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Introduction

The question

Consider systems of diagonal equation

ci,1x
ki
1 + · · ·+ ci,sx

ki
s = 0 (1 ≤ i ≤ r).

What is the number N(P) of integral solutions 1 ≤ x1, . . . , xs ≤ P to such a
system?

Heuristics:

Typically expect N(P) ≈ Ps−
∑

ki .

if equations are suff. independent → non-singularity conditions!
possible obstructions to real or p-adic solubility

”square root barrier”: without further info on coefficients, can get
N(P)� Ps/2.

→ expect N(P) ∼ cPs−
∑

ki for s ≥ 2
∑

ki + 1.
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Introduction

What do we know?

Question

For what systems

ci,1x
ki
1 + · · ·+ ci,sx

ki
s = 0 (1 ≤ i ≤ r)

can we show that

N(P) ∼ cPs−
∑

ki for s ≥ 2
∑

ki + 1?

Systems of linear and quadratic forms: classical.
Vinogradov systems: ki = i for 1 ≤ i ≤ K . (follows from VMVT – see BDG)
One quadratic and one cubic equation – Wooley 2015 (uses cubic VMVT)
Systems of r cubic equations: N(P)� cPs−3r whenever s ≥ 6r + 1
(Brüdern–Wooley 2016).

This talk:

One cubic and r2 quadratic equations,

One quadratic and r3 cubic equations.
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The circle method

Warm-up: One quadratic and one cubic equation

Wooley’s theorem (r2 = r3 = 1) by the circle method: Count solutionns 1 ≤ xi ≤ P
to

c1x
2
1 + · · ·+ csx

2
s = 0

d1x
3
1 + · · ·+ dsx

3
s = 0.

Let

f (α2, α3) =
P∑

x=1

e(α2x
2 + α3x

3).

Then by orthogonality,

N(P) =
∑

x1,...xs

∫ 1

0

e(α
∑

cix
2
i )dα

∫ 1

0

e(β
∑

dix
3
i )dβ =

∫
[0,1]2

s∏
i=1

f (ciα, diβ)dαdβ.
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The circle method

Need to understand

N(P) =

∫
[0,1]2

s∏
i=1

f (ciα, diβ)dαdβ.

Idea:

dissect unit interval in

major arcs M, where the integrand is large → main term,

minor arcs m, where the integrand is small → error term.

Take [0, 1]2 = M ∪m, where

M = {α ∈ [0, 1]2 : |qαi − ai | ≤ P−9/4, q ≤ P3/4, ai , qi ∈ N}.

By fairly standard methods (s ≥ 11):

N(P;M) =

∫
M

s∏
i=1

f (ciα2, diα3)dα ∼ cPs−5.

Julia Brandes (Gothenburg) Systems of quadratic and cubic diagonal equations February 03, 2017 5 / 15



The circle method

Need to understand

N(P) =

∫
[0,1]2

s∏
i=1

f (ciα, diβ)dαdβ.

Idea:

dissect unit interval in

major arcs M, where the integrand is large → main term,

minor arcs m, where the integrand is small → error term.

Take [0, 1]2 = M ∪m, where

M = {α ∈ [0, 1]2 : |qαi − ai | ≤ P−9/4, q ≤ P3/4, ai , qi ∈ N}.

By fairly standard methods (s ≥ 11):

N(P;M) =

∫
M

s∏
i=1

f (ciα2, diα3)dα ∼ cPs−5.

Julia Brandes (Gothenburg) Systems of quadratic and cubic diagonal equations February 03, 2017 5 / 15



The circle method

Need to understand

N(P) =

∫
[0,1]2

s∏
i=1

f (ciα, diβ)dαdβ.

Idea:

dissect unit interval in

major arcs M, where the integrand is large → main term,

minor arcs m, where the integrand is small → error term.

Take [0, 1]2 = M ∪m, where

M = {α ∈ [0, 1]2 : |qαi − ai | ≤ P−9/4, q ≤ P3/4, ai , qi ∈ N}.

By fairly standard methods (s ≥ 11):

N(P;M) =

∫
M

s∏
i=1

f (ciα2, diα3)dα ∼ cPs−5.

Julia Brandes (Gothenburg) Systems of quadratic and cubic diagonal equations February 03, 2017 5 / 15



The circle method

Need to understand contribution from minor arcs.
Let s ≥ 11, then

N(P;m) =

∫
m

s∏
i=1

f (ciα2, diα3)dα� sup
α∈m
|f (α)|s−10

∫
[0,1]2
|f (α)|10dα.

Classical: supα∈m |f (α)| � P3/4+ε.

Theorem (Wooley 2015)

∫
[0,1]2
|f (α)|10dα� P5+1/6+ε.

Altogether, when s ≥ 11:

N(P) = N(P;M) + O(N(P;m))

∼ cPs−5 + O(P(3/4)(s−10)+εP5+1/6+ε)

= cPs−5 + O(Ps−5−δ).
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General systems of diagonal equations

What happens for larger systems?

We have

N(P) =

∫
[0,1]r2+r3

s∏
i=1

f (γi,2, γi,3)dα,

where

f (α2, α3) =
P∑

x=1

e(α2x
2 + α3x

3) and γi,k =

rk∑
j=1

ci,jαj,k (k = 2, 3).

Major arcs dissection as before. Need to understand minor arcs contribution. We
have (morally)

N(P;m)� sup
α∈m
|f (α)|s−4r2−6r3

∫
[0,1]r2+r3

r3∏
i=1

|f (γi,2, γi,3)|10
r2∏

i=r3+1

|f (γi,2, γi,3)|4dα.
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General systems of diagonal equations

Consider the case r2 = 2, r3 = 1. The mean value

I (P) =

∫
[0,1]3
|f (γ1,2, γ1,3)|10|f (γ2,2, γ2,3)|4dα

counts solutions to the system

d1,1(x31 + · · · − y3
5 ) +d1,2(x36 + · · · − y3

7 ) = 0
c1,1(x21 + · · · − y2

5 ) +c1,2(x26 + · · · − y2
7 ) = 0

c2,1(x21 + · · · − y2
5 ) +c2,2(x26 + · · · − y2

7 ) = 0.

We diagonalise the bottom 2× 2 matrix:
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The last equation is a quadratic form in four variables and has � P2+ε solutions.
This fixes the variables x6, x7, y6, y7, and we need to solve

d1,1(x31 + · · · − y3
5 ) = w1

c1,1(x21 + · · · − y2
5 ) = 0.

This system has � P5+1/6+ε solutions by Wooley’s theorem, and we get

I (P)� P2+εP5+1/6+ε � P7+1/6+ε.
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General systems of diagonal equations

The results, part I

This argument leads to

Theorem 1 (JB & S. T. Parsell 2015, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular. We have

N(P) ∼ cPs−2r2−3r3 ,

with c ≥ 0, provided that

s ≥ 4r2 + b(20/3)r3c+ 1 if r2 ≥ r3

,

s ≥ 8r3 + b(8/3)r2c+ 1 if r3 > r2.

The argument generalises to arbitrary systems of arbitrary degrees.

For r3 = 1 we obtain essentially square root cancellation.

The case r3 > r2 is clearly unsatisfactory...
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General systems of diagonal equations
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The case r3 ≥ 2r2 : Complification

The case r3 ≥ 2r2: Complification

Recall

N(P) =

∫
[0,1]r2+r3

s∏
i=1

f (γi,2, γi,3)dα,

where

f (α2, α3) =
P∑

x=1

e(α2x
2 + α3x

3) and γi,k =

rk∑
j=1

ci,jα3,j (k = 2, 3).

We have

N(P;m)� sup
α∈m
|f (α2, α3)|s−4r2−6r3J1(P),

where

J1(P) =

∫
[0,1]r2+r3

r3∏
i=1

|f (γi )|2
r3+r2∏
i=r3+1

|f (γi )|8
2r3−2r2∏

i=r3+r2+1

|f (γi )|4
2r3−r2∏

i=2r3−2r2+1

|f (γi )|8dα
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The case r3 ≥ 2r2 : Complification
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[0,1]r2+r3

r3∏
i=1

|f (γi )|2
r3+r2∏
i=r3+1

|f (γi )|8
2r3−2r2∏

i=r3+r2+1

|f (γi )|4
2r3−r2∏

i=2r3−2r2+1

|f (γi )|8dα.

Idea: Do the counter-intuitive thing – blow the system up!

Cauchy-Schwarz gives

Jn(P)� (P(5+1/6)r2+ε)1/2J2n(P)1/2,

where the cubic system is of the shape

Figure: J1(P) Figure: J2(P) Figure: J4(P)
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The case r3 ≥ 2r2 : Complification

After m inductive steps:

J1(P)� (P(5+1/6)r2+ε)1−2
−m

J2m(P)2
−m

The mean value Jn(P) contains Rn = n(r3 − r2) + r2 cubic and r2 quadratic
polynomials in 6Rn + 4r2 variables.

Now a miracle happens:

Jn(P)� P3n(r3−r2)+9r2+ε � P3Rn+6r2+ε.

We miss by a constant exponent – regardless of the value of n!!!

This gives

J1(P)� (P(5+1/6)r2+ε)1−2
−m

(P3·2m(r3−r2)+9r2+ε)2
−m

� P3r3+(2+1/6)r2+2−m 23
6 r2+ε.
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The case r3 ≥ 2r2 : Complification

The results, part II

This leads to

Theorem 2 (JB 2016, to appear)

Suppose that the quadratic and cubic systems are suitably non-singular, and
r3 ≥ 2r2 > 1. We have

N(P) ∼ cPs−2r2−3r3

with c ≥ 0, provided that

s ≥ 6r3 + b(14/3)r2c+ 1.

For r3 6∈ (r2, 2r2), we have the bound

s ≥ 4r2 + 6r3 + b(2/3) min{r2, r3}c+ 1.

Unfortunately, the middle range for r3 seems to be harder.

We have square root cancellation for min{r2, r3} = 1.
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The end

The end

Thank you for your attention!
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