BOUNDING ℓ -torsion in class groups of families of number fields of arbitrary degree

Caroline Turnage-Butterbaugh Duke University

Connections for Women Workshop Analytic Number Theory MSRI February 3, 2017

BINARY QUADRATIC FORMS

A binary quadratic form is a homogenous polynomial of degree 2 in two variables:

$$(a,b,c) := ax^2 + bxy + cy^2, \qquad a,b,c \text{ integers.}$$

BINARY QUADRATIC FORMS

A binary quadratic form is a homogenous polynomial of degree 2 in two variables:

$$(a,b,c) := ax^2 + bxy + cy^2, \qquad a,b,c \text{ integers.}$$

Equivalent Forms

Two binary quadratic forms (a, b, c) and (a', b', c') are said to be equivalent if there exists a matrix $A \in SL_2(\mathbb{Z})$ such that if we make the linear change of variables

$$A\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}x'\\y'\end{array}\right)$$

we have

$$ax'^2 + bx'y' + cy'^2 = a'x^2 + b'xy + c'y^2.$$

GAUSS AND BINARY QUADRATIC FORMS

In Disquisitiones Arithmeticae, Gauss

• classified the binary quadratic forms with a given discriminant

$$D := b^2 - 4ac$$
, $D \equiv 0, 1 \pmod{4}$

Note that equivalent forms have the same discriminant;

GAUSS AND BINARY QUADRATIC FORMS

In Disquisitiones Arithmeticae, Gauss

• classified the binary quadratic forms with a given discriminant

$$D := b^2 - 4ac$$
, $D \equiv 0, 1 \pmod{4}$

Note that equivalent forms have the same discriminant;

• formed the *class group*, the group of equivalence classes of binary quadratic forms of a given *D* with group action Gauss composition;

GAUSS AND BINARY QUADRATIC FORMS

In Disquisitiones Arithmeticae, Gauss

• classified the binary quadratic forms with a given discriminant

$$D := b^2 - 4ac$$
, $D \equiv 0, 1 \pmod{4}$

Note that equivalent forms have the same discriminant;

- formed the *class group*, the group of equivalence classes of binary quadratic forms of a given *D* with group action Gauss composition;
- showed that, for any given discriminant *D*, there exist only finitely many equivalence classes of binary quadratic forms.

Let $K = \mathbb{Q}(\sqrt{D})$. Two nonzero ideals $I, J \subset \mathcal{O}_K$ are said to be *equivalent* if there exists $r, s \in \mathcal{O}_K$ such that (r)I = (s)J.

Let $K = \mathbb{Q}(\sqrt{D})$. Two nonzero ideals $I, J \subset \mathcal{O}_K$ are said to be *equivalent* if there exists $r, s \in \mathcal{O}_K$ such that (r)I = (s)J.

To each form

$$(a, b, c) := ax^2 + bxy + cy^2$$

with discriminant $D = b^2 - 4ac$, we may associate an ideal *I* of \mathcal{O}_K , where

$$I = \langle a, \frac{-b + \sqrt{D}}{2} \rangle.$$

Equivalent binary quadratic forms	\longleftrightarrow	equivalent ideals
composition of equivalence classes of forms	\longleftrightarrow	multiplication of equivalence classes of ideals

Equivalent binary quadratic forms	\longleftrightarrow	equivalent ideals
composition of equivalence classes of forms	\longleftrightarrow	multiplication of equivalence classes of ideals

Ideal class group

We denote by Cl_K the ideal class group of K. The class number of K is defined by

 $h(K) = |\mathbf{Cl}_K|.$

From the correspondence to binary quadratic fields, we see that h(K) is finite.

CLASS GROUP OF K, $[K:\mathbb{Q}] \ge 2$

Ideal class group

The ideal class group of *K* is defined to be

 $\mathrm{Cl}_K = J_K/P_K,$

where J_K denotes the group of fractional ideals of *K* and P_K denotes the subgroup of principal ideals of *K*.

The class number of *K* is defined by

 $h(K) = |\mathbf{Cl}_K|.$

CLASS GROUP OF K, $[K:\mathbb{Q}] \ge 2$

Ideal class group

The ideal class group of *K* is defined to be

 $\mathrm{Cl}_K = J_K / P_K,$

where J_K denotes the group of fractional ideals of *K* and P_K denotes the subgroup of principal ideals of *K*.

The class number of *K* is defined by

 $h(K) = |\mathbf{Cl}_K|.$

Note:

$h(K) = 1 \iff \mathcal{O}_K \text{ is a PID} \implies \mathcal{O}_K \text{ is a UFD}$

SIZE OF THE CLASS GROUP

Landau observed (using Minkowski's Bound) that

$$|\mathbf{Cl}_{K}| \le \frac{n!}{n^{n}} \left(\frac{4}{\pi}\right)^{r_{2}} D_{K}^{1/2} (\log D_{K})^{n-1}$$

where $D_K = |\text{Disc}K/Q|$ and r_2 denotes the number of pairs of conjugate complex embeddings of *K*.

ℓ -TORSION SUBGROUP

Definition For any integer $\ell > 1$, the ℓ -torsion subgroup of Cl_K is given by $\operatorname{Cl}_K[\ell] := \left\{ [\mathfrak{a}] \in \operatorname{Cl}_K : [\mathfrak{a}]^{\ell} = \operatorname{Id} \right\}$

ℓ -TORSION SUBGROUP

Definition For any integer $\ell > 1$, the ℓ -torsion subgroup of Cl_K is given by $\operatorname{Cl}_K[\ell] := \left\{ [\mathfrak{a}] \in \operatorname{Cl}_K : [\mathfrak{a}]^{\ell} = \operatorname{Id} \right\}$

Natural Question:

What is the size of $Cl_K[\ell]$ as *K* varies within a family of fields of fixed degree?

TRIVIAL BOUND

The trivial bound on the ℓ -torsion subgroup is simply the size of Cl_K :

$$|\mathrm{Cl}_K[\ell]| \le |\mathrm{Cl}_K| \ll_{n,\varepsilon} D_K^{1/2+\varepsilon}$$

for any integer $\ell \ge 1$ and $\varepsilon > 0$ arbitrarily small.

WHAT DO WE THINK IS TRUE?

Conjecture

Let K/\mathbb{Q} be a number field of degree n. Then for every integer $\ell \ge 1$,

 $|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}.$

Recorded by

- Brumer-Silverman, 1996
- Duke, 1998
- Zhang, 2005

Conjecture

Let K/\mathbb{Q} be a number field of degree n. Then for every integer $\ell \ge 1$,

 $|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}.$

Theorem (Gauss)

For all quadratic fields *K*, we have $|Cl_K[2]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}$.

Theorem (Ellenberg & Venkatesh, 2007)

Let K/\mathbb{Q} be a number field of degree 2 or 3. Then we have

 $|\mathrm{Cl}_K[3]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{3}+\varepsilon}.$

Let K/\mathbb{Q} be a non- D_4 number field of degree 4. Then we have

$$|Cl_{K}[3]| \ll_{n,\ell,\varepsilon} D_{K}^{\frac{1}{2} - \frac{1}{168} + \varepsilon}$$

Theorem (Ellenberg & Venkatesh, 2007)

Let K/\mathbb{Q} be a number field of degree 2 or 3. Then we have

 $|\mathrm{Cl}_K[3]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{3}+\varepsilon}.$

Let K/\mathbb{Q} be a non- D_4 number field of degree 4. Then we have

$$|\mathrm{Cl}_K[3]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2} - \frac{1}{168} + \varepsilon}$$

Theorem (Bhargava et. al., 2017)

Let K/\mathbb{Q} *be a number field of degree* n > 2*. Then for some* $\delta_n > 0$ *we have*

$$|\mathrm{Cl}_K[2]| \ll_{\varepsilon} D_K^{\frac{1}{2} - \delta_n + \varepsilon}.$$

Theorem (Ellenberg & Venkatesh, 2007)

Let K/\mathbb{Q} be a number field of degree n and ℓ a positive integer. Assuming GRH

$$|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}$$

Theorem (Soundararajan, 2000)

Let ℓ be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K/\mathbb{Q} , we have

$$|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2} - \frac{1}{2\ell} + \varepsilon}$$

Theorem (Soundararajan, 2000)

Let ℓ be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K/\mathbb{Q} , we have

$$|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2} - \frac{1}{2\ell} + \varepsilon}$$

Theorem (Heath-Brown & Pierce, 2014)

Let $\ell \ge 5$ be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K/\mathbb{Q} , we have

$$|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}-\frac{3}{2\ell+2}+\varepsilon}$$

Theorem (Ellenberg, Pierce, & Wood, 2016)

Let $\ell \ge 1$ *, and let* [K : Q] = 2,3 *or* 5*. For all but a possible zero-density exceptional family of fields* K/\mathbb{Q} *, we have*

$$|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}$$

If $[K : \mathbb{Q}] = 4$ *, then the same bound applies for* K *non-D*₄*.*

BOUNDING ℓ -torsion for higher degree fields

Here is the shape of theorem we aim to prove:

General shape of end result

Let G be a transitive subgroup of S_n *of order* $n \ge 2$ *. Let* $\mathscr{F}(X)$ *be the family of extensions* K/\mathbb{Q}

BOUNDING ℓ -torsion for higher degree fields

Here is the shape of theorem we aim to prove:

General shape of end result

Let G be a transitive subgroup of S_n of order $n \ge 2$. Let $\mathscr{F}(X)$ be the family of extensions K/\mathbb{Q} with $Gal(\widetilde{K}/\mathbb{Q}) \cong G$ as a permutation group and with $D_K \in (0, X]$ and such that all tamely ramified primes in K have a fixed ramification type.

BOUNDING ℓ -torsion for higher degree fields

Here is the shape of theorem we aim to prove:

General shape of end result

Let G be a transitive subgroup of S_n of order $n \ge 2$. Let $\mathscr{F}(X)$ be the family of extensions K/\mathbb{Q} with $Gal(\widetilde{K}/\mathbb{Q}) \cong G$ as a permutation group and with $D_K \in (0, X]$ and such that all tamely ramified primes in K have a fixed ramification type. Then for all but a possible zero-density exceptional family of fields in $\mathscr{F}(X)$, each $K \in \mathscr{F}(X)$ satisfies for every integer $\ell \ge 1$ the bound

$$|\mathrm{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} X^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon},$$

as long as certain conditions on G and conjectures (but never GRH) are met.

Theorem (Pierce, T. & Wood, 2017)

Let G be a cyclic group of order $n \ge 2$ *. Let* $\mathscr{F}(X)$ *be the family of Galois extensions* K/\mathbb{Q}

Theorem (Pierce, T. & Wood, 2017)

Let G be a cyclic group of order $n \ge 2$. Let $\mathscr{F}(X)$ be the family of Galois extensions K/\mathbb{Q} with $Gal(K/\mathbb{Q}) \cong G$ as a permutation group and with $D_K \in (0, X]$ and such that all rational primes ramifying in K are totally ramified.

Theorem (Pierce, T. & Wood, 2017)

Let *G* be a cyclic group of order $n \ge 2$. Let $\mathscr{F}(X)$ be the family of Galois extensions K/\mathbb{Q} with $Gal(K/\mathbb{Q}) \cong G$ as a permutation group and with $D_K \in (0, X]$ and such that all rational primes ramifying in *K* are totally ramified. Then for all but a possible zero-density exceptional family of fields in $\mathscr{F}(X)$, each $K \in \mathscr{F}(X)$ satisfies for every integer $\ell \ge 1$ the bound

$$|\mathrm{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} X^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}$$

Theorem (Pierce, T. & Wood, 2017)

Let *G* be a cyclic group of order $n \ge 2$. Let $\mathscr{F}(X)$ be the family of Galois extensions K/\mathbb{Q} with $Gal(K/\mathbb{Q}) \cong G$ as a permutation group and with $D_K \in (0, X]$ and such that all rational primes ramifying in *K* are totally ramified. Then for all but a possible zero-density exceptional family of fields in $\mathscr{F}(X)$, each $K \in \mathscr{F}(X)$ satisfies for every integer $\ell \ge 1$ the bound

$$|\mathbf{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} X^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}.$$

If in addition n is prime, then all fields in $\mathscr{F}(X)$ satisfy the bound without exception.

$G = \operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong S_n, n \ge 2$

Theorem (Pierce, T. & Wood, 2017)

Let $n \ge 2$ be fixed and let $\mathscr{F}(X)$ be the family of degree n extensions K/\mathbb{Q} with square-free discriminant $D_K \in (0, X]$ and $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong S_n$ as a permutation group. Then assuming the strong Artin conjecture and the Discriminant Multiplicity conjecture, for all a possible zero-density exceptional family of fields in $\mathscr{F}(X)$, each $K \in \mathscr{F}(X)$ satisfy for every integer $\ell \ge 1$ the bound

$$|\mathbf{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} X^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}$$

$G = \operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong S_n, n \ge 2$

Theorem (Pierce, T. & Wood, 2017)

Let $n \ge 2$ be fixed and let $\mathscr{F}(X)$ be the family of degree n extensions K/\mathbb{Q} with square-free discriminant $D_K \in (0, X]$ and $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong S_n$ as a permutation group. Then assuming the strong Artin conjecture and the Discriminant Multiplicity conjecture, for all a possible zero-density exceptional family of fields in $\mathscr{F}(X)$, each $K \in \mathscr{F}(X)$ satisfy for every integer $\ell \ge 1$ the bound

$$|\operatorname{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} X^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}.$$

The condition that D_K is square-free

- includes a positive proportion of possible discriminants;
- is equivalent to a condition on the ramification type of the tamely ramified primes in *K*.

In addition to the cyclic and symmetric cases described, we have theorems for *G* simple and $G = D_p$ for *p* an odd prime.

Our method uses ideas from algebraic number theory, analytic number theory, and class field theory.

Goals for the rest of this talk:

- describe how to bound $|Cl_K[\ell]|$ assuming GRH;
- describe the overall structure of our method which allows us to circumvent assuming GRH;
- introduce the necessary conjectures and notions as they appear in the course of the argument.

STARTING POINT

Theorem (Ellenberg & Venkatesh, 2007)

Suppose *K*/*k* is an extension of number fields of degree n_K , and let ℓ be a positive integer. Set $\delta < \frac{1}{2\ell(n-1)}$ and suppose that

 $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_M$

are primes in \mathcal{O}_k with $\operatorname{Nm}_{k/\mathbb{Q}}\mathfrak{p}_j \ll (\operatorname{Nm}_{K/k}\operatorname{Disc}(K/k))^{\delta}$ that split completely in K. Then for any $\varepsilon > 0$,

 $|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}.$
STARTING POINT

Theorem (Ellenberg & Venkatesh, 2007)

Suppose K/k is an extension of number fields of degree n_K , and let ℓ be a positive integer. Set $\delta < \frac{1}{2\ell(n-1)}$ and suppose that

 $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_M$

are primes in \mathcal{O}_k with $\operatorname{Nm}_{k/\mathbb{Q}}\mathfrak{p}_j \ll (\operatorname{Nm}_{K/k}\operatorname{Disc}(K/k))^{\delta}$ that split completely in K. Then for any $\varepsilon > 0$,

$$|\mathrm{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} D_{K}^{\frac{1}{2}+\varepsilon} M^{-1}.$$

Question: How might one go about finding small primes in *k* that split completely in *K*?

STARTING POINT

Theorem (Ellenberg & Venkatesh, 2007)

Suppose *K*/*k* is an extension of number fields of degree n_K , and let ℓ be a positive integer. Set $\delta < \frac{1}{2\ell(n-1)}$ and suppose that

 $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_M$

are primes in \mathcal{O}_k with $\operatorname{Nm}_{k/\mathbb{Q}}\mathfrak{p}_j \ll (\operatorname{Nm}_{K/k}\operatorname{Disc}(K/k))^{\delta}$ that split completely in K. Then for any $\varepsilon > 0$,

$$|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}.$$

Question: How might one go about finding small primes in *k* that split completely in *K*?

Answer: via a Chebotarev Density Theorem

Let L/k be a normal extension with Galois group G = Gal(L/k).

$$\pi_{\mathscr{C}}(x,L/k) := \# \left\{ \mathfrak{p} \subset \mathscr{O}_k : \mathfrak{p} \text{ unramified in } L, \left[\frac{L/k}{\mathfrak{p}} \right] = \mathscr{C}, \operatorname{Nm}_{k/\mathbb{Q}} \mathfrak{p} \leq x \right\}.$$

- \mathfrak{p} is a prime ideal in \mathcal{O}_k which is unramified in *L*.
- $\left[\frac{L/k}{\mathfrak{p}}\right]$ is the Artin symbol, which denotes the fixed, targeted conjugacy class \mathscr{C} within *G*.

Let L/k be a normal extension with Galois group G = Gal(L/k).

$$\pi_{\mathscr{C}}(x,L/k) := \# \left\{ \mathfrak{p} \subset \mathcal{O}_k : \mathfrak{p} \text{ unramified in } L, \left[\frac{L/k}{\mathfrak{p}} \right] = \mathscr{C}, \operatorname{Nm}_{k/\mathbb{Q}} \mathfrak{p} \leq x \right\}.$$

- \mathfrak{p} is a prime ideal in \mathcal{O}_k which is unramified in *L*.
- $\left[\frac{L/k}{\mathfrak{p}}\right]$ is the Artin symbol, which denotes the fixed, targeted conjugacy class \mathscr{C} within *G*.

The Chebotarev Density Theorem shows that prime ideals are equidistributed among the conjugacy classes in *G*.

Let L/k be a normal extension with Galois group G = Gal(L/k).

$$\pi_{\mathscr{C}}(x,L/k) := \# \left\{ \mathfrak{p} \subset \mathcal{O}_k : \mathfrak{p} \text{ unramified in } L, \left[\frac{L/k}{\mathfrak{p}} \right] = \mathscr{C}, \operatorname{Nm}_{k/\mathbb{Q}} \mathfrak{p} \leq x \right\}.$$

- \mathfrak{p} is a prime ideal in \mathcal{O}_k which is unramified in *L*.
- $\left[\frac{L/k}{\mathfrak{p}}\right]$ is the Artin symbol, which denotes the fixed, targeted conjugacy class \mathscr{C} within *G*.

The Chebotarev Density Theorem shows that prime ideals are equidistributed among the conjugacy classes in *G*.

To count completely split primes, take *C* to be the trivial class.

AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Theorem (Lagarias-Odlyzko, 1975)

Let L/k be a normal extension with Galois group G = Gal(L/k), $D_L = |\text{Disc}L/\mathbb{Q}|$, and $n_L = [L:\mathbb{Q}]$. There exists an effectively computable constant C_0 such that if GRH holds for the Dedekind zeta function $\zeta_L(s)$, then for any fixed conjugacy class $\mathscr{C} \subset G$ and every $x \ge 2$

$$\pi_{\mathscr{C}}(x,L/k) - \frac{|\mathscr{C}|}{|G|} \operatorname{Li}(x) \leq C_0 \frac{|\mathscr{C}|}{|G|} x^{1/2} \log(D_L x^{n_L}).$$

AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Theorem (Lagarias-Odlyzko, 1975)

Let L/k be a normal extension with Galois group G = Gal(L/k), $D_L = |\text{Disc}L/\mathbb{Q}|$, and $n_L = [L:\mathbb{Q}]$. There exists an effectively computable constant C_0 such that if GRH holds for the Dedekind zeta function $\zeta_L(s)$, then for any fixed conjugacy class $\mathscr{C} \subset G$ and every $x \ge 2$

$$\pi_{\mathscr{C}}(x,L/k) - \frac{|\mathscr{C}|}{|G|} \operatorname{Li}(x) \leq C_0 \frac{|\mathscr{C}|}{|G|} x^{1/2} \log(D_L x^{n_L}).$$

Take $x = (\operatorname{Nm}_{k/\mathbb{Q}}\operatorname{Disc} K/k)^{1/(2\ell(n-1))}$.

Obtain at least $M \gg (\operatorname{Nm}_{k/\mathbb{Q}}\operatorname{Disc} K/k)^{1/(2\ell(n-1))-\varepsilon_0}$ sufficiently small primes $\mathfrak{p} \subset \mathcal{O}_k$ that split completely in *K*.

Ellenberg-Venkatesh $|Cl_K[\ell]| \ll_{\ell,n,\epsilon} D_K^{\frac{1}{2}+\epsilon} M^{-1}$

We will remove the assumption on GRH, at the cost of proving the result for all but a zero-density family of fields.

Ellenberg-Venkatesh $|Cl_K[\ell]| \ll_{\ell,n,\epsilon} D_K^{\frac{1}{2}+\epsilon} M^{-1}$

DEDEKIND ZETA FUNCTION

Let *L* be a Galois extension over *k*.

The Dedekind zeta-function attached to L is defined by

$$\zeta_L(s) = \sum_{I \subset \mathcal{O}_L} \frac{1}{N(I)^s} = \prod_{\mathfrak{p} \subset \mathcal{O}_L} \left(1 - \frac{1}{N(\mathfrak{p})^s} \right)^{-1}, \quad \Re(s) > 1.$$

DEDEKIND ZETA FUNCTION

Let *L* be a Galois extension over *k*.

The Dedekind zeta-function attached to L is defined by

$$\zeta_L(s) = \sum_{I \subset \mathcal{O}_L} \frac{1}{N(I)^s} = \prod_{\mathfrak{p} \subset \mathcal{O}_L} \left(1 - \frac{1}{N(\mathfrak{p})^s}\right)^{-1}, \quad \Re(s) > 1.$$

The Dedekind zeta-function $\zeta_L(s)$ factors as a product of Artin *L*-functions:

$$\zeta_L(s) = \zeta_k(s) \prod_{\substack{\rho \in G \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, L/k)^{\deg \rho}$$

• ρ is an irreducible, nontrivial representation of G = Gal(L/k).

FACTORIZATION OF $\zeta_L(s)$ FOR $G = \text{Gal}(L/\mathbb{Q}) \cong S_5$

 S_5 has the following Galois representations:

- ρ_0 trivial representation, 1-dimensional
- ρ_1 sign representation, 1-dimensional
- ρ_2 standard representation, 4-dimensional
- ρ_3 product of standard and sign representation, 4-dimensional
- ρ_4 irreducible, 5-dimensional representation
- *ρ*₅ irreducible, 5-dimensional representation
- ρ_6 exterior square of standard representation, 6-dimensional

 $\zeta_L(s) = \zeta(s)L(s,\rho_1)L(s,\rho_2)^4L(s,\rho_3)^4L(s,\rho_4)^5L(s,\rho_5)^5L(s,\rho_6)^6$

Assumed zero-free region for $\zeta_L(s)$

$$\zeta_L(s) = \zeta_k(s) \prod_{\substack{\rho \in G \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, L/k)^{\deg \rho}$$

Zero-free region for $\zeta_k(s)$ **:**

- We assume $\zeta_k(s)$ has no exceptional zero.
- Then for ζ_k(s), it is known that there exists an absolute constant c_k such that ζ_k(s) is zero-free in the region

$$\sigma > 1 - \frac{c_k}{n_k^2 \log D_k (|t| + 3)^{n_k}}$$

Assumed zero-free region for $\zeta_L(s)$

$$\zeta_L(s) = \zeta_k(s) \prod_{\substack{\rho \in G \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, L/k)^{\deg \rho}$$

Zero-free region for $\zeta_k(s)$ **:**

- We assume $\zeta_k(s)$ has no exceptional zero.
- Then for ζ_k(s), it is known that there exists an absolute constant c_k such that ζ_k(s) is zero-free in the region

$$\sigma > 1 - \frac{c_k}{n_k^2 \log D_k (|t| + 3)^{n_k}}$$

Zero-free region for $\zeta_L(s)/\zeta_k(s) = L(s, \rho)$:

• We assume that there exists a positive $\delta \le 1/4$ such that $L(s, \rho)$ is zero-free in the region

$$[1-\delta,1]\times [-(\log D_L)^{2/\delta},(\log D_L)^{2/\delta}].$$

Assumed zero-free region for $\zeta_L(s)$

Bounding ℓ-torsion in class groups

Caroline Turnage-Butterbaugh

AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Theorem (Pierce, T. & Wood, 2017)

Let $0 < \delta \le 1/4$ be a fixed positive constant. For any normal extension of number fields L/k with $[L:\mathbb{Q}] = n_L$ such that D_L is sufficiently large, $\zeta_L(s)$ obeys the assumed zero-free region, and $\zeta_k(s)$ has no exceptional zero, we have that for any conjugacy class $\mathscr{C} \subset G = \operatorname{Gal}(L/k)$

$$\left|\pi_{\mathscr{C}}(x,L/k) - \frac{|\mathscr{C}|}{|G|}\operatorname{Li}(x)\right| \leq C\frac{|\mathscr{C}|}{|G|}\frac{x}{(\log x)^2},$$

for all

$$x \ge c_1 \exp\left\{c_2 (\log \log(D_L^{c_3}))^2\right\},\,$$

where C is an absolute constant and c_1, c_2, c_3 are explicit parameters depending on δ, n_k, n_L, D_k , and |G|.

CONSTRUCTING A FAMILY OF NUMBER FIELDS

For the rest of the talk, we take $k = \mathbb{Q}$.

We define a family \mathscr{F} of fields K/\mathbb{Q} by fixing:

- the degree $[K:\mathbb{Q}] = n_K$
- the Galois group *G* of the Galois closure *L* of *K*
- a ramification type for all tamely ramified primes in *K*

We assume that we can find an appropriate bound on the cardinality of the collection

 $\mathcal{F}(X) := \left\{ K \in \mathcal{F} : D_K \in (0, X] \right\}.$

We assume that we can find an appropriate bound on the cardinality of the collection

$$\mathcal{F}(X) := \left\{ K \in \mathcal{F} : D_K \in (0, X] \right\}.$$

For certain families \mathcal{F} , this is known. For example:

 $Gal(\tilde{K}/\mathbb{Q}) \cong G \cong S_3$ Davenport and Heibronn, 1971 $Gal(\tilde{K}/\mathbb{Q}) \cong G \cong S_4$ Bhargava, 2005 $Gal(\tilde{K}/\mathbb{Q}) \cong G \cong S_5$ Bhargava, 2010

For *G* cyclic, we can compute a sufficient lower bound on $|\mathscr{F}(X)|$.

For *G* cyclic, we can compute a sufficient lower bound on $|\mathscr{F}(X)|$.

For $G \cong S_n$ for $n \ge 2$, known lower bounds $|\mathscr{F}(X)|$ suffice.

For *G* cyclic, we can compute a sufficient lower bound on $|\mathscr{F}(X)|$.

For $G \cong S_n$ for $n \ge 2$, known lower bounds $|\mathscr{F}(X)|$ suffice.

In other cases, one might need to assume a weak form of Malle's Conjecture:

Conjecture (Malle – weak form)

Let K/\mathbb{Q} *be a number field of degree* n_K *, and* $G = \text{Gal}(\tilde{K}/\mathbb{Q})$ *a transitive subgroup of* S_n *. For all* $\varepsilon > 0$ *, there exist constants* $\mu_1 = \mu_1(G)$ *and* $\mu_2 = \mu_2(G, \varepsilon) > 0$ *such that for all* $X \ge 1$ *,*

$$\mu_1 X^{a(G)} \leq |\mathcal{F}(X)| \leq \mu_2 X^{a(G) + \varepsilon}$$

where a(G) is a number depending on the index of G and satisfies $1/(n-1) \le a(G) \le 1$.

CHECKING IN

We have defined a family \mathcal{F} of fields and a collection

 $\mathcal{F}(X) := \left\{ K \in \mathcal{F} : D_K \in (0, X] \right\}.$

In some cases, we can compute appropriate bounds of $|\mathscr{F}(X)|$, in other cases we must assume a weak form of Malle's Conjecture.

Show assumed zero-free region is obeyed by "most" number fields in $\mathcal{F}(X)$.

We must introduce automorphic *L*-functions.

COUNTING ZEROS OF AUTOMORPHIC L-FUNCTIONS

Let π be a cuspidal automorphic representation on $GL_m(\mathbb{Q})$.

Let $s = \beta + i\gamma$ denote a zero of the corresponding automorphic *L*-function, *L*(*s*, π).
COUNTING ZEROS OF AUTOMORPHIC L-FUNCTIONS

Let π be a cuspidal automorphic representation on $GL_m(\mathbb{Q})$.

Let $s = \beta + i\gamma$ denote a zero of the corresponding automorphic *L*-function, $L(s, \pi)$.

Define

 $N(\pi; \alpha, T) := #$ of zeros of $L(s, \pi)$ such that $\beta > \alpha$ and $|\gamma| \le T$.

COUNTING ZEROS OF AUTOMORPHIC L-FUNCTIONS

Let π be a cuspidal automorphic representation on $GL_m(\mathbb{Q})$.

Let $s = \beta + i\gamma$ denote a zero of the corresponding automorphic *L*-function, $L(s, \pi)$.

Define

 $N(\pi; \alpha, T) := #$ of zeros of $L(s, \pi)$ such that $\beta > \alpha$ and $|\gamma| \le T$.

Kowalski and Michel have given a bound for $N(\pi; \alpha, T)$ that holds on average for an appropriately defined family of cuspidal automorphic representations.

ZERO-FREE REGION FOR A FAMILY OF AUTOMORPHIC L-FUNCTIONS

Theorem (Kowalski & Michel, 2002)

Let S(q), $q \ge 1$ be a family of cuspidal automorphic representations satisfying a prescribed set of conditions. Let $\alpha \ge 3/4$ and $T \ge 2$. Then there exists $c_0 > 0$, depending on the family, such that

$$\sum_{\pi \in S(q)} N(\pi; \alpha, T) \ll T^B q^{c_0 \frac{1-\alpha}{2\alpha-1}}$$

for all $q \ge 1$ and some $B \ge 0$ that depends on the family. The implied constant only depends on the choice of c_0 .

ZERO-FREE REGION FOR A FAMILY OF AUTOMORPHIC L-FUNCTIONS

Theorem (Kowalski & Michel, 2002)

Let S(q), $q \ge 1$ *be a family of cuspidal automorphic representations satisfying a prescribed set of conditions. Let* $\alpha \ge 3/4$ *and* $T \ge 2$ *. Then there exists* $c_0 > 0$ *, depending on the family, such that*

$$\sum_{\pi \in S(q)} N(\pi; \alpha, T) \ll T^B q^{c_0 \frac{1-\alpha}{2\alpha-1}}$$

for all $q \ge 1$ and some $B \ge 0$ that depends on the family. The implied constant only depends on the choice of c_0 .

Applied to $L(s,\pi)$ for $\pi \in S(q) \implies$ a zero-free region of the desired shape for all but a possible zero-density subfamily of *L*-functions

A COUPLE OF ISSUES:

1. We are working with Artin *L*-functions, which in general are not known to be automorphic!

$$\frac{\zeta_L(s)}{\zeta(s)} = \prod_{\substack{\rho \in G \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, L/\mathbb{Q})^{d_j}, \quad d_j = \deg(\rho_j).$$

A COUPLE OF ISSUES:

1. We are working with Artin *L*-functions, which in general are not known to be automorphic!

$$\frac{\zeta_L(s)}{\zeta(s)} = \prod_{\substack{\rho \in G \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, L/\mathbb{Q})^{d_j}, \quad d_j = \deg(\rho_j).$$

Assuming the strong Artin conjecture (when necessary), we have that each $L(s, \rho, L/\mathbb{Q})$ is automorphic, i.e. we can write

$$L(s,\rho,L/\mathbb{Q})=L(s,\pi)$$

for each $L(s, \rho, L/\mathbb{Q})$ in our product.

A COUPLE OF ISSUES:

$$\frac{\zeta_L(s)}{\zeta(s)} = \prod_{\substack{\pi \neq \pi_0 \\ \pi \text{ cuspidal}}} L(s,\pi)^{d_j}$$

2. Kowalski & Michel's result applies to family of *cuspidal* automorphic representations. We would like to apply it to a family of *isobaric* automorphic representations.

Let *L* denote the Galois closure of *K* over \mathbb{Q} .

$$\frac{\zeta_L(s)}{\zeta(s)} = L(s,\pi_1)^{d_1} \cdots L(s,\pi_j)^{d_j} \cdots L(s,\pi_r)^{d_r}$$

Let *L* denote the Galois closure of *K* over \mathbb{Q} .

$$\frac{\zeta_L(s)}{\zeta(s)} = L(s,\pi_1)^{d_1} \cdots L(s,\pi_j)^{d_j} \cdots L(s,\pi_r)^{d_r}$$

For each *j*,

let *L_j* denote the subfamily of *L*(*s*, π_j)^{*d_j*} as *K* varies over the family *F*;

Let *L* denote the Galois closure of *K* over \mathbb{Q} .

$$\frac{\zeta_L(s)}{\zeta(s)} = L(s,\pi_1)^{d_1} \cdots L(s,\pi_j)^{d_j} \cdots L(s,\pi_r)^{d_r}$$

For each *j*,

- let *L_j* denote the subfamily of *L*(*s*, π_j)^{*d_j*} as *K* varies over the family *F*;
- apply Kowalski & Michel's zero-density result for cuspidal automorphic *L*-functions to the subfamily *L*_j;

Let *L* denote the Galois closure of *K* over \mathbb{Q} .

$$\frac{\zeta_L(s)}{\zeta(s)} = L(s,\pi_1)^{d_1} \cdots L(s,\pi_j)^{d_j} \cdots L(s,\pi_r)^{d_r}$$

For each *j*,

- let *L_j* denote the subfamily of *L*(*s*, π_j)^{*d_j*} as *K* varies over the family *F*;
- apply Kowalski & Michel's zero-density result for cuspidal automorphic *L*-functions to the subfamily *L*_i;
- conclude a zero-density set of exceptional *L*-functions in *L_j* can potentially fail to have the desired zero-free region.

Let *L* denote the Galois closure of *K* over \mathbb{Q} .

$$\frac{\zeta_L(s)}{\zeta(s)} = L(s,\pi_1)^{d_1} \cdots L(s,\pi_j)^{d_j} \cdots L(s,\pi_r)^{d_r}$$

For each *j*,

- let *L_j* denote the subfamily of *L*(*s*, π_j)^{*d_j*} as *K* varies over the family *F*;
- apply Kowalski & Michel's zero-density result for cuspidal automorphic *L*-functions to the subfamily *L*_j;
- conclude a zero-density set of exceptional *L*-functions in *L_j* can potentially fail to have the desired zero-free region.

Key technical point: for each *j*, we must quantify how many fields *L* in the family of Galois closures could contain any given exceptional *L*-function in \mathcal{L}_{j} .

BOUNDING ℓ -TORSION WITHOUT ASSUMING GRH

BOUNDING ℓ -TORSION WITHOUT ASSUMING GRH

CONTROLLING PROPAGATION

Theorem (Klüners & Nicolae, 2016)

Let L_1/\mathbb{Q} and L_2/\mathbb{Q} be finite Galois extensions. For j = 1, 2 let G_j denote the Galois group of L_j/\mathbb{Q} and χ_j a faithful character of G_j . If

$$L(s, \chi_1, L_1/\mathbb{Q}) = L(s, \chi_2, L_2/\mathbb{Q})$$

then

$$L_1 = L_2$$
 and $\chi_1 = \chi_2$.

CONTROLLING PROPAGATION

Theorem (Klüners & Nicolae, 2016)

Let L_1/\mathbb{Q} and L_2/\mathbb{Q} be finite Galois extensions. For j = 1, 2 let G_j denote the Galois group of L_j/\mathbb{Q} and χ_j a faithful character of G_j . If

$$L(s,\chi_1,L_1/\mathbb{Q}) = L(s,\chi_2,L_2/\mathbb{Q})$$

then

$$L_1 = L_2$$
 and $\chi_1 = \chi_2$.

For relative extensions L/k, with $k \neq \mathbb{Q}$, the authors show that the Artin *L*-function need not detect the identity of fields.

COUNTING NUMBER FIELDS

We reduce the problem to counting the number of appropriate distinct subfields

 $\mathbb{Q} \subset F \subset L$

that arise as *K* varies.

COUNTING NUMBER FIELDS

We reduce the problem to counting the number of appropriate distinct subfields

$$\mathbb{Q} \subset F \subset L$$

that arise as *K* varies.

We must control what primes can divide D_K , and thus we restrict to inertia types that

- generate all of *G* and
- control the propagation of bad fields;

COUNTING NUMBER FIELS

In certain cases we also assume the Discriminant Multiplicity Conjecture:

Conjecture (Discriminant Multiplicity Conjecture)

Let $M_d(D)$ *be the number of degree d number fields* K/\mathbb{Q} *with* $D_K = D$. Then for each $d \ge 1$

 $M_d(D) \ll_{d,\varepsilon} D^{\varepsilon}$

for every $D \ge 1$.

COUNTING NUMBER FIELS

In certain cases we also assume the Discriminant Multiplicity Conjecture:

Conjecture (Discriminant Multiplicity Conjecture)

Let $M_d(D)$ *be the number of degree d number fields* K/\mathbb{Q} *with* $D_K = D$. Then for each $d \ge 1$

 $M_d(D) \ll_{d,\varepsilon} D^{\varepsilon}$

for every $D \ge 1$.

- Assuming the Discriminant Multiplicity Conjecture for <u>all</u> degrees *d* gives the full ℓ-torsion conjecture.
- We assume it only for *d* = *n* (fixed) and get a bound on *ℓ*-torsion for all *ℓ*.

COUNTING NUMBER FIELS

In certain cases we also assume the Discriminant Multiplicity Conjecture:

Conjecture (Discriminant Multiplicity Conjecture)

Let $M_d(D)$ *be the number of degree d number fields* K/\mathbb{Q} *with* $D_K = D$. Then for each $d \ge 1$

 $M_d(D) \ll_{d,\varepsilon} D^{\varepsilon}$

for every $D \ge 1$.

- Assuming the Discriminant Multiplicity Conjecture for <u>all</u> degrees *d* gives the full *ℓ*-torsion conjecture.
- We assume it only for *d* = *n* (fixed) and get a bound on ℓ -torsion for all ℓ .
- We do not need to assume this conjecture for cyclic fields.

BOUNDING ℓ -TORSION WITHOUT ASSUMING GRH

BOUNDING ℓ -TORSION WITHOUT ASSUMING GRH

 $G = \operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong S_n, n \ge 2$

Theorem (Pierce, T. & Wood, 2017)

Let $n \ge 2$ be fixed and let $\mathscr{F}(X)$ be the family of degree n extensions K/\mathbb{Q} with square-free discriminant $D_K \in (0, X]$ and $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong S_n$ as a permutation group. Then assuming the strong Artin conjecture and the Discriminant Multiplicity conjecture, for all a possible zero-density exceptional family of fields in $\mathscr{F}(X)$, each $K \in \mathscr{F}(X)$ satisfy for every integer $\ell \ge 1$ the bound

$$|\mathbf{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} X^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}$$

Thank you