Systems of quadratic and cubic diagonal equations

Julia Brandes

Chalmers Institute of Technology / University of Gothenburg

February 03, 2017

Consider systems of diagonal equation

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r).
$$

What is the number $N(P)$ of integral solutions $1 \leq x_1, \ldots, x_s \leq P$ to such a system?

Consider systems of diagonal equation

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r).
$$

What is the number $N(P)$ of integral solutions $1 \leq x_1, \ldots, x_s \leq P$ to such a system?

Heuristics:

- Typically expect $N(P) \approx P^{s-\sum k_i}$.
	- if equations are suff. independent \rightarrow non-singularity conditions!
	- \bullet possible obstructions to real or p-adic solubility

Consider systems of diagonal equation

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r).
$$

What is the number $N(P)$ of integral solutions $1 \leq x_1, \ldots, x_s \leq P$ to such a system?

Heuristics:

- Typically expect $N(P) \approx P^{s-\sum k_i}$.
	- if equations are suff. independent \rightarrow non-singularity conditions!
	- \bullet possible obstructions to real or p -adic solubility
- "square root barrier": without further info on coefficients, can get $N(P) \gg P^{s/2}$.

Consider systems of diagonal equation

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r).
$$

What is the number $N(P)$ of integral solutions $1 \leq x_1, \ldots, x_s \leq P$ to such a system?

Heuristics:

- Typically expect $N(P) \approx P^{s-\sum k_i}$.
	- if equations are suff. independent \rightarrow non-singularity conditions!
	- \bullet possible obstructions to real or p -adic solubility

"square root barrier": without further info on coefficients, can get $N(P) \gg P^{s/2}$.

 \rightarrow expect $\mathcal{N}(P)\sim cP^{s-\sum k_i}$ for $s\geq 2\sum k_i+1.$

Question

For what systems

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r)
$$

can we show that

$$
N(P) \sim cP^{s-\sum k_i} \quad \text{for} \quad s \geq 2\sum k_i + 1?
$$

Question

For what systems

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r)
$$

can we show that

$$
N(P) \sim cP^{s-\sum k_i} \quad \text{for} \quad s \geq 2\sum k_i + 1?
$$

• Systems of linear and quadratic forms: classical.

Question

For what systems

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r)
$$

can we show that

$$
N(P) \sim cP^{s-\sum k_i} \quad \text{for} \quad s \geq 2\sum k_i + 1?
$$

• Systems of linear and quadratic forms: classical.

• Vinogradov systems: $k_i = i$ for $1 \le i \le K$. (follows from VMVT – see BDG)

Question

For what systems

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r)
$$

can we show that

$$
N(P) \sim cP^{s-\sum k_i} \quad \text{for} \quad s \geq 2\sum k_i + 1?
$$

• Systems of linear and quadratic forms: classical.

- Vinogradov systems: $k_i = i$ for $1 \le i \le K$. (follows from VMVT see BDG)
- \bullet One quadratic and one cubic equation Wooley 2015 (uses cubic VMVT)

Question

For what systems

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r)
$$

can we show that

$$
N(P) \sim cP^{s-\sum k_i} \quad \text{for} \quad s \geq 2\sum k_i + 1?
$$

- Systems of linear and quadratic forms: classical.
- Vinogradov systems: $k_i = i$ for $1 \le i \le K$. (follows from VMVT see BDG)
- \bullet One quadratic and one cubic equation Wooley 2015 (uses cubic VMVT)
- Systems of r cubic equations: $N(P) \gg c^{ps-3r}$ whenever $s > 6r + 1$ (Brüdern-Wooley 2016).

Question

For what systems

$$
c_{i,1}x_1^{k_i} + \cdots + c_{i,s}x_s^{k_i} = 0 \quad (1 \leq i \leq r)
$$

can we show that

$$
\mathsf{N}(\mathsf{P})\sim c\mathsf{P}^{s-\sum k_i} \quad \text{for} \quad s\geq 2\sum k_i+1?
$$

- Systems of linear and quadratic forms: classical.
- Vinogradov systems: $k_i = i$ for $1 \le i \le K$. (follows from VMVT see BDG)
- \bullet One quadratic and one cubic equation Wooley 2015 (uses cubic VMVT)
- Systems of r cubic equations: $N(P) \gg c^{ps-3r}$ whenever $s > 6r + 1$ (Brüdern-Wooley 2016).

This talk:

- \bullet One cubic and r_2 quadratic equations,
- \bullet One quadratic and r_3 cubic equations.

Warm-up: One quadratic and one cubic equation

Wooley's theorem $(r_2 = r_3 = 1)$ by the circle method: Count solutionns $1 \le x_i \le P$ to

$$
c_1x_1^2 + \cdots + c_sx_s^2 = 0
$$

$$
d_1x_1^3 + \cdots + d_sx_s^3 = 0.
$$

Warm-up: One quadratic and one cubic equation

Wooley's theorem $(r_2 = r_3 = 1)$ by the circle method: Count solutionns $1 \le x_i \le P$ to

$$
c_1x_1^2 + \cdots + c_s x_s^2 = 0
$$

$$
d_1x_1^3 + \cdots + d_s x_s^3 = 0.
$$

Let

$$
f(\alpha_2,\alpha_3)=\sum_{x=1}^P e(\alpha_2x^2+\alpha_3x^3).
$$

Then by orthogonality,

$$
N(P) = \sum_{x_1,...x_s} \int_0^1 e(\alpha \sum c_i x_i^2) d\alpha \int_0^1 e(\beta \sum d_i x_i^3) d\beta
$$

Warm-up: One quadratic and one cubic equation

Wooley's theorem $(r_2 = r_3 = 1)$ by the circle method: Count solutionns $1 \le x_i \le P$ to

$$
c_1x_1^2 + \cdots + c_s x_s^2 = 0
$$

$$
d_1x_1^3 + \cdots + d_s x_s^3 = 0.
$$

Let

$$
f(\alpha_2,\alpha_3)=\sum_{x=1}^P e(\alpha_2x^2+\alpha_3x^3).
$$

Then by orthogonality,

$$
N(P) = \sum_{x_1,\ldots,x_s} \int_0^1 e(\alpha \sum c_i x_i^2) d\alpha \int_0^1 e(\beta \sum d_i x_i^3) d\beta = \int_{[0,1]^2} \prod_{i=1}^s f(c_i \alpha, d_i \beta) d\alpha d\beta.
$$

Need to understand

$$
N(P)=\int_{[0,1]^2}\prod_{i=1}^s f(c_i\alpha,d_i\beta){\rm d}\alpha{\rm d}\beta.
$$

Need to understand

$$
N(P) = \int_{[0,1]^2} \prod_{i=1}^s f(c_i \alpha, d_i \beta) d\alpha d\beta.
$$

dissect unit interval in

- major arcs M , where the integrand is large \rightarrow main term,
- minor arcs m , where the integrand is small \rightarrow error term.

Need to understand

$$
N(P) = \int_{[0,1]^2} \prod_{i=1}^s f(c_i \alpha, d_i \beta) d\alpha d\beta.
$$

Idea:

dissect unit interval in

- major arcs \mathfrak{M} , where the integrand is large \rightarrow main term,
- minor arcs m , where the integrand is small \rightarrow error term.

Take $[0, 1]^2 = \mathfrak{M} \cup \mathfrak{m}$, where

$$
\mathfrak{M} = \{ \alpha \in [0,1]^2 : |q\alpha_i - a_i| \leq P^{-9/4}, q \leq P^{3/4}, \quad a_i, q_i \in \mathbb{N} \}.
$$

By fairly standard methods $(s \geq 11)$:

$$
N(P; \mathfrak{M}) = \int_{\mathfrak{M}} \prod_{i=1}^{s} f(c_i \alpha_2, d_i \alpha_3) \mathrm{d} \alpha \sim c P^{s-5}.
$$

Need to understand contribution from minor arcs. Let $s \geq 11$, then

$$
\mathsf{N}(\mathsf{P};\mathfrak{m})=\int_{\mathfrak{m}}\prod_{i=1}^{s}f(c_{i}\alpha_{2},d_{i}\alpha_{3})\mathrm{d}\bm{\alpha}\ll \sup_{\bm{\alpha}\in\mathfrak{m}}|f(\bm{\alpha})|^{s-10}\int_{[0,1]^{2}}|f(\bm{\alpha})|^{10}\mathrm{d}\bm{\alpha}.
$$

Need to understand contribution from minor arcs. Let $s \geq 11$, then

$$
\mathsf{N}(\mathsf{P};\mathfrak{m})=\int_{\mathfrak{m}}\prod_{i=1}^{s}f(c_{i}\alpha_{2},d_{i}\alpha_{3})\mathrm{d}\bm{\alpha}\ll \sup_{\bm{\alpha}\in\mathfrak{m}}|f(\bm{\alpha})|^{s-10}\int_{[0,1]^{2}}|f(\bm{\alpha})|^{10}\mathrm{d}\bm{\alpha}.
$$

Classical: $\sup_{\bm{\alpha} \in \mathfrak{m}} |f(\bm{\alpha})| \ll P^{3/4+\varepsilon}.$

Need to understand contribution from minor arcs. Let $s > 11$, then

$$
\mathsf{N}(\mathsf{P};\mathfrak{m})=\int_{\mathfrak{m}}\prod_{i=1}^{s}f(c_{i}\alpha_{2},d_{i}\alpha_{3})\mathrm{d}\bm{\alpha}\ll \sup_{\bm{\alpha}\in\mathfrak{m}}|f(\bm{\alpha})|^{s-10}\int_{[0,1]^{2}}|f(\bm{\alpha})|^{10}\mathrm{d}\bm{\alpha}.
$$

Classical: $\sup_{\bm{\alpha} \in \mathfrak{m}} |f(\bm{\alpha})| \ll P^{3/4+\varepsilon}.$

Theorem (Wooley 2015)

$$
\int_{[0,1]^2} |f(\boldsymbol{\alpha})|^{10} \mathrm{d} \boldsymbol{\alpha} \ll P^{5+1/6+\varepsilon}.
$$

Need to understand contribution from minor arcs. Let $s > 11$, then

$$
\mathsf{N}(\mathsf{P};\mathfrak{m})=\int_{\mathfrak{m}}\prod_{i=1}^{s}f(c_{i}\alpha_{2},d_{i}\alpha_{3})\mathrm{d}\alpha\ll \sup_{\alpha\in\mathfrak{m}}|f(\alpha)|^{s-10}\int_{[0,1]^{2}}|f(\alpha)|^{10}\mathrm{d}\alpha.
$$

Classical: $\sup_{\bm{\alpha} \in \mathfrak{m}} |f(\bm{\alpha})| \ll P^{3/4+\varepsilon}.$

Theorem (Wooley 2015)

$$
\int_{[0,1]^2} |f(\boldsymbol{\alpha})|^{10} \mathrm{d} \boldsymbol{\alpha} \ll P^{5+1/6+\varepsilon}.
$$

Altogether, when $s > 11$:

$$
N(P) = N(P; \mathfrak{M}) + O(N(P; \mathfrak{m}))
$$

$$
\sim cP^{s-5} + O(P^{(3/4)(s-10)+\varepsilon}P^{5+1/6+\varepsilon})
$$

= $cP^{s-5} + O(P^{s-5-\delta}).$

What happens for larger systems?

We have

$$
N(P)=\int_{[0,1]^{r_2+r_3}}\prod_{i=1}^s f(\gamma_{i,2},\gamma_{i,3})\mathrm{d}\alpha,
$$

where

$$
f(\alpha_2, \alpha_3) = \sum_{x=1}^{p} e(\alpha_2 x^2 + \alpha_3 x^3)
$$
 and $\gamma_{i,k} = \sum_{j=1}^{r_k} c_{i,j} \alpha_{j,k}$ $(k = 2, 3).$

What happens for larger systems?

We have

$$
N(P)=\int_{[0,1]^{r_2+r_3}}\prod_{i=1}^s f(\gamma_{i,2},\gamma_{i,3})\mathrm{d}\alpha,
$$

where

$$
f(\alpha_2, \alpha_3) = \sum_{x=1}^{P} e(\alpha_2 x^2 + \alpha_3 x^3)
$$
 and $\gamma_{i,k} = \sum_{j=1}^{r_k} c_{i,j} \alpha_{j,k}$ $(k = 2, 3).$

Major arcs dissection as before. Need to understand minor arcs contribution. We have (morally)

$$
N(P; \mathfrak{m}) \ll \sup_{\alpha \in \mathfrak{m}} |f(\alpha)|^{s-4r_2-6r_3} \int_{[0,1]^{r_2+r_3}} \prod_{i=1}^{r_3} |f(\gamma_{i,2}, \gamma_{i,3})|^{10} \prod_{i=r_3+1}^{r_2} |f(\gamma_{i,2}, \gamma_{i,3})|^4 \mathrm{d}\alpha.
$$

$$
I(P) = \int_{[0,1]^3} |f(\gamma_{1,2}, \gamma_{1,3})|^{10} |f(\gamma_{2,2}, \gamma_{2,3})|^4 d\alpha
$$

counts solutions to the system

$$
d_{1,1}(x_1^3 + \cdots - y_5^3) + d_{1,2}(x_6^3 + \cdots - y_7^3) = 0
$$

\n
$$
c_{1,1}(x_1^2 + \cdots - y_5^2) + c_{1,2}(x_6^2 + \cdots - y_7^2) = 0
$$

\n
$$
c_{2,1}(x_1^2 + \cdots - y_5^2) + c_{2,2}(x_6^2 + \cdots - y_7^2) = 0.
$$

$$
I(P) = \int_{[0,1]^3} |f(\gamma_{1,2}, \gamma_{1,3})|^{10} |f(\gamma_{2,2}, \gamma_{2,3})|^4 d\alpha
$$

counts solutions to the system

$$
d_{1,1}(x_1^3 + \cdots - y_5^3) + d_{1,2}(x_6^3 + \cdots - y_7^3) = 0
$$

\n
$$
c_{1,1}(x_1^2 + \cdots - y_5^2) + c_{1,2}(x_6^2 + \cdots - y_7^2) = 0
$$

\n
$$
c_{2,1}(x_1^2 + \cdots - y_5^2) + c_{2,2}(x_6^2 + \cdots - y_7^2) = 0.
$$

We diagonalise the bottom 2×2 matrix:

$$
I(P) = \int_{[0,1]^3} |f(\gamma_{1,2}, \gamma_{1,3})|^{10} |f(\gamma_{2,2}, \gamma_{2,3})|^4 d\alpha
$$

counts solutions to the system

$$
d_{1,1}(x_1^3 + \cdots - y_5^3) + d_{1,2}(x_6^3 + \cdots - y_7^3) = 0
$$

\n
$$
c_{1,1}(x_1^2 + \cdots - y_5^2) = 0
$$

\n
$$
+ c_{2,2}(x_6^2 + \cdots - y_7^2) = 0.
$$

$$
I(P) = \int_{[0,1]^3} |f(\gamma_{1,2}, \gamma_{1,3})|^{10} |f(\gamma_{2,2}, \gamma_{2,3})|^4 d\alpha
$$

counts solutions to the system

$$
d_{1,1}(x_1^3 + \cdots - y_5^3) + d_{1,2}(x_6^3 + \cdots - y_7^3) = 0
$$

\n
$$
c_{1,1}(x_1^2 + \cdots - y_5^2) = 0
$$

\n
$$
+ c_{2,2}(x_6^2 + \cdots - y_7^2) = 0.
$$

The last equation is a quadratic form in four variables and has $\ll P^{2+\varepsilon}$ solutions.

$$
I(P) = \int_{[0,1]^3} |f(\gamma_{1,2}, \gamma_{1,3})|^{10} |f(\gamma_{2,2}, \gamma_{2,3})|^4 d\alpha
$$

counts solutions to the system

$$
d_{1,1}(x_1^3 + \cdots - y_5^3) + d_{1,2}(x_6^3 + \cdots - y_7^3) = 0
$$

\n
$$
c_{1,1}(x_1^2 + \cdots - y_5^2) = 0
$$

\n
$$
+ c_{2,2}(x_6^2 + \cdots - y_7^2) = 0.
$$

The last equation is a quadratic form in four variables and has $\ll P^{2+\varepsilon}$ solutions. This fixes the variables x_6, x_7, y_6, y_7 , and we need to solve

$$
d_{1,1}(x_1^3 + \cdots + x_5^3) = w_1
$$

$$
c_{1,1}(x_1^2 + \cdots + x_5^2) = 0.
$$

$$
I(P) = \int_{[0,1]^3} |f(\gamma_{1,2}, \gamma_{1,3})|^{10} |f(\gamma_{2,2}, \gamma_{2,3})|^4 d\alpha
$$

counts solutions to the system

$$
d_{1,1}(x_1^3 + \cdots - y_5^3) + d_{1,2}(x_6^3 + \cdots - y_7^3) = 0
$$

\n
$$
c_{1,1}(x_1^2 + \cdots - y_5^2) = 0
$$

\n
$$
+ c_{2,2}(x_6^2 + \cdots - y_7^2) = 0.
$$

The last equation is a quadratic form in four variables and has $\ll P^{2+\varepsilon}$ solutions. This fixes the variables x_6, x_7, y_6, y_7 , and we need to solve

$$
d_{1,1}(x_1^3 + \cdots + x_5^3) = w_1
$$

$$
c_{1,1}(x_1^2 + \cdots + x_5^2) = 0.
$$

This system has $\ll P^{5+1/6+\varepsilon}$ solutions by Wooley's theorem, and we get

$$
I(P) \ll P^{2+\varepsilon} P^{5+1/6+\varepsilon} \ll P^{7+1/6+\varepsilon}.
$$

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have

 $N(P) \sim cP^{s-2r_2-3r_3}$,

with $c > 0$, provided that

• $s \geq 4r_2 + |(20/3)r_3| + 1$ if $r_2 \geq r_3$

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have

$$
N(P)\sim cP^{s-2r_2-3r_3},
$$

with $c > 0$, provided that

- $s \geq 4r_2 + |(20/3)r_3| + 1$ if $r_2 \geq r_3$,
- $s \ge 8r_3 + |(8/3)r_2| + 1$ if $r_3 > r_2$.

This argument leads to

```
Theorem 1 (JB & S. T. Parsell 2015, to appear)
```
Suppose that the quadratic and cubic systems are suitably non-singular. We have

 $N(P) \sim cP^{s-2r_2-3r_3}$,

with $c > 0$, provided that • $s > 4r_2 + |(20/3)r_3| + 1$ if $r_2 > r_3$, **•** $s \ge 8r_3 + (8/3)r_2 + 1$ if $r_3 > r_2$.

• The argument generalises to arbitrary systems of arbitrary degrees.

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have

$$
N(P)\sim cP^{s-2r_2-3r_3},
$$

with $c > 0$, provided that

- $s > 4r_2 + |(20/3)r_3| + 1$ if $r_2 > r_3$,
- $s \geq 8r_3 + |(8/3)r_2| + 1$ if $r_3 > r_2$.

• The argument generalises to arbitrary systems of arbitrary degrees.

• For $r_3 = 1$ we obtain essentially square root cancellation.

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have

$$
N(P)\sim cP^{s-2r_2-3r_3},
$$

with $c > 0$, provided that

- $\bullet s > 4r_2 + |(20/3)r_3| + 1$ if $r_2 > r_3$,
- $s \ge 8r_3 + |(8/3)r_2| + 1$ if $r_3 > r_2$.
- The argument generalises to arbitrary systems of arbitrary degrees.
- For $r_3 = 1$ we obtain essentially square root cancellation.
- The case $r_3 > r_2$ is clearly unsatisfactory...

The case $r_3 \geq 2r_2$: Complification

Recall

$$
N(P)=\int_{[0,1]^{r_2+r_3}}\prod_{i=1}^s f(\gamma_{i,2},\gamma_{i,3})\mathrm{d}\alpha,
$$

where

$$
f(\alpha_2, \alpha_3) = \sum_{x=1}^{P} e(\alpha_2 x^2 + \alpha_3 x^3)
$$
 and $\gamma_{i,k} = \sum_{j=1}^{r_k} c_{i,j} \alpha_{3,j}$ $(k = 2, 3).$

The case $r_3 \geq 2r_2$: Complification

Recall

$$
N(P)=\int_{[0,1]^{r_2+r_3}}\prod_{i=1}^s f(\gamma_{i,2},\gamma_{i,3})\mathrm{d}\alpha,
$$

where

$$
f(\alpha_2, \alpha_3) = \sum_{x=1}^P e(\alpha_2 x^2 + \alpha_3 x^3)
$$
 and $\gamma_{i,k} = \sum_{j=1}^{r_k} c_{i,j} \alpha_{3,j}$ $(k = 2, 3).$

We have

$$
N(P; \mathfrak{m}) \ll \sup_{\alpha \in \mathfrak{m}} |f(\alpha_2, \alpha_3)|^{s-4r_2-6r_3} J_1(P),
$$

where

$$
J_1(P) = \int_{[0,1]^{r_2+r_3}} \prod_{i=1}^{r_3} |f(\gamma_i)|^2 \prod_{i=r_3+1}^{r_3+r_2} |f(\gamma_i)|^8 \prod_{i=r_3+r_2+1}^{2r_3-2r_2} |f(\gamma_i)|^4 \prod_{i=2r_3-2r_2+1}^{2r_3-r_2} |f(\gamma_i)|^8 \mathrm{d} \alpha
$$

Recall

$$
J_1(P) = \int_{[0,1]^{r_2+r_3}} \prod_{i=1}^{r_3} |f(\gamma_i)|^2 \prod_{i=r_3+1}^{r_3+r_2} |f(\gamma_i)|^8 \prod_{i=r_3+r_2+1}^{2r_3-2r_2} |f(\gamma_i)|^4 \prod_{i=2r_3-2r_2+1}^{2r_3-r_2} |f(\gamma_i)|^8 \mathrm{d}\alpha.
$$

Idea: Do the counter-intuitive thing – blow the system up!

Recall

$$
J_1(P) = \int_{[0,1]^{r_2+r_3}} \prod_{i=1}^{r_3} |f(\gamma_i)|^2 \prod_{i=r_3+1}^{r_3+r_2} |f(\gamma_i)|^8 \prod_{i=r_3+r_2+1}^{2r_3-2r_2} |f(\gamma_i)|^4 \prod_{i=2r_3-2r_2+1}^{2r_3-r_2} |f(\gamma_i)|^8 \mathrm{d}\alpha.
$$

Idea: Do the counter-intuitive thing – blow the system up! Cauchy-Schwarz gives

$$
J_n(P) \ll (P^{(5+1/6)r_2+\varepsilon})^{1/2} J_{2n}(P)^{1/2},
$$

where the cubic system is of the shape

After *m* inductive steps:

$$
J_1(P) \ll (P^{(5+1/6)r_2+\varepsilon})^{1-2^{-m}} J_{2^m}(P)^{2^{-m}}
$$

The mean value $J_n(P)$ contains $R_n = n(r_3 - r_2) + r_2$ cubic and r_2 quadratic polynomials in $6R_n + 4r_2$ variables.

After *m* inductive steps:

$$
J_1(P) \ll (P^{(5+1/6)r_2+\varepsilon})^{1-2^{-m}} J_{2^m}(P)^{2^{-m}}
$$

The mean value $J_n(P)$ contains $R_n = n(r_3 - r_2) + r_2$ cubic and r_2 quadratic polynomials in $6R_n + 4r_2$ variables.

Now a miracle happens:

$$
J_n(P)\ll P^{3n(r_3-r_2)+9r_2+\varepsilon}\ll P^{3R_n+6r_2+\varepsilon}.
$$

We miss by a constant exponent – regardless of the value of $n!!$

After *m* inductive steps:

$$
J_1(P) \ll (P^{(5+1/6)r_2+\varepsilon})^{1-2^{-m}} J_{2^m}(P)^{2^{-m}}
$$

The mean value $J_n(P)$ contains $R_n = n(r_3 - r_2) + r_2$ cubic and r_2 quadratic polynomials in $6R_n + 4r_2$ variables.

Now a miracle happens:

$$
J_n(P)\ll P^{3n(r_3-r_2)+9r_2+\varepsilon}\ll P^{3R_n+6r_2+\varepsilon}.
$$

We miss by a constant exponent – regardless of the value of $n!!$

This gives

$$
J_1(P) \ll (P^{(5+1/6)r_2+\varepsilon})^{1-2^{-m}} (P^{3\cdot 2^m(r_3-r_2)+9r_2+\varepsilon})^{2^{-m}} \ll P^{3r_3+(2+1/6)r_2+2^{-m}\frac{23}{6}r_2+\varepsilon}.
$$

This leads to

Theorem 2 (JB 2016, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular, and $r_3 > 2r_2 > 1$. We have

$$
N(P) \sim cP^{s-2r_2-3r_3}
$$

with $c > 0$, provided that

 $s \geq 6r_3 + |(14/3)r_2| + 1.$

This leads to

Theorem 2 (JB 2016, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular, and $r_3 > 2r_2 > 1$. We have

$$
N(P) \sim cP^{s-2r_2-3r_3}
$$

with $c > 0$, provided that

 $s \geq 6r_3 + |(14/3)r_2| + 1.$

• For $r_3 \notin (r_2, 2r_2)$, we have the bound

 $s > 4r_2 + 6r_3 + (2/3) \min\{r_2, r_3\} + 1.$

Unfortunately, the middle range for r_3 seems to be harder.

This leads to

Theorem 2 (JB 2016, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular, and $r_3 > 2r_2 > 1$. We have

$$
N(P) \sim cP^{s-2r_2-3r_3}
$$

with $c \geq 0$, provided that

 $s \geq 6r_3 + |(14/3)r_2| + 1.$

• For $r_3 \notin (r_2, 2r_2)$, we have the bound

 $s > 4r_2 + 6r_3 + (2/3) \min\{r_2, r_3\} + 1.$

Unfortunately, the middle range for r_3 seems to be harder.

• We have square root cancellation for min $\{r_2, r_3\} = 1$.

The end

Thank you for your attention!