BOUNDING #Z-TORSION IN CLASS GROUPS OF
FAMILIES OF NUMBER FIELDS OF
ARBITRARY DEGREE

Caroline Turnage-Butterbaugh
Duke University

Connections for Women Workshop
Analytic Number Theory
MSRI
February 3, 2017



BINARY QUADRATIC FORMS

A binary quadratic form is a homogenous polynomial of
degree 2 in two variables:

(a,b,0) = ax? + bxy + ¢y, a,b,c integers.
y+cy g
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BINARY QUADRATIC FORMS

A binary quadratic form is a homogenous polynomial of
degree 2 in two variables:

(a,b,c) = ax® + bxy + ¢ 2, a,b,c integers.
y+cy g

Equivalent Forms

Two binary quadratic forms (a,b,c) and (@',V’,c’) are said to be
equivalent if there exists a matrix A € SL,(Z) such that if we
make the linear change of variables

A(5)-(7)

ax2 + bx'y' +cy’? = a'x® + b'xy + 'y

we have
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GAUSS AND BINARY QUADRATIC FORMS

In Disquisitiones Arithmeticae, Gauss

* classified the binary quadratic forms with a given
discriminant

D :=b? —4ac, D=0,1 (mod 4)

Note that equivalent forms have the same discriminant;
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GAUSS AND BINARY QUADRATIC FORMS

In Disquisitiones Arithmeticae, Gauss

* classified the binary quadratic forms with a given
discriminant

D:=b*>—4ac, D=0,1 (mod 4)
Note that equivalent forms have the same discriminant;

¢ formed the class group, the group of equivalence classes of
binary quadratic forms of a given D with group action
Gauss composition;
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GAUSS AND BINARY QUADRATIC FORMS

In Disquisitiones Arithmeticae, Gauss

* classified the binary quadratic forms with a given
discriminant

D:=b*>—4ac, D=0,1 (mod 4)
Note that equivalent forms have the same discriminant;

¢ formed the class group, the group of equivalence classes of
binary quadratic forms of a given D with group action
Gauss composition;

* showed that, for any given discriminant D, there exist only
finitely many equivalence classes of binary quadratic
forms.
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BINARY QUADRATIC FORMS AND QUADRATIC
NUMBER FIELDS

Let K = Q(vD). Two nonzero ideals I,] c G are said to be
equivalent if there exists r,s € Ok such that (r)I = (s)].
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BINARY QUADRATIC FORMS AND QUADRATIC
NUMBER FIELDS

Let K = Q(vD). Two nonzero ideals I,] c G are said to be
equivalent if there exists r,s € Ok such that (r)I = (s)].

To each form
@,b,¢) := ax® + bxy + cy?

with discriminant D = b? — 4ac, we may associate an ideal I of

Ok, where
-b+vD
2

I=1a, Y.
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BINARY QUADRATIC FORMS AND QUADRATIC
NUMBER FIELDS

Equivalent — equivalent
binary quadratic forms ideals
composition of — multiplication of
equivalence classes of forms equivalence classes of ideals
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BINARY QUADRATIC FORMS AND QUADRATIC
NUMBER FIELDS

Equivalent — equivalent
binary quadratic forms ideals
composition of — multiplication of
equivalence classes of forms equivalence classes of ideals

Ideal class group

We denote by Clg the ideal class group of K. The class number
of K is defined by
h(K) = |Clgl.

From the correspondence to binary quadratic fields, we see that
h(K) is finite.
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CLASS GROUP OF K, [K:Q] =2

Ideal class group

The ideal class group of K is defined to be
CIK = ] K /P K>

where Jx denotes the group of fractional ideals of K and Pg
denotes the subgroup of principal ideals of K.

The class number of K is defined by

h(K) = |Clkl.
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CLASS GROUP OF K, [K:Q] =2

Ideal class group

The ideal class group of K is defined to be
CIK = ] K /P K>

where Jx denotes the group of fractional ideals of K and Pg
denotes the subgroup of principal ideals of K.

The class number of K is defined by

h(K) = |Cll.

Note:

hiKy=1 < OgisaPID = 0OkisaUFD
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SIZE OF THE CLASS GROUP

Landau observed (using Minkowski’s Bound) that

n! (4\"?
|C1K| = 7’l_n (;) D}gz(logDK)n_l

where Dk = [DiscK/Q| and r; denotes the number of pairs of
conjugate complex embeddings of K.
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¢/-TORSION SUBGROUP

Definition

For any integer ¢ > 1, the ¢-torsion subgroup of Clk is given by

Clxl0) := {[a] € Clg:[al’ = Id}
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¢/-TORSION SUBGROUP

Definition

For any integer ¢ > 1, the ¢-torsion subgroup of Clk is given by

Clxl0) := {[a] € Clg:[al’ = Id}

Natural Question:

What is the size of Clx[¢] as K varies within a family of fields of
fixed degree?
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TRIVIAL BOUND

The trivial bound on the ¢-torsion subgroup is simply the size
of Clk:

|Clk[€]] < |Clk] e D}</2+g

for any integer ¢ =1 and ¢ > 0 arbitrarily small.
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WHAT DO WE THINK IS TRUE?

Conjecture

Let K/Q be a number field of degree n. Then for every integer £ =1,

ICIk[€]] <06 D;c

Recorded by
* Brumer-Silverman, 1996
e Duke, 1998
* Zhang, 2005
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WHAT DO WE KNOW IS TRUE?

Conjecture

Let K/Q be a number field of degree n. Then for every integer £ =1,

ICIk ]l <0, D;-

Theorem (Gauss)

For all quadratic fields K, we have |Clg[2]| <,¢,e D

Bounding ¢-torsion in class groups Caroline Turnage-Butterbaugh



WHAT DO WE KNOW IS TRUE?

Theorem (Ellenberg & Venkatesh, 2007)
Let K/Q be a number field of degree 2 or 3. Then we have

1
IClk 31l <p,ee Dy

Let K/Q be a non-D4 number field of degree 4. Then we have

1

1_
ICIk[3]] < D ™
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WHAT DO WE KNOW IS TRUE?

Theorem (Ellenberg & Venkatesh, 2007)
Let K/Q be a number field of degree 2 or 3. Then we have

1
IClk 31l <p,ee Dy

Let K/Q be a non-Dy number field of degree 4. Then we have

1L
IClk (3]l <ppe D12< e

Theorem (Bhargava et. al., 2017)

Let K/Q be a number field of degree n > 2. Then for some 6, >0 we

have
§n+£

IClk[2]] <, D2
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WHAT DO WE KNOW IS TRUE?

Theorem (Ellenberg & Venkatesh, 2007)

Let K/Q be a number field of degree n and ¢ a positive integer.
Assuming GRH

i- ﬁ +&
IClk[£1] << pe D270,
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WHAT DO WE KNOW IS TRUE?

Theorem (Soundararajan, 2000)

Let ¢ be prime. For all but a possible zero-density exceptional family
of imaginary quadratic fields K/Q, we have

1_1
ICIk[€]] <<pee D22
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WHAT DO WE KNOW IS TRUE?

Theorem (Soundararajan, 2000)

Let ¢ be prime. For all but a possible zero-density exceptional family
of imaginary quadratic fields K/Q, we have

1_1
|C1K[€]| <l DIZ< 2l+£.

Theorem (Heath-Brown & Pierce, 2014)

Let ¢ =5 be prime. For all but a possible zero-density exceptional
family of imaginary quadratic fields K/Q, we have

1.3 .¢
|C].K[€]|<<n,['8 D12< 2a2 .
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WHAT DO WE KNOW IS TRUE?

Theorem (Ellenberg, Pierce, & Wood, 2016)

Let ¢ 21, and let [K: Q] =2,3 or 5. For all but a possible zero-density
exceptional family of fields K/Q, we have

11 —4¢
|C1K[€]| <Knte D12< 20D .

If [K: Q] =4, then the same bound applies for K non-Dy.
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BOUNDING /-TORSION FOR HIGHER DEGREE FIELDS

Here is the shape of theorem we aim to prove:

General shape of end result

Let G be a transitive subgroup of Sy, of order n = 2. Let & (X) be the
family of extensions K/Q
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BOUNDING /-TORSION FOR HIGHER DEGREE FIELDS

Here is the shape of theorem we aim to prove:

General shape of end result

Let G be a transitive subgroup of Sy, of order n = 2. Let & (X) be the
family of extensions K/Q with Gal(K/Q) = G as a permutation group
and with Dy € (0, X] and such that all tamely ramified primes in K
have a fixed ramification type.
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BOUNDING /-TORSION FOR HIGHER DEGREE FIELDS

Here is the shape of theorem we aim to prove:

General shape of end result

Let G be a transitive subgroup of Sy, of order n = 2. Let & (X) be the
family of extensions K/Q with Gal(K/Q) = G as a permutation group
and with Dy € (0, X] and such that all tamely ramified primes in K
have a fixed ramification type. Then for all but a possible zero-density
exceptional family of fields in F (X), each K € & (X) satisfies for every
integer ¢ =1 the bound

1 1
|C1K [[]l <<7’l,f,£ X2~ 21 +£’

as long as certain conditions on G and conjectures (but never GRH)
are met.
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UNCONDITIONAL RESULT

Theorem (Pierce, T. & Wood, 2017)

Let G be a cyclic group of order n = 2. Let & (X) be the family of
Galois extensions K/Q
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UNCONDITIONAL RESULT

Theorem (Pierce, T. & Wood, 2017)

Let G be a cyclic group of order n = 2. Let & (X) be the family of
Galois extensions K/Q with Gal(K/Q) = G as a permutation group
and with Dy € (0, X] and such that all rational primes ramifying in K
are totally ramified.
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UNCONDITIONAL RESULT

Theorem (Pierce, T. & Wood, 2017)

Let G be a cyclic group of order n = 2. Let & (X) be the family of
Galois extensions K/Q with Gal(K/Q) = G as a permutation group
and with Dy € (0, X] and such that all rational primes ramifying in K
are totally ramified. Then for all but a possible zero-density
exceptional family of fields in F (X), each K € & (X) satisfies for every
integer ¢ =1 the bound

1__ 1
ICIK[€]] < pp,pe X2~ 200D,
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UNCONDITIONAL RESULT

Theorem (Pierce, T. & Wood, 2017)

Let G be a cyclic group of order n = 2. Let & (X) be the family of
Galois extensions K/Q with Gal(K/Q) = G as a permutation group
and with Dy € (0, X] and such that all rational primes ramifying in K
are totally ramified. Then for all but a possible zero-density
exceptional family of fields in F (X), each K € & (X) satisfies for every
integer ¢ =1 the bound

1__ 1
ICIK[€]] < pp,pe X2~ 200D,

If in addition n is prime, then all fields in F (X) satisfy the bound
without exception.
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G=GalK/Q) =S5, n=2

Theorem (Pierce, T. & Wood, 2017)

Let n = 2 be fixed and let & (X) be the family of degree n extensions
K/Q with square-free discriminant Dy € (0, X] and Gal(K/Q) =S, as
a permutation group. Then assuming the strong Artin conjecture and
the Discriminant Multiplicity conjecture, for all a possible
zero-density exceptional family of fields in & (X), each K € F (X)
satisfy for every integer ¢ = 1 the bound

1 1
ICIK[€]] < p,pe X2~ 20D €,
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G=GalK/Q) =S5, n=2

Theorem (Pierce, T. & Wood, 2017)

Let n = 2 be fixed and let & (X) be the family of degree n extensions
K/Q with square-free discriminant Dy € (0, X] and Gal(K/Q) =S, as
a permutation group. Then assuming the strong Artin conjecture and
the Discriminant Multiplicity conjecture, for all a possible
zero-density exceptional family of fields in & (X), each K € F (X)
satisfy for every integer ¢ = 1 the bound

1 1
ICIK[€]] < p,pe X2~ 20D €,

The condition that Dy is square-free
* includes a positive proportion of possible discriminants;

* is equivalent to a condition on the ramification type of the
tamely ramified primes in K.
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OTHER CASES

In addition to the cyclic and symmetric cases described, we
have theorems for G simple and G = Dy, for p an odd prime.
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Our method uses ideas from algebraic number theory, analytic
number theory, and class field theory.

Goals for the rest of this talk:
* describe how to bound |Clx[¢]| assuming GRH;

¢ describe the overall structure of our method which allows
us to circumvent assuming GRH;

* introduce the necessary conjectures and notions as they
appear in the course of the argument.
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STARTING POINT

Theorem (Ellenberg & Venkatesh, 2007)

Suppose K/k is an extension of number fields of degree ny, and let €
be a positive integer. Set 6 < % and suppose that

P12, PM

are primes in Oy with Nmy,qp; < (Nmg ,Disc (K/k))® that split
completely in K. Then for any € >0,

1
ICIK[€]] <pee DF "ML,
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STARTING POINT

Theorem (Ellenberg & Venkatesh, 2007)

Suppose K/k is an extension of number fields of degree ny, and let €
be a positive integer. Set 6 < ﬁ and suppose that

P12, PM

are primes in Oy with Nmy,qp; < (Nmg ,Disc (K/k))® that split
completely in K. Then for any € >0,

1
ICIK[€]] <pee DF "ML,

Question: How might one go about finding small primes in k
that split completely in K?
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STARTING POINT

Theorem (Ellenberg & Venkatesh, 2007)

Suppose K/k is an extension of number fields of degree ny, and let €
be a positive integer. Set 6 < ﬁ and suppose that

P12, PM

are primes in Oy with Nmy,qp; < (Nmg ,Disc (K/k))® that split
completely in K. Then for any € >0,

1
ICIK[€]] <pee DF "ML,

Question: How might one go about finding small primes in k
that split completely in K?

Answer: via a Chebotarev Density Theorem
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Let L/k be a normal extension with Galois group G = Gal(L/k).

[L/k

g (x,L/k) := #{p C O : p unramified in L, ] €, Nmy,gp < x}.

* pis a prime ideal in ) which is unramified in L.

is the Artin symbol, which denotes the fixed, targeted
conjugacy class € within G.

[L/k
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Let L/k be a normal extension with Galois group G = Gal(L/k).

[L/k

g (x,L/k) := #{p C O : p unramified in L, ] €, Nmy,gp < x}.

* pis a prime ideal in ) which is unramified in L.

is the Artin symbol, which denotes the fixed, targeted
conjugacy class € within G.

[L/k

The Chebotarev Density Theorem shows that prime ideals are
equidistributed among the conjugacy classes in G.
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Let L/k be a normal extension with Galois group G = Gal(L/k).

[L/k

g (x,L/k) := #{p C O : p unramified in L, ] €, Nmy,gp < x}.

* pis a prime ideal in 6} which is unramified in L.

[L/ k1 is the Artin symbol, which denotes the fixed, targeted

conjugacy class € within G.

The Chebotarev Density Theorem shows that prime ideals are
equidistributed among the conjugacy classes in G.

To count completely split primes, take € to be the trivial class.
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AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Theorem (Lagarias-Odlyzko, 1975)

Let L/k be a normal extension with Galois group G = Gal(L/k),
D; =|DiscL/Q|, and ny = [L: Q]. There exists an effectively
computable constant Cy such that if GRH holds for the Dedekind zeta
function {1.(s), then for any fixed conjugacy class € < G and every
x=2

1€ €]

B B %1 .1/2 nr.
7 (x, LIK) el Li(x) 5C0|G|x log(Drx™).
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AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Theorem (Lagarias-Odlyzko, 1975)

Let L/k be a normal extension with Galois group G = Gal(L/k),
D; =|DiscL/Q|, and ny = [L: Q]. There exists an effectively
computable constant Cy such that if GRH holds for the Dedekind zeta
function {1.(s), then for any fixed conjugacy class € < G and every
x=2

1€ €]

B B %1 .1/2 nr.
7 (x, LIK) |G|L1(x) 5C0|G|x log(Drx™).

Take x = (Nmy,gDisc K/k)!/@¢01=1),

Obtain at least M > (Nmy,gDiscK/k)l/@/t=1)=¢0 syfficiently
small primes p c O that split completely in K.
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BOUNDING #/-TORSION ASSUMING GRH

Ellenberg-Venkatesh
1
ICIk[O)l <¢pne DZ M

Bounding /-torsion in class groups Caroline Turnage-Butterbaugh



BOUNDING #/-TORSION ASSUMING GRH

Ellenberg-Venkatesh
1
IClkl€)| <¢pe DM
i

Effective Chebotarev Density Theorem
Lagarias-Odlyzko (conditional on GRH)

M > (Nmy,¢DiscK/k)t/@¢n=1-¢
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BOUNDING #/-TORSION ASSUMING GRH

Ellenberg-Venkatesh
1
ICIkl€]| <¢pe DY M
i

Effective Chebotarev Density Theorem
Lagarias-Odlyzko (conditional on GRH)

M > (Nmy,DiscK/k)t/@¢n=1-¢

o1
Assuming GRH, we have |Clx[¢]| <e Dy **" +e
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BOUNDING #/-TORSION ASSUMING GRH

Ellenberg-Venkatesh
1
ICIkl€]| <¢pe DY M
i

Effective Chebotarev Density Theorem
Lagarias-Odlyzko (conditional on GRH)

M > (Nmy,DiscK/k)/2¢m=1-¢

o1
Assuming GRH, we have |Clx[¢]| <e Dy **" +e

We will remove the assumption on GRH, at the cost of proving
the result for all but a zero-density family of fields.
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
IClk 4]l <ene D[2<+EM_1
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
IClkl8)| <¢me DM
i

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
ICIkl)] <gme DL M
i

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region
!
Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
ICIk[4]] <¢ne D12<+£M_1
i

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

)
Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

|

Control the propagation of "bad" fields within the family
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
ICIk[4]] <¢ne D12<+£M_1
i

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

)
Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

|

Control the propagation of "bad" fields within the family

i
Without assuming GRH, conclude

1L te
|C1K[f]| <L¢ne DIZ< ZE
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

( N

Ellenberg-Venkatesh

iie
ICIk[€]l <gne D M!

¥
Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

)
Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

|

Control the propagation of "bad" fields within the family

i
Without assuming GRH, conclude

1L te
|C1K[£]| <L¢ne DIZ< ZE
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
ICIk[4]] <¢ne D12<+£M_1
¥

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

)
Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

|

Control the propagation of "bad" fields within the family

i
Without assuming GRH, conclude

1L te
|C1K[£]| <L¢ne DIZ< ZE
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DEDEKIND ZETA FUNCTION

Let L be a Galois extension over k.

The Dedekind zeta-function attached to L is defined by

-1
) = = , REs)>1.
‘L ICZ@LN(I)S ,,13@( N(p)s)
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DEDEKIND ZETA FUNCTION

Let L be a Galois extension over k.

The Dedekind zeta-function attached to L is defined by

-1
(L) =) — ) , R(s)>1.

= N(DS ZFE@L( N( ’

The Dedekind zeta-function {7 (s) factors as a product of Artin
L-functions:

(1) =) [] Les,p,Likydesr

peG
p#po irreducible

* pisanirreducible, nontrivial representation of

G =Gal(L/k).
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FACTORIZATION OF (1. (s) FOR G =Gal(L/Q) = Ss

Ss has the following Galois representations:

po — trivial representation, 1-dimensional

p1 — sign representation, 1-dimensional

p2 — standard representation, 4-dimensional

p3 — product of standard and sign representation, 4-dimensional
pa —irreducible, 5-dimensional representation

ps —irreducible, 5-dimensional representation

pe — exterior square of standard representation, 6-dimensional

{1(8) = L(S)LGs, p1)L(s, p2) L(s, p3)*L(s, p4)°L (s, p5)°L(s, pe)°
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ASSUMED ZERO-FREE REGION FOR ( (s)

(L) =) [] Les,p, Likydesr

peG
p#po irreducible

Zero-free region for (i (s):
* We assume (i (s) has no exceptional zero.
* Then for {i(s), it is known that there exists an absolute

constant ¢; such that {i(s) is zero-free in the region
Ck
nZlog D (|t +3)™

o>1
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ASSUMED ZERO-FREE REGION FOR ( (s)

(L) =) [] Les,p, Likydesr

peG
p#po irreducible

Zero-free region for (i (s):
* We assume (i(s) has no exceptional zero.
* Then for {(s), it is known that there exists an absolute

constant ¢ such that {i(s) is zero-free in the region
Ck
nZlog D (|t +3)™

o>1

Zero-free region for {1.(s)/{x(s) = L(s, p):

* We assume that there exists a positive § < 1/4 such that
L(s, p) is zero-free in the region

[1-6,1] x [-(log Dp)*'?, (log D)*'°].
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ASSUMED ZERO-FREE REGION FOR ( (s)

(L) =) [] Les,p, Likydesr

peG
p#po irreducible

T

1{§
T= (J'ogD.) .

ﬂ‘]);meuv(fi‘n‘)‘g i //
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AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Theorem (Pierce, T. & Wood, 2017)

Let 0 <6 <1/4 be a fixed positive constant. For any normal extension
of number fields L/k with [L: Q] = ny, such that Dy is sufficiently
large, {1.(s) obeys the assumed zero-free region, and {y(s) has no
exceptional zero, we have that for any conjugacy class
€ < G=Gal(L/k)

‘ 1€l

mg(x,L1k) — EL i(x )‘

X
IGI (logx)?’

for all
X =c1exp {02 (loglog(Dzz’))z},

where C is an absolute constant and c1,cy,c3 are explicit parameters
depending on §,ny,ny, Dy, and |G|.
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
ICIk[4]] <¢ne D12<+£M_1
¥

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

)
Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

|

Control the propagation of "bad" fields within the family

i
Without assuming GRH, conclude

1L te
|C1K[£]| <L¢ne DIZ< ZE
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
ICIk[4]] <¢ne D12<+£M_1
i

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

¥
Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

v
Control the propagation of "bad" fields within the family

i
Without assuming GRH, conclude

1L te
|C1K[£]| <L¢ne DIZ< ZE
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CONSTRUCTING A FAMILY OF NUMBER FIELDS

For the rest of the talk, we take k = Q.

We define a family & of fields

K/Q by fixing: !
* the degree [K:Q] =ng ‘
* the Galois group G of the K |Gall/Q)=G
Galois closure L of K ng
* aramification type for all Q

tamely ramified primes in K
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COUNTING NUMBER FIELDS

We assume that we can find an appropriate bound on the
cardinality of the collection

F(X):={KeZF:Dge (0,X]}.
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COUNTING NUMBER FIELDS

We assume that we can find an appropriate bound on the
cardinality of the collection

F(X):={KeZF:Dge (0,X]}.

For certain families %, this is known. For example:

Gal(K/ Q)=G=S3 Davenport and Heibronn, 1971
Gal(K/Q)=G=S,; Bhargava, 2005

Gal(K/ Q)=G=S5 Bhargava, 2010
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COUNTING NUMBER FIELDS

For G cyclic, we can compute a sufficient lower bound on
| (X)I.
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COUNTING NUMBER FIELDS

For G cyclic, we can compute a sufficient lower bound on
| (X)I.

For G=S,, for n =2, known lower bounds |.% (X)| suffice.
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COUNTING NUMBER FIELDS

For G cyclic, we can compute a sufficient lower bound on
|7 (X)I.

For G=S,, for n =2, known lower bounds |.% (X)| suffice.

In other cases, one might need to assume a weak form of
Malle’s Conjecture:

Conjecture (Malle — weak form)

Let K/Q be a number field of degree ng, and G = Gal(K/Q) a
transitive subgroup of Sy. For all € >0, there exist constants
p1 = (G) and pp = pp(G,€) >0 such that forall X =1,

1 X7 < |F (X)) < pup XHC) e

where a(G) is a number depending on the index of G and satisfies
1/n-D=aG) =1
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CHECKING IN

We have defined a family % of fields and a collection
F(X):={KeZF:Dge (0,X1}.

In some cases, we can compute appropriate bounds of | (X)|,
in other cases we must assume a weak form of Malle’s
Conjecture.

Show assumed zero-free region is obeyed
by "most" number fields in & (X).

We must introduce automorphic L-functions.
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COUNTING ZEROS OF AUTOMORPHIC L-FUNCTIONS

Let 7 be a cuspidal automorphic representation on GL,,(Q).

Let s = f+iy denote a zero of the corresponding automorphic
L-function, L(s, 7).
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COUNTING ZEROS OF AUTOMORPHIC L-FUNCTIONS

Let 7 be a cuspidal automorphic representation on GL,,(Q).

Let s = f+iy denote a zero of the corresponding automorphic
L-function, L(s, 7).

Define

N(r;a,T) :=# of zeros of L(s, ) such that > a and |y|<T.
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COUNTING ZEROS OF AUTOMORPHIC L-FUNCTIONS

Let 7 be a cuspidal automorphic representation on GL,,(Q).

Let s = B +iy denote a zero of the corresponding automorphic
L-function, L(s, 7).
Define

N(m; a,T) :=# of zeros of L(s,n) such that §>a and |y| <T.

Kowalski and Michel have given a bound for N(7; @, T) that
holds on average for an appropriately defined family of
cuspidal automorphic representations.
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ZERO-FREE REGION FOR A FAMILY OF AUTOMORPHIC
L-FUNCTIONS

Theorem (Kowalski & Michel, 2002)

Let S(q), q = 1 be a family of cuspidal automorphic representations
satisfying a prescribed set of conditions. Let a« =3/4 and T = 2. Then
there exists co >0, depending on the family, such that

Y N@ma,T) < TBqCOZIa__—al
meS(q)

forall g =1 and some B = 0 that depends on the family. The implied
constant only depends on the choice of c.
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ZERO-FREE REGION FOR A FAMILY OF AUTOMORPHIC
L-FUNCTIONS

Theorem (Kowalski & Michel, 2002)

Let S(q), q = 1 be a family of cuspidal automorphic representations
satisfying a prescribed set of conditions. Let a =3/4 and T =2. Then
there exists co >0, depending on the family, such that

Y N@ma,T) < TBqCOZIa__—al
meS(q)

forall g =1 and some B = 0 that depends on the family. The implied
constant only depends on the choice of c.

Applied to L(s,n) for € S(q9) = a zero-free region of the
desired shape for all but a
possible zero-density
subfamily of L-functions
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A COUPLE OF ISSUES:

1. We are working with Artin L-functions, which in general
are not known to be automorphic!

{L(s) .
%: l_[ L(S)prL/@)d]» d]:deg(P])
peG
p#po irreducible
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A COUPLE OF ISSUES:

1. We are working with Artin L-functions, which in general
are not known to be automorphic!

(L(S) d

== L(s,p,LIQ)%, d;=deg(p)).

) pll; J I
p#po irreducible

Assuming the strong Artin conjecture (when necessary), we
have that each L(s, p,L/Q) is automorphic, i.e. we can write
L(s,p,L/1Q)=L(s,m)

for each L(s, p,L/Q) in our product.
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A COUPLE OF ISSUES:

{L(s) d:

—_— L , ]

46 ,,1;[,0 &)
7 cuspidal

2. Kowalski & Michel’s result applies to family of cuspidal
automorphic representations. We would like to apply it to
a family of isobaric automorphic representations.
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APPLYING KOWALSKI-MICHEL

Let L denote the Galois closure of K over Q.

(r(s)

T "L DN Ls, )+ Lis, mp)
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APPLYING KOWALSKI-MICHEL

Let L denote the Galois closure of K over Q.

(r(s)

T "L DN Ls, )+ Lis, mp)

For each j,

* let £ denote the subfamily of L(s, nj)df as K varies over the
family %;
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APPLYING KOWALSKI-MICHEL

Let L denote the Galois closure of K over Q.

(r(s)

T "L DN Ls, )+ Lis, mp)

For each j,
* let & denote the subfamily of L(s, nj)df as K varies over the
family &;

* apply Kowalski & Michel’s zero-density result for cuspidal
automorphic L-functions to the subfamily Z;;
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APPLYING KOWALSKI-MICHEL

Let L denote the Galois closure of K over Q.

(r(s)

T "L DN Ls, )+ Lis, mp)

For each j,
* let & denote the subfamily of L(s, nj)df as K varies over the
family &;
* apply Kowalski & Michel’s zero-density result for cuspidal
automorphic L-functions to the subfamily Z;;

* conclude a zero-density set of exceptional L-functions in
% can potentially fail to have the desired zero-free region.
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APPLYING KOWALSKI-MICHEL

Let L denote the Galois closure of K over Q.

(r(s)

T "L DN Ls, )+ Lis, mp)

For each j,

* let & denote the subfamily of L(s, nj)df as K varies over the
family &;
* apply Kowalski & Michel’s zero-density result for cuspidal

automorphic L-functions to the subfamily Z;;

* conclude a zero-density set of exceptional L-functions in
% can potentially fail to have the desired zero-free region.

Key technical point: for each j, we must quantify how many
tields L in the family of Galois closures could contain any given
exceptional L-function in Z;.
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
ICIk[4]] <¢ne D12<+£M_1
i

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

)
Show assumed zero-free region is obeyed

by "most" number fields in an appropriate family
- J

|

Control the propagation of "bad" fields within the family

i
Without assuming GRH, conclude

1L te
|C1K[£]| <L¢ne DIZ< ZE
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CONTROLLING PROPAGATION

Theorem (Kliiners & Nicolae, 2016)

Let L1/Q and L/ Q be finite Galois extensions. For j=1,2 let G;
denote the Galois group of L;j/Q and y; a faithful character of G;. If

L(SyXI’Lll@) = L(S»X2’L2/Q)

then
L1 =L2 and X1=X2-

Bounding ¢-torsion in class groups Caroline Turnage-Butterbaugh



CONTROLLING PROPAGATION

Theorem (Kliiners & Nicolae, 2016)

Let L1/Q and L/ Q be finite Galois extensions. For j=1,2 let G;
denote the Galois group of L;j/Q and y; a faithful character of G;. If

L(s, x1,L1/Q) = L(s, x2,L2/Q)

then
Li=L, andy;=y>.

For relative extensions L/k, with k # Q, the authors show that
the Artin L-function need not detect the identity of fields.
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COUNTING NUMBER FIELDS

We reduce the problem to counting the number of appropriate
distinct subfields
QcFclL

that arise as K varies.
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COUNTING NUMBER FIELDS

We reduce the problem to counting the number of appropriate
distinct subfields
QcFclL

that arise as K varies.

We must control what primes can divide Dk, and thus we
restrict to inertia types that

* generate all of G and
* control the propagation of bad fields;
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COUNTING NUMBER FIELS

In certain cases we also assume the Discriminant Multiplicity
Conjecture:

Conjecture (Discriminant Multiplicity Conjecture)

Let M (D) be the number of degree d number fields K/Q with
Dx =D. Then for each d =1

M;(D) <4, D

for every D = 1.
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COUNTING NUMBER FIELS

In certain cases we also assume the Discriminant Multiplicity
Conjecture:

Conjecture (Discriminant Multiplicity Conjecture)

Let M;(D) be the number of degree d number fields K/Q with
Dk =D. Then for eachd =1

M;(D) <4, D

for every D = 1.

* Assuming the Discriminant Multiplicity Conjecture for all
degrees d gives the full /-torsion conjecture.

* We assume it only for d = n (fixed) and get a bound on
¢-torsion for all £.
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COUNTING NUMBER FIELS

In certain cases we also assume the Discriminant Multiplicity
Conjecture:

Conjecture (Discriminant Multiplicity Conjecture)

Let M;(D) be the number of degree d number fields K/Q with
Dk =D. Then for eachd =1

M;(D) <4, D

for every D = 1.

* Assuming the Discriminant Multiplicity Conjecture for all
degrees d gives the full /-torsion conjecture.

* We assume it only for d = n (fixed) and get a bound on
¢-torsion for all £.

* We do not need to assume this conjecture for cyclic fields.
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BOUNDING #/-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
1
ICIk[4]] <¢ne D12<+£M_1
i

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

)
Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

|

Control the propagation of "bad" fields within the family

i
Without assuming GRH, conclude

I_L _ap
ICIk[]] <gpe Dg 77 .
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G=GalK/Q) =S5, n=2

Theorem (Pierce, T. & Wood, 2017)

Let n = 2 be fixed and let & (X) be the family of degree n extensions
K/Q with square-free discriminant Dy € (0,X] and Gal(K/Q) = S,, as
a permutation group. Then assuming the strong Artin conjecture and
the Discriminant Multiplicity conjecture, for all a possible
zero-density exceptional family of fields in & (X), each K € F (X)
satisfy for every integer € =1 the bound

11
|C1K [[]l <<n,[’£ X2 2[(n—1)+8.
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Thank you




