ROOT NUMBER IN FAMILIES OF ELLIPTIC CURVES

 $E: y^2 = x^3 + ax + b, a, b \in \mathbb{Q}, w(E) = \text{root number is defined as}$ follows:

$$
L(s, E) = \sum_{n=1}^{\infty} \frac{a_n}{n^s},
$$

$$
\Lambda(s, E) = \left(\frac{\sqrt{N_E}}{2\pi}\right)^s \Gamma(s) L(s, E) = w(E)\Lambda(2 - s, E).
$$

$$
w(E) \in \{\pm 1\}, \text{ and } w(E) = -1 \implies L(1, E) = 0.
$$

Differentiate $w(E) = -1 \Leftrightarrow ord_{s=1}L(s, E) = odd.$

$$
w(E) = (-1)^{ord_{s=1}L(s,E)} \underset{(\Leftarrow BSD)}{=} (-1)^{rk(E)}
$$

Conjecture:

$$
Av(w(E(a, b))) = 0
$$

$$
Av(rk(E(a, b))) = \frac{1}{2}
$$

What about one parameter families?

$$
\mathcal{E}: y^2 = x^3 + a_2(t)x^2 + a_4(t)x + a_6(t), \ a_i(t) \in \mathbb{Z}[t].
$$

For "most" $\mathcal{E}, Av_{\mathbb{Z}}(w(\mathcal{E}(t))) = 0$ and $Av_{\mathbb{Q}}(w(\mathcal{E}(t))) = 0$.

$$
Av_{\mathbb{Z}}(w_{\mathcal{E}}) = \lim_{T \to \infty} \frac{1}{2T} \sum_{|t| \le T, t \in \mathbb{Z}} w(\mathcal{E}(t))
$$

$$
Av_{\mathbb{Q}}(w_{\mathcal{E}}) = \lim_{X \to \infty} \frac{1}{\# \{t \in \mathbb{Q}, h(t) \le X\}} \sum_{t \in \mathbb{Q}, h(t) \le X} w(\mathcal{E}(t))
$$

Theorem 1 (Rizzo).

1.
$$
\mathcal{F}: y^2 = x^3 + tx^2 - (t+3)x + 1, rk = 1/\mathbb{Q}(t), w(\mathcal{F}(t)) = -1, \forall t \in \mathbb{Z}.
$$

\n2. $\mathcal{E}: y^2 = x^3 + \frac{t}{4}x - \frac{36t^2}{t - 1728}x + \frac{t^3}{t - 1728}, j(t) = t, Av_{\mathbb{Z}}(w(\mathcal{E}(t))) = 0.003...$

Other examples: Romano, Helfgott $Av_{\mathbb{Q}} \notin \{-1,0,1\}$ Applications: one level density in family $\mathcal{F}.$ Want:

(1) Find families with non zero $Av_{\mathbb{Z}}$, $Av_{\mathbb{Q}}$.

(2) Can we have excess rank?

(3) Can we get $Av_{\mathbb{Z}} = \frac{h}{h}$ $\frac{h}{k}$ (or $Av_{\mathbb{Q}} = \frac{h}{k}$ $\frac{h}{k}$) for a given $\frac{h}{k}$? How do we compute $w(E)$, E/\mathbb{Q} ?

$$
w(E) = \prod_{p|N_E} w_p(E),
$$

where $w_p(E)$ are local root numbers which can be computed and recorded in tables of Halberstadt, Connell and Rohrlich. For $p \geq 5$,

$$
\frac{v_p(c_4, c_6, \Delta) v_p(N_E)}{(0, 0, \ge 0)} \qquad 0 \qquad 1
$$

(0, 0, \ge 1) 1 - $\left(\frac{-(c_6)_p}{p}\right)$
9 cases 2 $\left(\frac{-1}{p}\right), \left(\frac{-2}{p}\right)$ or $\left(\frac{-3}{p}\right)$

where $x = p^{v_p(x)} x_p$.

Theorem 2 (Helfgott). Let $\mathcal F$ be a family of elliptic curves, then

$$
w(\mathcal{E}(t)) = sgn(g_{\infty}(t))\lambda(\mathcal{M}_{\mathcal{F}}(t))\prod_{p}g_{p}(t),
$$

where

$$
\mathcal{M}_{\mathcal{F}}(t) = \prod_{P(t) \text{mult}} P(t), \quad \mathcal{B}_{\mathcal{F}}(t) = \prod_{P(t) \text{ quite bad}} P(t),
$$

 $g_p(t)$ are p-adic locally constant and $g_p(t) = 1$ for $v_p(\mathcal{B}_{\mathcal{F}}(t)) = 0, 1, \forall p \notin \mathcal{E}$ S(finite).Furthermore, assuming Chowla's conjecture and square free sieve conjecture, if $\mathcal{M}_{\mathcal{F}}(t) \neq 1$, then $Av_{\mathbb{Z}}(w(\mathcal{F}(t))) = 0$. If $\mathcal{M}_{\mathcal{F}}(t) = 1$, assuming SF conjecture , then

$$
Av(w_{\mathcal{F}}(t)) = \frac{c_+ c_+}{2} \prod_p \int_{\mathbb{Z}_p} g_p(t) dt
$$

where $c_{\pm} = \lim_{x \to \pm \infty} sgn(g_{\infty}(t))$

Definition:

- (1) F is potentially parity biased if $\mathcal{M}_{\mathcal{F}}(t) = 1$.
- (2) F is parity biased if $Av_{\mathbb{Z}}(\mathcal{F}(t)) \neq 0$.
- (3) F has excess rank if $Av_{\mathbb{Z}} = -(-1)^{rk(\mathcal{F})/\mathbb{Q}(t)}$.

Theorem 3 (Bettin, David & Delaunay). We can classify all potentially biased $\mathcal F$ s.t. deg $a_i(t) \leq 2$, which fall in 6 families of families.

- $\mathcal{E}_s : y^2 = x^3 + 3tx^3 + 3sx + st, s \in \mathbb{Z}_{\neq 0}.$
- $\mathcal{G}_w : wy^2 = x^3 + 3tx^3 + 3tx + t^2, w \in \mathbb{Z}_{\neq 0}$
- \bullet $\mathcal{H}_w, \mathcal{I}_w, \mathcal{J}_{m,w}, \mathcal{L}_{m,s,v}$

all of whose rank/ $\mathbb{Q}(t)$ are 0, 1 except $\mathcal{L}_{m,s,v}$ whose rank are 0, 1, 2, 3.

Example:

$$
\mathcal{F}_a : y^2 = x^3 + tx^2 - a(t + 3a)x + a^3, a \in \mathbb{Z}_{\neq 0},
$$

\n
$$
\Delta(t) = 16a^2 f_a^2(t), f_a(t) = t^2 + 3at + 9a^2, rk = 0(a \neq \pm \square), 1(a = \pm \square)
$$

\n
$$
w(\mathcal{F}_a(t)) = -w_2(t) \prod_{\substack{p \geq 3 \\ 0 \leq v_p(a) \leq v_p(t)}} \left(\frac{-1}{p}\right)^{v_p(a) + v_p(f_a(t))} \prod_{\substack{p \geq 3 \\ 0 \leq v_p(t) \leq v_p(a)}} \left(\frac{-1}{p}\right)^{v_p(b) \text{ odd}}
$$

\n
$$
= -w_2(t) \prod_{p \geq 3} \left(\frac{-1}{p}\right)^{v_p(a) + v_p(f_a(t))} \prod_{\substack{p \geq 3 \\ 0 \leq v_p(t) \leq v_p(a)}} \left(\frac{-t_p}{p}\right)^{1 + v_p(t)} \left(\frac{-1}{p}\right)^{v_p(a) + v_p(t)}
$$

\n
$$
\equiv -w_2(t)(af_a(t))_2 \text{sgn}((af_a(t))) \prod_{p|a} w_p^*(t) \pmod{4}
$$

\n
$$
\equiv \text{sgn}(af_a(t))w_2^*(t) \prod_{p|a} w_a^*(t) \pmod{4}
$$

\n
$$
\implies Av_{\mathbb{Z}}(\mathcal{F}_a(t)) = \text{sgn}(a) \prod_{p|a} \int w_p^*(t) dt
$$

 $p|2a$

Corollary 1. If a is odd and square free,

$$
Av_{\mathbb{Z}} = \pm \frac{1}{a}, \pm \frac{1}{2a},
$$

depanding on a (mod 8).

Corollary 2. If a is a prime and $a \equiv \pm 1 \pmod{8}$, b is a non residue (mod a). Then $\mathcal{F}_a(at+b)$ has rank 0 and $w(\mathcal{F}_a(t)) = -1 \forall t$. $\mathcal{F}_{a^2}(at+b^2)$ has rank 1 and $w(\mathcal{F}_{a^2}(t)) = -1 \forall t$.

Density result:

Theorem 4 (Rizzo (isotrivial families)). $Av_{\mathbb{Q}}(w(\mathcal{E}(t)))$ is dense in $[-1, 1]$ when $\mathcal E$ varies over the twists by $f(t)$ of $\mathcal E/\mathbb Q$.

Theorem 5 (Bettin, David & Delaunay).

$$
Av_{\mathbb{Z}}(w(\mathcal{E}(t))) \supset [-1,1] \cap \mathbb{Q},
$$

$$
Av_{\mathbb{Q}}(w(\mathcal{E}(t)))
$$
 is dense in $[-1,1]$,

where $\mathcal E$ varies over non-isotrivial families.

0.1. $Av_{\mathbb{Z}}$. In fact, fix $\frac{h}{k}$, can build $\mathcal E$ s.t. $Av_{\mathbb{Z}}(w(\mathcal{E}(t))) = \frac{h}{k}$. $\mathcal E(t) =$ $\mathcal{F}_{a(t)}(Q(t))$, where $a(t)$ and $Q(t)$ depend on h and k and such that the root number is localized at 1 prime.

$$
w(\mathcal{E}(t)) = (-1)^{1+v_p(Q(t))} \left(\frac{t_p}{p}\right)^{1+v_p(Q(t))}, \ p \equiv -1 \pmod{2k},
$$

where $a(t) = 2^4 p^{P(t)}$, $Q(t) = (4pt^2 + 1)P(t)$, $P(t) = -p \prod_{i=1}^{m} (t - i)$, $m = p + 1 - 2rh, p + 1 = 2kr.$

0.2. $Av_{\mathbb{Q}}$. Trick: the root number will be the variation of the sign of a polynomial $\mathcal{F}_{a_x(t)}(Q_x(t))$ as $x \to \infty$.

Theorem 6. Let $w(r,s) = w_\infty(r,s) \prod_p w_p(r,s)$, where $w_p(r,s)$ are padic locally constant and $w(r, s) = 1$ when $v_p(B(r, s)) = 0, 1$ for some $B(r, s) \in \mathbb{Z}[r, s], \forall p \notin S, \text{ a finite set. Then}$

$$
Av_{\mathbb{Z}^2, coprime}(w(r,s)) = c_{\infty} \prod_{p} \frac{1}{1 - p^{-2}} \int_{\mathbb{Z}_p \times \mathbb{Z}_p \setminus p\mathbb{Z}_p \times p\mathbb{Z}_p} w_p(r,s) dr ds,
$$

where $c_{\infty} = \frac{1}{4N}$ $\frac{1}{4N^2}\int_{-N}^N\int_{-N}^N g_\infty(r,s)drds, \ g_\infty(r,s)=\,sgn\, \,of\, \,a\,\,polynomial$ of 2 variables such that $c_{\infty} = \frac{h}{k}$ $\frac{h}{k}$.