Systems of quadratic and cubic diagonal equations

Julia Brandes

Chalmers Institute of Technology / University of Gothenburg

February 03, 2017

T O TWRTOS < of quadratic and cubic di - FebrRry 03 20T ATS




The question

Consider systems of diagonal equation
ki ki i
Caxy + -+ csxg =0 (1<i<r).

What is the number N(P) of integral solutions 1 < x1,...,xs < P to such a
system?
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Introduction

The question

Consider systems of diagonal equation

Gaxpi+ 4 exli=0 (1<i<r)

What is the number N(P) of integral solutions 1 < x1,...,xs < P to such a
system?

Heuristics:

o Typically expect N(P) ~ PS=2 %,

o if equations are suff. independent — non-singularity conditions!
o possible obstructions to real or p-adic solubility
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The question

Consider systems of diagonal equation

Gaxpi+ 4 exli=0 (1<i<r)

What is the number N(P) of integral solutions 1 < x1,...,xs < P to such a
system?

Heuristics:

o Typically expect N(P) ~ PS=2 %,

o if equations are suff. independent — non-singularity conditions!
o possible obstructions to real or p-adic solubility

@ "square root barrier”: without further info on coefficients, can get
N(P) > Ps/2.
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Introduction

The question

Consider systems of diagonal equation

Gaxpi+ 4 exli=0 (1<i<r)

What is the number N(P) of integral solutions 1 < x1,...,xs < P to such a
system?

Heuristics:

o Typically expect N(P) ~ PS=2 %,

o if equations are suff. independent — non-singularity conditions!
o possible obstructions to real or p-adic solubility

@ "square root barrier”: without further info on coefficients, can get
N(P) > Ps/2.

— expect N(P) ~ cPs=2ki for s > 25" k; + 1.
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Introduction

What do we know?

Question

For what systems
ki ki __ H
Gixp +--+csxg =0 (1<i<r)
can we show that

N(P) ~ cP™2k  for s>2 ki+17

Julia Brandes (Gothenburg) ! of q ic and cubic di:

February 03, 2017 3 /15




Introduction

What do we know?

Question

For what systems
k,‘ ki — [
Gixp +--+csxg =0 (1<i<r)
can we show that

N(P) ~ cP™2K  for s>2% ki+1?

@ Systems of linear and quadratic forms: classical.
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Introduction

What do we know?

Question

For what systems

c,~71xf" + 4 c,-)sxsk" =0 (1<i<r)

can we show that

N(P) ~ cP™2k  for s>2 ki+17

@ Systems of linear and quadratic forms: classical.

@ Vinogradov systems: k; =i for 1 < i < K. (follows from VMVT — see BDG)
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What do we know?

Question

For what systems

c,~71xf" + 4 c,-)sxsk" =0 (1<i<r)

can we show that

N(P) ~ cP™2K  for s>2% ki+1?
@ Systems of linear and quadratic forms: classical.

@ Vinogradov systems: k; =i for 1 < i < K. (follows from VMVT — see BDG)
@ One quadratic and one cubic equation — Wooley 2015 (uses cubic VMVT)
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Introduction

What do we know?

Question

For what systems

c,~71xf" + 4 c,-)sxsk" =0 (1<i<r)

can we show that

N(P) ~ cP™2k  for s>2 ki+17

@ Systems of linear and quadratic forms: classical.
@ Vinogradov systems: k; =i for 1 < i < K. (follows from VMVT — see BDG)
@ One quadratic and one cubic equation — Wooley 2015 (uses cubic VMVT)

@ Systems of r cubic equations: N(P) > cP*~3 whenever s > 6r + 1
(Briidern—Wooley 2016).
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Introduction

What do we know?

Question

For what systems

c,~71xf" + 4 c,-)sxsk" =0 (1<i<r)

can we show that

N(P) ~ cP™2k  for s>2 ki+17

@ Systems of linear and quadratic forms: classical.

@ Vinogradov systems: k; =i for 1 < i < K. (follows from VMVT — see BDG)

@ One quadratic and one cubic equation — Wooley 2015 (uses cubic VMVT)

@ Systems of r cubic equations: N(P) > cP*~3 whenever s > 6r + 1
(Briidern—Wooley 2016).

This talk:

@ One cubic and r, quadratic equations,

@ One quadratic and r3 cubic equations.
Systems of q

ic and cubic di:
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Warm-up: One quadratic and one cubic equation

Wooley's theorem (r» = r; = 1) by the circle method: Count solutionns 1 < x; < P
to

2 2
axy+--+cx; =0

e+ o = 0.
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The circle method

Warm-up: One quadratic and one cubic equation

Wooley's theorem (r» = r; = 1) by the circle method: Count solutionns 1 < x; < P
to

2 2
axy+--+cx; =0

e+ o = 0.

Let

P
f(aa,a3) = Z e(axx® + azx®).

x=1

Then by orthogonality,
1 1
TGEDS / e(a Y cx)da / (83 did)ds
X1y...Xs 0 0
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The circle method

Warm-up: One quadratic and one cubic equation

Wooley's theorem (r» = r; = 1) by the circle method: Count solutionns 1 < x; < P
to

2 2
axy+--+cx; =0

e+ o = 0.

Let

P
f(aa,a3) = Z e(axx® + azx®).

x=1

Then by orthogonality,
1
Py => / (@) cix?)da / By dix})ds = / Hf cia, diB)dadB.
X1ye-:Xs 0 01]2
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The circle method

Need to understand

/ H f(ciar, diB)dadp.
[0,1] 7
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The circle method

Need to understand

/[0 oL H f(cia, d;3)dads.

Idea:
dissect unit interval in
@ major arcs M, where the integrand is large — main term,

@ minor arcs m, where the integrand is small — error term.
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The circle method

Need to understand

/[0 oL H f(cia, d;3)dads.

Idea:
dissect unit interval in
@ major arcs M, where the integrand is large — main term,

@ minor arcs m, where the integrand is small — error term.

Take [0, 1]> = 9T Um, where
M={ae[0,1]: |ga; —ai| < P9, g < P**  a;,q €N},

By fairly standard methods (s > 11):
s

N(P, m) = / H f(C,'Ozz, d,'Oé3)dOt ~ CPS_S.
M i1

February 03, 2017
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The circle method

Need to understand contribution from minor arcs.
Let s > 11, then

N(P;m) / Hf ciag, diag)da < sup |f (e )|S_10/ 1f(a)|*da.

i=1 [0,1]2

T TSRS < | of quadratic and cubic di ; oy T30 675




The circle method

Need to understand contribution from minor arcs.
Let s > 11, then

N(P;m) / Hf ciag, diag)da < sup |f (e )|S_10/ 1f(a)|*da.
Py [0,1]2

Classical: supyen [f(a)] < p3/4+e.
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The circle method

Need to understand contribution from minor arcs.
Let s > 11, then

N(P;m) / Hf ciag, diag)da < sup |f (e )|S_10/ 1f(a)|*da.

i=1 [0,1]2

Classical: supyen [f(a)] < p3/4+e.

Theorem (Wooley 2015)

/ |f(a)Pda < P5HL/6Fe,
0.1
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The circle method

Need to understand contribution from minor arcs.
Let s > 11, then

N(P;m) / Hf ciag, diag)da < sup |f (e )|S_10/ 1f(a)|*da.
Py [0,1]2

Classical: supyen [f(a)] < p3/4+e.

Theorem (Wooley 2015)

/ |f(a)Pda < P5HL/6Fe,
0.1

Altogether, when s > 11:

N(P) = N(P; ) + O(N(P;m))
~ cPS™ 5+O( 3/4)s 10)+EP5+1/6+8)

= cP*° + O(P°°77).
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What happens for larger systems?

We have

s

N P :/ f 7,'7 ,’y;,3 dOé,
(P) [o.,l]rz+rs,1]1( 2,%i3)

where

P r
f(OQ, 043) = Z e(a2x2 + Oé3X3) and Yi,k = Z Cijo k (k = 2,3)
Jj=1

x=1
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What happens for larger systems?

We have

S
N(P :/ f(viz2,7i3)do
A= [ s

where
P rk
2
flaz, az) E e(aax? + azx®) and Vik = E Ci jO K (k=12,3).
x=1 j=

Major arcs dissection as before. Need to understand minor arcs contribution. We
have (morally)

r

r3
N(P;m) < sup |f(a)|s_4r2_6r3/[ J2t H‘f(’Yi,zﬁi,a)Po H | (7i2,7i,3)|*dex.
0,1]2%3 Gy

ocm i=r3+1
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General systems of diagonal equations

Consider the case rn = 2,3 = 1. The mean value

I(P) = /[0 . 1 (71,2 71,3)*°1F (72,2, 72,3) [*dex
1

counts solutions to the system

g+ =) Fdo(g+—y]) =0
ai(xf+--—y2) +a20¢+---—yi) =
i1+ —¥2) +aag+---—y7) =0
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General systems of diagonal equations

Consider the case rn = 2,3 = 1. The mean value

I(P) = /[0 . 1 (71,2 71,3)*°1F (72,2, 72,3) [*dex
1

counts solutions to the system
g+ =) Fdo(g+—y]) =0
can(d + - —yg) tap(gt—yg) =
210+ —y) taag+—y) =0

N

We diagonalise the bottom 2 x 2 matrix:

February 03, 2017
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General systems of diagonal equations

Consider the case rn = 2,r3 = 1. The mean value

(P) = [ 1f(n2ma) PlF (22,20 da
[0.1]

counts solutions to the system

dii(G +-—y2) +dia(R+--—y3) =0

)

c1,1(X12+~"—)/52) ( ) 2) =
Foa(xg+- - — s =0.
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General systems of diagonal equations

Consider the case rn = 2,r3 = 1. The mean value

(P) = [ 1f(n2ma) PlF (22,20 da
[0.1]

counts solutions to the system

dia(x¢+-—y2) +dip(@+-—yl) =0
i+ — ) =
+te206 +—y7) =0

The last equation is a quadratic form in four variables and has < P%*¢ solutions.
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General systems of diagonal equations

Consider the case rn = 2,r3 = 1. The mean value

(P) = [ 1f(n2ma) PlF (22,20 da
[0.1]

counts solutions to the system
(4= yg) +dip(g + =) =0
et +- = ¥3) =

+te206 +—y7) =0

The last equation is a quadratic form in four variables and has < P%*¢ solutions.
This fixes the variables xg, x7, V6, y7, and we need to solve

(G + =) =wm
ci(x+-—y2)=0.
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General systems of diagonal equations

Consider the case rn = 2,r3 = 1. The mean value

(P) = [ 1f(n2ma) PlF (22,20 da
[0.1]

counts solutions to the system
(G +-—y2) +dio(E+—y3) =0
et +- = ¥3) =
+too(é + o —y7) =0

The last equation is a quadratic form in four variables and has < P%*¢ solutions.
This fixes the variables xg, x7, V6, y7, and we need to solve

(G + =) =wm
ci(x+-—y2)=0.

This system has < P>t1/6+¢ solutions by Wooley's theorem, and we get

/(P) < p2te p5+1/6+¢ < pT+1/6+e
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General systems of diagonal equations

The results, part |

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have
N(P) ~ (__,3572r273r37

with ¢ > 0, provided that
0 5>4n+|(20/3)s|+1ifn>n
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General systems of diagonal equations

The results, part |

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have
N(P) ~ (__,3572r273r37

with ¢ > 0, provided that
@ s>4n+|(20/3)r3| +1if rn > 3,
@ 5s>8n+|(8/3)n] +1ifrs>n.
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General systems of diagonal equations

The results, part |

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have
N(P) ~ (__,3572r273r37

with ¢ > 0, provided that
@ s>4n+|(20/3)r3| +1if rn > 3,
@ 5s>8n+|(8/3)n] +1ifrs>n.

@ The argument generalises to arbitrary systems of arbitrary degrees.
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General systems of diagonal equations

The results, part |

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have
N(P) ~ (__,3572r273r37

with ¢ > 0, provided that
@ s>4n+|(20/3)r3| +1if rn > 3,
@ 5s>8n+|(8/3)n] +1ifrs>n.

@ The argument generalises to arbitrary systems of arbitrary degrees.

@ For r3 =1 we obtain essentially square root cancellation.
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The results, part |

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have
N(P) ~ (__,3572r273r37

with ¢ > 0, provided that
@ s>4n+|(20/3)r3| +1if rn > 3,
@ 5s>8n+|(8/3)n] +1ifrs>n.

@ The argument generalises to arbitrary systems of arbitrary degrees.
@ For r3 =1 we obtain essentially square root cancellation.

@ The case r3 > ry is clearly unsatisfactory...
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The case r3 > 2ry: Complification

The case r3 > 2r,: Complification

Recall

s

N(P) :/ H f(iz2,7i3)dex,
[0,1]2+73

i=1

where

x=1

P I
f(az, 043) = Z e(a2x2 + a3x3) and Vik = Z Ci jO3,j
=1
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The case r3 > 2ry: Complification

The case r3 > 2r,: Complification

Recall

S
N(P) :/ H f(iz2,7i3)dex,
[0,1]2+"3

i=1

where

P I
f(az, 043) = Z e(a2x2 + a3x3) and Vik = Z Ci jO3,j (k = 2,3)
j=1

x=1

We have

N(P;m) < sup |f(az,a3)|**27°% Jy(P),

acm

where

rn r+nr 2r3—2n 2r3—nry
TGS N 0 (ZCH I § QUZCHIEN V RNCOIN § QRSO

(0,1]2%7 35 i=rst1 i=rstrm+1 i=2r—2m+1
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The case r3 > 2ry: Complification

Recall
rR+nr 2r3—2r2 2r3—r2
/ [P I1 P T1 el T 1fnfda:
[0.2]2%3 3 i=r+1 i=r+r+l i=2r;—2r,+1

Idea: Do the counter-intuitive thing — blow the system up!
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The case r3 > 2ry: Complification

Recall
rR+nr 2r3—2r2 2r3—r2
()= [ T0feof T1 e TT ol 1 Ifenfae
[0,1]2% 354 i—rst1 i=rstrt1 i=2r—2r+1

Idea: Do the counter-intuitive thing — blow the system up!

Cauchy-Schwarz gives
Jn(P) < (P(5+1/6)r2+8)1/2J2n(P)1/2,

where the cubic system is of the shape

Figure: Ji(P) Figure: Jh(P) Figure: Ja(P)
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The case r3 > 2ry: Complification

After m inductive steps:
Jl(P) < (P(5+1/6)r2+5)172_"’J2m(P)g—m

The mean value J,(P) contains R, = n(r; — r2) + r» cubic and r» quadratic
polynomials in 6R,, + 4r, variables.
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The case r3 > 2ry: Complification

After m inductive steps:
Jl(P) < (P(5+1/6)r2+5)172_"’J2m(P)g—m

The mean value J,(P) contains R, = n(r; — r2) + r» cubic and r» quadratic
polynomials in 6R,, + 4r, variables.

Now a miracle happens:

J,(P) < p3n(rs—r)+9n+e o p3Rat6brte

We miss by a constant exponent — regardless of the value of n!!!
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The case r3 > 2ry: Complification

After m inductive steps:
Jl(P) < (P(5+1/6)r2+5)172_"’J2m(P)g—m

The mean value J,(P) contains R, = n(r; — r2) + r» cubic and r» quadratic
polynomials in 6R,, + 4r, variables.

Now a miracle happens:

J,(P) < p3n(rs—r)+9n+e o p3Rat6brte

We miss by a constant exponent — regardless of the value of n!!!

This gives

Jl(P) < (P(5+1/6)rz+8)1—2*m(P3_2m(r3_,2)+9r2+5)2—m

< P3r3+(2+1/6)r2+2*m Bryte
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The case r3 > 2ry: Complification

The results, part |l

This leads to
Theorem 2 (JB 2016, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular, and
r3 > 2r, > 1. We have

N(P) ~ CPS—2r2—3r3
with ¢ > 0, provided that

s> 6r;+ [(14/3)r] + 1.
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The case r3 > 2ry: Complification

The results, part |l

This leads to
Theorem 2 (JB 2016, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular, and
r3 > 2r, > 1. We have

N(P) ~ CPS—2r2—3r3
with ¢ > 0, provided that

s> 6r;+ [(14/3)r] + 1.

@ For r3 & (rp,2r), we have the bound

s 2 4r +6rs+ ((2/3) min{rz, r3}| + 1.

Unfortunately, the middle range for r3 seems to be harder.
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The case r3 > 2ry: Complification

The results, part |l

This leads to
Theorem 2 (JB 2016, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular, and
r3 > 2r, > 1. We have

N(P) ~ CPS—2r2—3r3
with ¢ > 0, provided that

s> 6r;+ [(14/3)r] + 1.

@ For r3 & (rp,2r), we have the bound

s 2 4r +6rs+ ((2/3) min{rz, r3}| + 1.

Unfortunately, the middle range for r3 seems to be harder.

@ We have square root cancellation for min{r,, 3} = 1.
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The end

The end

Thank you for your attention!
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