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BINARY QUADRATIC FORMS

A binary quadratic form is a homogenous polynomial of
degree 2 in two variables:

(a,b,c) := ax2 +bxy+cy2, a,b,c integers.

Equivalent Forms

Two binary quadratic forms (a,b,c) and (a′,b′,c′) are said to be
equivalent if there exists a matrix A ∈ SL2(Z) such that if we
make the linear change of variables

A
(

x
y

)
=

(
x′

y′
)

we have
ax′2 +bx′y′+cy′2 = a′x2 +b′xy+c′y2.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 1/ 45



BINARY QUADRATIC FORMS

A binary quadratic form is a homogenous polynomial of
degree 2 in two variables:

(a,b,c) := ax2 +bxy+cy2, a,b,c integers.

Equivalent Forms

Two binary quadratic forms (a,b,c) and (a′,b′,c′) are said to be
equivalent if there exists a matrix A ∈ SL2(Z) such that if we
make the linear change of variables

A
(

x
y

)
=

(
x′

y′
)

we have
ax′2 +bx′y′+cy′2 = a′x2 +b′xy+c′y2.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 1/ 45



GAUSS AND BINARY QUADRATIC FORMS

In Disquisitiones Arithmeticae, Gauss

• classified the binary quadratic forms with a given
discriminant

D := b2 −4ac, D≡ 0,1 (mod 4)

Note that equivalent forms have the same discriminant;

• formed the class group, the group of equivalence classes of
binary quadratic forms of a given D with group action
Gauss composition;

• showed that, for any given discriminant D, there exist only
finitely many equivalence classes of binary quadratic
forms.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 2/ 45



GAUSS AND BINARY QUADRATIC FORMS

In Disquisitiones Arithmeticae, Gauss

• classified the binary quadratic forms with a given
discriminant

D := b2 −4ac, D≡ 0,1 (mod 4)

Note that equivalent forms have the same discriminant;

• formed the class group, the group of equivalence classes of
binary quadratic forms of a given D with group action
Gauss composition;

• showed that, for any given discriminant D, there exist only
finitely many equivalence classes of binary quadratic
forms.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 2/ 45



GAUSS AND BINARY QUADRATIC FORMS

In Disquisitiones Arithmeticae, Gauss

• classified the binary quadratic forms with a given
discriminant

D := b2 −4ac, D≡ 0,1 (mod 4)

Note that equivalent forms have the same discriminant;

• formed the class group, the group of equivalence classes of
binary quadratic forms of a given D with group action
Gauss composition;

• showed that, for any given discriminant D, there exist only
finitely many equivalence classes of binary quadratic
forms.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 2/ 45



BINARY QUADRATIC FORMS AND QUADRATIC

NUMBER FIELDS

Let K =Q(
p

D). Two nonzero ideals I,J ⊂OK are said to be
equivalent if there exists r,s ∈OK such that (r)I = (s)J.

To each form
(a,b,c) := ax2 +bxy+cy2

with discriminant D= b2 −4ac, we may associate an ideal I of
OK, where

I = 〈a,
−b+p

D
2

〉 .
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BINARY QUADRATIC FORMS AND QUADRATIC

NUMBER FIELDS

Equivalent ←→ equivalent
binary quadratic forms ideals

composition of ←→ multiplication of
equivalence classes of forms equivalence classes of ideals

Ideal class group

We denote by ClK the ideal class group of K. The class number
of K is defined by

h(K) = |ClK|.

From the correspondence to binary quadratic fields, we see that
h(K) is finite.
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CLASS GROUP OF K, [K :Q] ≥ 2

Ideal class group

The ideal class group of K is defined to be

ClK = JK/PK,

where JK denotes the group of fractional ideals of K and PK
denotes the subgroup of principal ideals of K.

The class number of K is defined by

h(K) = |ClK|.

Note:

h(K) = 1 ⇐⇒ OK is a PID =⇒ OK is a UFD
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SIZE OF THE CLASS GROUP

Landau observed (using Minkowski’s Bound) that

|ClK| ≤
n!

nn

(
4
π

)r2

D1/2
K (logDK)n−1

where DK = |DiscK/Q| and r2 denotes the number of pairs of
conjugate complex embeddings of K.
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`-TORSION SUBGROUP

Definition
For any integer `> 1, the `-torsion subgroup of ClK is given by

ClK[`] :=
{

[a] ∈ClK : [a]` = Id
}

Natural Question:

What is the size of ClK[`] as K varies within a family of fields of
fixed degree?
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TRIVIAL BOUND

The trivial bound on the `-torsion subgroup is simply the size
of ClK:

|ClK[`]| ≤ |ClK|¿n,ε D1/2+ε
K

for any integer `≥ 1 and ε> 0 arbitrarily small.
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WHAT DO WE THINK IS TRUE?

Conjecture

Let K/Q be a number field of degree n. Then for every integer `≥ 1,

|ClK[`]|¿n,`,ε Dε
K.

Recorded by
• Brumer-Silverman, 1996
• Duke, 1998
• Zhang, 2005
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WHAT DO WE KNOW IS TRUE?

Conjecture

Let K/Q be a number field of degree n. Then for every integer `≥ 1,

|ClK[`]|¿n,`,ε Dε
K.

Theorem (Gauss)

For all quadratic fields K, we have |ClK[2]|¿n,`,ε Dε
K.
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WHAT DO WE KNOW IS TRUE?

Theorem (Ellenberg & Venkatesh, 2007)

Let K/Q be a number field of degree 2 or 3. Then we have

|ClK[3]|¿n,`,ε D
1
3+ε
K .

Let K/Q be a non-D4 number field of degree 4. Then we have

|ClK[3]|¿n,`,ε D
1
2− 1

168+ε
K .

Theorem (Bhargava et. al., 2017)

Let K/Q be a number field of degree n> 2. Then for some δn > 0 we
have

|ClK[2]|¿ε D
1
2−δn+ε
K .
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WHAT DO WE KNOW IS TRUE?

Theorem (Ellenberg & Venkatesh, 2007)

Let K/Q be a number field of degree n and ` a positive integer.
Assuming GRH

|ClK[`]|¿n,`,ε D
1
2− 1

2`(n−1)+ε
K .
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WHAT DO WE KNOW IS TRUE?

Theorem (Soundararajan, 2000)

Let ` be prime. For all but a possible zero-density exceptional family
of imaginary quadratic fields K/Q, we have

|ClK[`]|¿n,`,ε D
1
2− 1

2`+ε
K .

Theorem (Heath-Brown & Pierce, 2014)

Let `≥ 5 be prime. For all but a possible zero-density exceptional
family of imaginary quadratic fields K/Q, we have

|ClK[`]|¿n,`,ε D
1
2− 3

2`+2+ε
K .
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WHAT DO WE KNOW IS TRUE?

Theorem (Ellenberg, Pierce, & Wood, 2016)

Let `≥ 1, and let [K : Q] = 2,3 or 5. For all but a possible zero-density
exceptional family of fields K/Q, we have

|ClK[`]|¿n,`,ε D
1
2− 1

2`(n−1)+ε
K .

If [K :Q] = 4, then the same bound applies for K non-D4.
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BOUNDING `-TORSION FOR HIGHER DEGREE FIELDS

Here is the shape of theorem we aim to prove:

General shape of end result

Let G be a transitive subgroup of Sn of order n≥ 2. Let F (X) be the
family of extensions K/Q

with Gal(K̃/Q) ∼=G as a permutation group
and with DK ∈ (0,X] and such that all tamely ramified primes in K
have a fixed ramification type. Then for all but a possible zero-density
exceptional family of fields in F (X), each K ∈F (X) satisfies for every
integer `≥ 1 the bound

|ClK[`]|¿n,`,ε X
1
2− 1

2`(n−1)+ε,

as long as certain conditions on G and conjectures (but never GRH)
are met.
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UNCONDITIONAL RESULT

Theorem (Pierce, T. & Wood, 2017)

Let G be a cyclic group of order n≥ 2. Let F (X) be the family of
Galois extensions K/Q

with Gal(K/Q) ∼=G as a permutation group
and with DK ∈ (0,X] and such that all rational primes ramifying in K
are totally ramified. Then for all but a possible zero-density
exceptional family of fields in F (X), each K ∈F (X) satisfies for every
integer `≥ 1 the bound

|ClK[`]|¿n,`,ε X
1
2− 1

2`(n−1)+ε.

If in addition n is prime, then all fields in F (X) satisfy the bound
without exception.
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G=Gal(K̃/Q) ∼= Sn,n≥ 2

Theorem (Pierce, T. & Wood, 2017)

Let n≥ 2 be fixed and let F (X) be the family of degree n extensions
K/Q with square-free discriminant DK ∈ (0,X] and Gal(K̃/Q) ∼= Sn as
a permutation group. Then assuming the strong Artin conjecture and
the Discriminant Multiplicity conjecture, for all a possible
zero-density exceptional family of fields in F (X), each K ∈F (X)
satisfy for every integer `≥ 1 the bound

|ClK[`]|¿n,`,ε X
1
2− 1

2`(n−1)+ε.

The condition that DK is square-free
• includes a positive proportion of possible discriminants;
• is equivalent to a condition on the ramification type of the

tamely ramified primes in K.
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OTHER CASES

In addition to the cyclic and symmetric cases described, we
have theorems for G simple and G=Dp for p an odd prime.
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Our method uses ideas from algebraic number theory, analytic
number theory, and class field theory.

Goals for the rest of this talk:
• describe how to bound |ClK[`]| assuming GRH;

• describe the overall structure of our method which allows
us to circumvent assuming GRH;

• introduce the necessary conjectures and notions as they
appear in the course of the argument.
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STARTING POINT

Theorem (Ellenberg & Venkatesh, 2007)

Suppose K/k is an extension of number fields of degree nK, and let `
be a positive integer. Set δ< 1

2`(n−1) and suppose that

p1,p2, . . . ,pM

are primes in Ok with Nmk/Qpj ¿ (NmK/kDisc (K/k))δ that split
completely in K. Then for any ε> 0,

|ClK[`]|¿n,`,ε D
1
2+ε
K M−1.

Question: How might one go about finding small primes in k
that split completely in K?

Answer: via a Chebotarev Density Theorem
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Let L/k be a normal extension with Galois group G=Gal(L/k).

πC (x,L/k) := #

{
p⊂Ok : p unramified in L,

[
L/k
p

]
=C ,Nmk/Qp≤ x

}
.

• p is a prime ideal in Ok which is unramified in L.

•
[

L/k
p

]
is the Artin symbol, which denotes the fixed, targeted

conjugacy class C within G.

The Chebotarev Density Theorem shows that prime ideals are
equidistributed among the conjugacy classes in G.

To count completely split primes, take C to be the trivial class.
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AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Theorem (Lagarias-Odlyzko, 1975)

Let L/k be a normal extension with Galois group G=Gal(L/k),
DL = |DiscL/Q|, and nL = [L :Q]. There exists an effectively
computable constant C0 such that if GRH holds for the Dedekind zeta
function ζL(s), then for any fixed conjugacy class C ⊂G and every
x≥ 2 ∣∣∣∣πC (x,L/k)− |C |

|G| Li(x)

∣∣∣∣≤C0
|C |
|G| x1/2 log(DLxnL ).

Take x= (Nmk/QDiscK/k)1/(2`(n−1)).

Obtain at least MÀ (Nmk/QDiscK/k)1/(2`(n−1))−ε0 sufficiently
small primes p⊂Ok that split completely in K.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 22/ 45



AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Theorem (Lagarias-Odlyzko, 1975)

Let L/k be a normal extension with Galois group G=Gal(L/k),
DL = |DiscL/Q|, and nL = [L :Q]. There exists an effectively
computable constant C0 such that if GRH holds for the Dedekind zeta
function ζL(s), then for any fixed conjugacy class C ⊂G and every
x≥ 2 ∣∣∣∣πC (x,L/k)− |C |

|G| Li(x)

∣∣∣∣≤C0
|C |
|G| x1/2 log(DLxnL ).

Take x= (Nmk/QDiscK/k)1/(2`(n−1)).

Obtain at least MÀ (Nmk/QDiscK/k)1/(2`(n−1))−ε0 sufficiently
small primes p⊂Ok that split completely in K.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 22/ 45



BOUNDING `-TORSION ASSUMING GRH

Ellenberg-Venkatesh

|ClK[`]| ¿`,n,ε D
1
2+ε
K M−1

Effective Chebotarev Density Theorem
Lagarias-Odlyzko (conditional on GRH)

M À (Nmk/QDiscK/k)1/(2`(n−1))−ε0

Assuming GRH, we have |ClK[`]| ¿`,n,ε D
1
2− 1

2`(n−1)+ε
K

We will remove the assumption on GRH, at the cost of proving
the result for all but a zero-density family of fields.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 23/ 45



BOUNDING `-TORSION ASSUMING GRH

Ellenberg-Venkatesh

|ClK[`]| ¿`,n,ε D
1
2+ε
K M−1

Effective Chebotarev Density Theorem
Lagarias-Odlyzko (conditional on GRH)

M À (Nmk/QDiscK/k)1/(2`(n−1))−ε0

Assuming GRH, we have |ClK[`]| ¿`,n,ε D
1
2− 1

2`(n−1)+ε
K

We will remove the assumption on GRH, at the cost of proving
the result for all but a zero-density family of fields.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 23/ 45



BOUNDING `-TORSION ASSUMING GRH

Ellenberg-Venkatesh

|ClK[`]| ¿`,n,ε D
1
2+ε
K M−1

Effective Chebotarev Density Theorem
Lagarias-Odlyzko (conditional on GRH)

M À (Nmk/QDiscK/k)1/(2`(n−1))−ε0

Assuming GRH, we have |ClK[`]| ¿`,n,ε D
1
2− 1

2`(n−1)+ε
K

We will remove the assumption on GRH, at the cost of proving
the result for all but a zero-density family of fields.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 23/ 45



BOUNDING `-TORSION ASSUMING GRH

Ellenberg-Venkatesh

|ClK[`]| ¿`,n,ε D
1
2+ε
K M−1

Effective Chebotarev Density Theorem
Lagarias-Odlyzko (conditional on GRH)

M À (Nmk/QDiscK/k)1/(2`(n−1))−ε0

Assuming GRH, we have |ClK[`]| ¿`,n,ε D
1
2− 1

2`(n−1)+ε
K

We will remove the assumption on GRH, at the cost of proving
the result for all but a zero-density family of fields.

Bounding `-torsion in class groups Caroline Turnage-Butterbaugh 23/ 45



BOUNDING `-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh

|ClK[`]| ¿`,n,ε D
1
2+ε
K M−1

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

Control the propagation of "bad" fields within the family

Without assuming GRH, conclude

|ClK[`]| ¿`,n,ε D
1
2− 1

2`(n−1)+ε
K .
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DEDEKIND ZETA FUNCTION

Let L be a Galois extension over k.

The Dedekind zeta-function attached to L is defined by

ζL(s) = ∑
I⊂OL

1
N(I)s =

∏
p⊂OL

(
1− 1

N(p)s

)−1
, ℜ(s) > 1.

The Dedekind zeta-function ζL(s) factors as a product of Artin
L-functions:

ζL(s) = ζk(s)
∏
ρ∈G

ρ 6=ρ0 irreducible

L(s,ρ,L/k)deg ρ

• ρ is an irreducible, nontrivial representation of
G=Gal(L/k).
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FACTORIZATION OF ζL(s) FOR G=Gal(L/Q) ∼= S5

S5 has the following Galois representations:

• ρ0 – trivial representation, 1-dimensional

• ρ1 – sign representation, 1-dimensional

• ρ2 – standard representation, 4-dimensional

• ρ3 – product of standard and sign representation, 4-dimensional

• ρ4 – irreducible, 5-dimensional representation

• ρ5 – irreducible, 5-dimensional representation

• ρ6 – exterior square of standard representation, 6-dimensional

ζL(s) = ζ(s)L(s,ρ1)L(s,ρ2)4L(s,ρ3)4L(s,ρ4)5L(s,ρ5)5L(s,ρ6)6
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ASSUMED ZERO-FREE REGION FOR ζL(s)

ζL(s) = ζk(s)
∏
ρ∈G

ρ 6=ρ0 irreducible

L(s,ρ,L/k)deg ρ

Zero-free region for ζk(s):
• We assume ζk(s) has no exceptional zero.
• Then for ζk(s), it is known that there exists an absolute

constant ck such that ζk(s) is zero-free in the region

σ> 1− ck

n2
k logDk(|t|+3)nk

.

Zero-free region for ζL(s)/ζk(s) = L(s,ρ):
• We assume that there exists a positive δ≤ 1/4 such that

L(s,ρ) is zero-free in the region

[1−δ,1]× [−(logDL)2/δ, (logDL)2/δ].
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AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Theorem (Pierce, T. & Wood, 2017)

Let 0< δ≤ 1/4 be a fixed positive constant. For any normal extension
of number fields L/k with [L :Q] = nL such that DL is sufficiently
large, ζL(s) obeys the assumed zero-free region, and ζk(s) has no
exceptional zero, we have that for any conjugacy class
C ⊂G=Gal(L/k)∣∣∣∣πC (x,L/k)− |C |

|G| Li(x)

∣∣∣∣≤C
|C |
|G|

x
(logx)2 ,

for all
x≥ c1 exp

{
c2(loglog(Dc3

L ))2
}

,

where C is an absolute constant and c1,c2,c3 are explicit parameters
depending on δ,nk,nL,Dk, and |G|.
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BOUNDING `-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh

|ClK[`]| ¿`,n,ε D
1
2+ε
K M−1

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

Control the propagation of "bad" fields within the family

Without assuming GRH, conclude

|ClK[`]| ¿`,n,ε D
1
2− 1

2`(n−1)+ε
K .
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CONSTRUCTING A FAMILY OF NUMBER FIELDS

For the rest of the talk, we take k=Q.

We define a family F of fields
K/Q by fixing:

• the degree [K :Q] = nK

• the Galois group G of the
Galois closure L of K

• a ramification type for all
tamely ramified primes in K

L

K

Q

Gal(L/Q) ∼=G

nK
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COUNTING NUMBER FIELDS

We assume that we can find an appropriate bound on the
cardinality of the collection

F (X) := {
K ∈F : DK ∈ (0,X]

}
.

For certain families F , this is known. For example:

Gal(K̃/Q) ∼=G∼= S3 Davenport and Heibronn, 1971

Gal(K̃/Q) ∼=G∼= S4 Bhargava, 2005

Gal(K̃/Q) ∼=G∼= S5 Bhargava, 2010
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COUNTING NUMBER FIELDS
For G cyclic, we can compute a sufficient lower bound on
|F (X)|.

For G∼= Sn for n≥ 2, known lower bounds |F (X)| suffice.

In other cases, one might need to assume a weak form of
Malle’s Conjecture:

Conjecture (Malle – weak form)

Let K/Q be a number field of degree nK, and G=Gal(K̃/Q) a
transitive subgroup of Sn. For all ε> 0, there exist constants
µ1 =µ1(G) and µ2 =µ2(G,ε) > 0 such that for all X ≥ 1,

µ1Xa(G) ≤ |F (X)| ≤µ2Xa(G)+ε

where a(G) is a number depending on the index of G and satisfies
1/(n−1) ≤ a(G) ≤ 1.
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CHECKING IN

We have defined a family F of fields and a collection

F (X) := {
K ∈F : DK ∈ (0,X]

}
.

In some cases, we can compute appropriate bounds of |F (X)|,
in other cases we must assume a weak form of Malle’s
Conjecture.

Show assumed zero-free region is obeyed
by "most" number fields in F (X).

We must introduce automorphic L-functions.
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COUNTING ZEROS OF AUTOMORPHIC L-FUNCTIONS

Let π be a cuspidal automorphic representation on GLm(Q).

Let s=β+ iγ denote a zero of the corresponding automorphic
L-function, L(s,π).

Define

N(π;α,T) := # of zeros of L(s,π) such that β>α and |γ| ≤T.

Kowalski and Michel have given a bound for N(π;α,T) that
holds on average for an appropriately defined family of
cuspidal automorphic representations.
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ZERO-FREE REGION FOR A FAMILY OF AUTOMORPHIC

L-FUNCTIONS

Theorem (Kowalski & Michel, 2002)

Let S(q), q≥ 1 be a family of cuspidal automorphic representations
satisfying a prescribed set of conditions. Let α≥ 3/4 and T ≥ 2. Then
there exists c0 > 0, depending on the family, such that∑

π∈S(q)
N(π;α,T) ¿TBqc0

1−α
2α−1

for all q≥ 1 and some B≥ 0 that depends on the family. The implied
constant only depends on the choice of c0.

Applied to L(s,π) for π ∈ S(q) =⇒ a zero-free region of the
desired shape for all but a
possible zero-density
subfamily of L-functions
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A COUPLE OF ISSUES:

1. We are working with Artin L-functions, which in general
are not known to be automorphic!

ζL(s)

ζ(s)
= ∏

ρ∈G
ρ 6=ρ0 irreducible

L(s,ρ,L/Q)dj , dj =deg(ρj).

Assuming the strong Artin conjecture (when necessary), we
have that each L(s,ρ,L/Q) is automorphic, i.e. we can write

L(s,ρ,L/Q) = L(s,π)

for each L(s,ρ,L/Q) in our product.
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A COUPLE OF ISSUES:

ζL(s)

ζ(s)
= ∏

π 6=π0
π cuspidal

L(s,π)dj

2. Kowalski & Michel’s result applies to family of cuspidal
automorphic representations. We would like to apply it to
a family of isobaric automorphic representations.
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APPLYING KOWALSKI-MICHEL

Let L denote the Galois closure of K over Q.

ζL(s)

ζ(s)
= L(s,π1)d1 · · ·L(s,πj)

dj · · ·L(s,πr)dr

For each j,
• let Lj denote the subfamily of L(s,πj)

dj as K varies over the
family F ;

• apply Kowalski & Michel’s zero-density result for cuspidal
automorphic L-functions to the subfamily Lj;

• conclude a zero-density set of exceptional L-functions in
Lj can potentially fail to have the desired zero-free region.

Key technical point: for each j, we must quantify how many
fields L in the family of Galois closures could contain any given
exceptional L-function in Lj.
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BOUNDING `-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh

|ClK[`]| ¿`,n,ε D
1
2+ε
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Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

Control the propagation of "bad" fields within the family
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CONTROLLING PROPAGATION

Theorem (Klüners & Nicolae, 2016)

Let L1/Q and L2/Q be finite Galois extensions. For j= 1,2 let Gj
denote the Galois group of Lj/Q and χj a faithful character of Gj. If

L(s,χ1,L1/Q) = L(s,χ2,L2/Q)

then
L1 = L2 and χ1 =χ2.

For relative extensions L/k, with k 6=Q, the authors show that
the Artin L-function need not detect the identity of fields.
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COUNTING NUMBER FIELDS

We reduce the problem to counting the number of appropriate
distinct subfields

Q⊂ F⊂ L

that arise as K varies.

We must control what primes can divide DK, and thus we
restrict to inertia types that

• generate all of G and
• control the propagation of bad fields;
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COUNTING NUMBER FIELS
In certain cases we also assume the Discriminant Multiplicity
Conjecture:

Conjecture (Discriminant Multiplicity Conjecture)

Let Md(D) be the number of degree d number fields K/Q with
DK =D. Then for each d≥ 1

Md(D) ¿d,ε Dε

for every D≥ 1.

• Assuming the Discriminant Multiplicity Conjecture for all
degrees d gives the full `-torsion conjecture.

• We assume it only for d= n (fixed) and get a bound on
`-torsion for all `.

• We do not need to assume this conjecture for cyclic fields.
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BOUNDING `-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh

|ClK[`]| ¿`,n,ε D
1
2+ε
K M−1

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

Show assumed zero-free region is obeyed
by "most" number fields in an appropriate family

Control the propagation of "bad" fields within the family

Without assuming GRH, conclude

|ClK[`]| ¿`,n,ε D
1
2− 1

2`(n−1)+ε
K .
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G=Gal(K̃/Q) ∼= Sn,n≥ 2

Theorem (Pierce, T. & Wood, 2017)

Let n≥ 2 be fixed and let F (X) be the family of degree n extensions
K/Q with square-free discriminant DK ∈ (0,X] and Gal(K̃/Q) ∼= Sn as
a permutation group. Then assuming the strong Artin conjecture and
the Discriminant Multiplicity conjecture, for all a possible
zero-density exceptional family of fields in F (X), each K ∈F (X)
satisfy for every integer `≥ 1 the bound

|ClK[`]|¿n,`,ε X
1
2− 1

2`(n−1)+ε.
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Thank you
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