.
The local components πl of π are determined by the set of
nonzero complex numbers {αl , βl , γl}.
The local L-factor of π at a prime l is given by

L(πl , s) = (1− αl l−s)−1(1− βl l−s)−1(1− γl l−s)−1.

We show that {αl βl , γl} = {α′l , β′l , γ′l} and then apply the
Strong Multiplicity One Theorem to obtain the result.
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Final remarks

If we look at GL(n,AQ) for n ≥ 4, aπ(n) will no longer be
enough to determine π.

If π is an arbitrary cuspidal automorphic representation of
GL(2,AF ), it is known that Symmπ is automorphic only when
m ≤ 4.
If F = Q and π is holomorphic of weight 2, these results
have been extended to small m ≥ 5 by recent work of
Clozel and Thorne, and of Dieulefait.
There are no known constructions of p-adic L-functions for
SymmE with m ≥ 3
A p-adic L-function was constructed for certain automorphic
representations π of GL(2n,AQ) under certain conditions.
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Thank you!
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