

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 $\varphi extsf{-practical}$ numbers

Asymptotics

A generalization

Sums of distinct divisors

Lola Thompson

Oberlin College

February 3, 2017

The "anatomy" of integers

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

What does it mean to study the "anatomy" of integers? Some natural problems/goals:

- Study the prime factors of integers, their size and their quantity.
- Obtain good bounds for the number of integers with certain properties (e.g., those with only large prime factors).
- Understand the distribution of divisors of integers in a given interval.

Integers with dense divisors

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization Several papers in this area study the set of integers with z-dense divisors.

Let $1 = d_1(n) < d_2(n) < \cdots < d_{\tau(n)}(n) = n$ denote the sequence of divisors of an integer n.

Definition

For $z \ge 2$, an integer n is z-dense if $\max_{1 \le i < \tau(n)} \frac{d_{i+1}(n)}{d_i(n)} \le z$.

```
Example. 6 is 2-dense, since \frac{2}{1}, \frac{3}{2}, \frac{6}{3} \leq 2.
```


Integers with dense divisors

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

$$\mathbf{T}(n) := \begin{cases} 1 & n = 1\\ \max\{dP^{-}(d) : d \mid n, d > 1\} & n \ge 2. \end{cases}$$

Theorem (Tenenbaum)

F

For $n \geq 2$,

$$\frac{F(n)}{n} = \max_{1 \le i < \tau(n)} \frac{d_{i+1}(n)}{d_i(n)}$$

So n has z-dense divisors if $F(n) \leq nz$.

Integers with dense divisors

Lola Thompson

Introduction

Practical numbers

arphi-practical numbers

Asymptotics

A generalization

Let
$$D(x,z) = #\{n \le x : n \text{ is } z \text{-dense}\}.$$

Tenenbaum obtained upper and lower bounds for D(x, z), which were later improved by Saias to

$$D(x,z) \asymp \frac{x \log z}{\log x}.$$

Sums of distinct divisors

Lola Thompson

I

Introduction

Practical numbers

 ω -practical numbers

Asymptotics

Α generalization

For any fixed
$$z \ge 2$$
, let $\mathcal{D}(x) = \{n \le x : F(n) \le nz\}$.
Let $D(x, y) = \#\{n \in \mathcal{D}(x) : P^+(n) \le y\}$.
Then
$$D(x, y) = 1 + \sum_{n \ge 1} D(x/n, n) + ET$$

$$D(x,y) = 1 + \sum_{p \le \min(y,h(x))} D(x/p,p) + ET.$$

(E.g., Can take $h(x) = \sqrt{x}$ so that ET is negligible.) Smoothed version: $D^*(x,y) = \int_1^{\min(y,\sqrt{x})} D^*(x/t,t) \frac{dt}{\log t}$. Can *almost* take $D^*(x, y) = x\rho(u-1)/\log x$, where ρ is defined by $u\rho'(u) + \rho(u-1) = 0$ and $\rho(u) = 1$ for u < 1.

Two natural applications

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization Our talk will focus on two natural applications of Tenenbaum's work on integers with *z*-dense divisors:

• How often is it the case that every m in [1, n] can be written as a sum of distinct divisors of n?

Two natural applications

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization Our talk will focus on two natural applications of Tenenbaum's work on integers with *z*-dense divisors:

- How often is it the case that every m in [1, n] can be written as a sum of distinct divisors of n?
- Observe the polynomial xⁿ 1 have a divisor of every degree between 1 and n in Z[x]?

Practical numbers

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

Definition

A positive integer n is **practical** if every m with $1 \le m \le \sigma(n)$ can be written as a sum of distinct divisors of n.

```
Example. n = 6
Divisors: 1, 2, 3, 6
```

Nonexample. n = 10Divisors: 1, 2, 5, 10

Practical numbers: a short history

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

Theorem (Erdős, 1950)

Let $PR(X) := #\{n \le X : n \text{ is practical}\}$. Then

$$PR(X) = o(X).$$

10 / 50

Practical numbers: a short history

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization Hausman and Shapiro, 1983:

$$PR(X) \ll \frac{X}{(\log X)^{\beta}}, \quad \beta = \frac{(1 - 1/\log 2)^2}{2} = 0.0979....$$

Margenstern, 1984:

$$PR(X) \gg \frac{X}{\exp(\alpha(\log\log X)^2)}, \quad \alpha = \frac{1+\varepsilon}{2\log 2} = 0.7213....$$

Tenenbaum, 1986:

 $\frac{X}{(\log X)(\log\log X)^{4.21}} \ll PR(X) \ll \frac{X(\log\log X)(\log\log\log X)}{\log X}.$

Practical numbers: a short history

Practical vs. φ -Practical

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

Definition

A positive integer n is φ -practical if every m with $1 \le m \le n$ can be written as $\sum_{d \in D} \varphi(d)$, where \mathcal{D} is a subset of divisors of n.

Note: Since $x^n - 1 = \prod_{d|n} \Phi_d(x)$, this is equivalent to the condition that $x^n - 1$ has at least one divisor of every degree between 1 and n.

φ -practical example

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization Example. n = 6Divisors: 1, 2, 3, 6 φ values: 1, 1, 2, 2

Nonexample. n = 66 is practical but **not** φ -practical. Divisors: 1, 2, 3, 6, 11, 22, 33, 66 φ values: 1, 1, 2, 2, 10, 10, 22, 22

φ -practical example

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

Example. n = 6Divisors: 1, 2, 3, 6 φ values: 1, 1, 2, 2

Nonexample. n = 66 is practical but **not** φ -practical. Divisors: 1, 2, 3, 6, 11, 22, 33, 66 φ values: 1, 1, 2, 2, 10, 10, 22, 22

Exercise. Every even φ -practical is practical.

Counting the number of φ -practicals

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization We can prove the following analogue of Saias' result for the $\varphi\text{-}\mathsf{practical}$ numbers:

Theorem (T., 2013)

Let $F(X) = #\{n \le X : n \text{ is } \varphi\text{-practical}\}.$ Then

$$F(X) \asymp \frac{X}{\log X}.$$

A key obstruction

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization The proofs of Saias et al. relied heavily on the following:

Theorem (Stewart, 1954)

Let $n = p_1^{e_1} \cdots p_j^{e_j}$, n > 1, with $p_1 < p_2 < \cdots < p_j$ prime and $e_i \ge 1$ for i = 1, ..., j. Then n is practical iff for all i = 1, ..., j, $p_i \le \sigma(p_1^{e_1} \cdots p_{i-1}^{e_{i-1}}) + 1$.

Unfortunately, there's no simple method for building up $\varphi\text{-}\mathsf{practical}$ numbers from smaller ones.

Example. $3^2 \times 5 \times 17 \times 257 \times 65537 \times (2^{31} - 1)$ is φ -practical, but none of the numbers 3^2 , $3^2 \times 5$, $3^2 \times 5 \times 17$, $3^2 \times 5 \times 17 \times 257$, $3^2 \times 5 \times 17 \times 257 \times 65537$ are φ -practical.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization Instead, we devise the following workaround:

Definition

Let $n = p_1^{e_1} \cdots p_k^{e_k}$. Let $m_i = p_1^{e_1} \cdots p_i^{e_i}$. We define an integer n to be weakly φ -practical if the inequality $p_{i+1} \leq m_i + 2$ holds for all i.

Lemma

Every φ -practical number is weakly φ -practical.

Note: The converse does not hold. For example, 45 is not $\varphi\text{-practical}$ but it is weakly $\varphi\text{-practical}.$

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization To prove our theorem, we consider two cases:

• If n is even & φ -practical then $p_{i+1} \leq m_i + 2 \leq \sigma(m_i) + 1$ for all $i \geq 1$. Hence, each m_i satisfies the inequality in Stewart's Condition, so n is practical.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization To prove our theorem, we consider two cases:

- If n is even & φ -practical then $p_{i+1} \leq m_i + 2 \leq \sigma(m_i) + 1$ for all $i \geq 1$. Hence, each m_i satisfies the inequality in Stewart's Condition, so n is practical.
- On the other hand, observe that for every $n \in (0, X]$, there is a unique k such that $2^k n \in (X, 2X]$. Then, if n is odd & φ -practical, $2^k n$ will be practical.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization To prove our theorem, we consider two cases:

- If n is even & φ -practical then $p_{i+1} \leq m_i + 2 \leq \sigma(m_i) + 1$ for all $i \geq 1$. Hence, each m_i satisfies the inequality in Stewart's Condition, so n is practical.
- On the other hand, observe that for every $n \in (0, X]$, there is a unique k such that $2^k n \in (X, 2X]$. Then, if n is odd & φ -practical, $2^k n$ will be practical.
- Thus, $F(X) \leq PR(2X) \ll \frac{X}{\log X}$, by Saias' Theorem.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization Saias obtains his lower bound by comparing the set of practical numbers with the set of integers with 2-dense divisors:

Definition

An integer n is 2-dense if $\max_{1 \le i \le \tau(n)-1} \frac{d_{i+1}(n)}{d_i(n)} \le 2$.

Note: All integers with 2-dense divisors are practical, but the same cannot be said about the φ -practical numbers. For example, n = 66 is 2-dense but it is not φ -practical.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization We obtain our lower bound by comparing the set of φ -practical numbers with the set of integers with strictly 2-dense divisors:

Definition

An integer *n* is *strictly* 2-*dense* if $\max_{1 \le i \le \tau(n)-1} \frac{d_{i+1}(n)}{d_i(n)} \le 2$ and $\frac{d_2(n)}{d_1(n)} = 2 = \frac{d_{\tau(n)}(n)}{d_{\tau(n)-1}(n)}$.

It turns out that all strictly 2-dense integers are φ -practical.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization **Goal:** Show that a positive proportion of 2-dense integers are strictly 2-dense, except for some possible obstructions at small primes.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization **Goal:** Show that a positive proportion of 2-dense integers are strictly 2-dense, except for some possible obstructions at small primes.

• First find an upper bound for the number of integers up to X that are 2-dense but not strictly 2-dense:

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

Goal: Show that a positive proportion of 2-dense integers are strictly 2-dense, except for some possible obstructions at small primes.

• First find an upper bound for the number of integers up to X that are 2-dense but not strictly 2-dense:

2 Use Brun's sieve and other classical techniques from multiplicative number theory to show that the number counted above is $\leq \varepsilon \frac{X}{\log X}$.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

Δ generalization • Show that a subset of the strictly 2-dense integers is in one-to-one correspondence with a positive proportion of the 2-dense integers with obstructions at k < C.

Corollary (T., 2013)

For X sufficiently large, we have

#

$$\{n \leq X: n \text{ is practical but not } arphi ext{-practical}\} \gg$$

$$> \frac{X}{\log X}.$$

Moreover, we also have

 $\#\{n \leq X : n \text{ is } \varphi\text{-practical but not practical}\} \gg \frac{X}{\log X}.$

An asymptotic for the practicals

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

Theorem (Weingartner, 2015)

There exists a positive constant c such that for $X \ge 3$,

$$PR(X) = \frac{cX}{\log X} \left(1 + O\left(\frac{\log \log X}{\log X}\right) \right)$$

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization **Idea:** Count all integers $n \le x$ according to their practical part:

$$n = (p_1^{e_1} \cdots p_j^{e_j})(p_{j+1}^{e_{j+1}} \cdots p_k^{e_k}) = m \cdot r$$

where $m = p_1^{e_1} \cdots p_j^{e_j}$ is practical but $p_1^{e_1} \cdots p_j^{e_j} p_{j+1}^{e_{j+1}}$ is not.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization **Idea:** Count all integers $n \le x$ according to their practical part:

$$n = (p_1^{e_1} \cdots p_j^{e_j})(p_{j+1}^{e_{j+1}} \cdots p_k^{e_k}) = m \cdot r$$

where $m = p_1^{e_1} \cdots p_j^{e_j}$ is practical but $p_1^{e_1} \cdots p_j^{e_j} p_{j+1}^{e_{j+1}}$ is not.

Then

$$\lfloor x \rfloor = \sum_{\substack{m \leq x \\ m \text{ practical}}} \Phi(x/m, \sigma(m) + 1)$$

where $\Phi(x,y)=\#\{n\leq x:p\mid n\Rightarrow p>y\}.$

Since

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

arphi-practical numbers

Asymptotics

A generalization • $\lfloor x \rfloor = \sum_{\substack{m \leq x \\ m \text{ practical}}} \Phi(x/m, \sigma(m) + 1)$

Since

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization • $\lfloor x \rfloor = \sum_{\substack{m \le x \\ m \text{ practical}}} \Phi(x/m, \sigma(m) + 1)$ • $1 = \sum_{\substack{m \text{ practical}}} \frac{1}{m} \prod_{p \le \sigma(m) + 1} \left(1 - \frac{1}{p}\right)$

Sums of distinct divisors Since Lola Thompson • $\lfloor x \rfloor = \sum \Phi(x/m, \sigma(m) + 1)$ Introduction $m \le x$ Practical m practical numbers • $1 = \sum_{m \text{ practical}} \frac{1}{m} \prod_{p \le \sigma(m)+1} \left(1 - \frac{1}{p}\right)$ ω -practical numbers Asymptotics Δ we have generalization $0 = \sum_{m \text{ practical}} \left(\Phi(x/m, \sigma(m) + 1) - \frac{\lfloor x \rfloor}{m} \prod_{p \leq \sigma(m) + 1} \left(1 - \frac{1}{p} \right) \right)$

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 $\varphi extsf{-practical}$ numbers

Asymptotics

A generalization

34 / 50

$$0 = \sum_{m \text{ practical}} \left(\Phi(x/m, \sigma(m) + 1) - \frac{\lfloor x \rfloor}{m} \prod_{p \le \sigma(m) + 1} \left(1 - \frac{1}{p} \right) \right)$$

Observe that:

Sums of distinct divisors

Practical numbers

arphi-practical numbers

Asymptotics

A generalization

$$= \sum_{m \text{ practical}} \left(\Phi(x/m, \sigma(m) + 1) - \frac{\lfloor x \rfloor}{m} \prod_{p \le \sigma(m) + 1} \left(1 - \frac{1}{p} \right) \right)$$

Observe that:

0

•
$$\Phi(x,y) \approx e^{\gamma} x \omega \left(\frac{\log x}{\log y}\right) \prod_{p \le y} \left(1 - \frac{1}{p}\right)$$

•
$$\prod_{p \le y} \left(1 - \frac{1}{p} \right) \approx \frac{e^{-\gamma}}{\log y}$$

•
$$\log(\sigma(m) + 1) \approx \log(2m)$$

Sums of distinct divisors

$$0 = \sum_{m \text{ practical}} \left(\Phi(x/m, \sigma(m) + 1) - \frac{\lfloor x \rfloor}{m} \prod_{p \le \sigma(m) + 1} \left(1 - \frac{1}{p} \right) \right)$$

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization Observe that:

4

•
$$\Phi(x,y) \approx e^{\gamma} x \omega \left(\frac{\log x}{\log y}\right) \prod_{p \leq y} \left(1 - \frac{1}{p}\right)$$

•
$$\prod_{p \le y} \left(1 - \frac{1}{p} \right) \approx \frac{e^{-\gamma}}{\log y}$$

1

• $\log(\sigma(m) + 1) \approx \log(2m)$

Use partial summation, get an integral equation, apply a Laplace transform, and invert the Laplace transform.

An asymptotic for the φ -practicals

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

Theorem (Pomerance, T., Weingartner, 2016)

There exists a positive constant C such that for $X \ge 2$,

$$F(X) = \frac{CX}{\log X} \left(1 + O\left(\frac{1}{\log X}\right) \right)$$

37 / 50

Lola Thompson

Sums of distinct divisors

Proof Sketch: Starters

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization A starter is a $\varphi\text{-practical number }m$ such that either $m/P^+(m)$ is not $\varphi\text{-practical or }P^+(m)^2\mid m.$

Note: A φ -practical number n is said to have starter m if m is a starter, m is an initial divisor of n, and n/m is squarefree.

Examples:

Definition

- 4 is the only starter with squarefull part 4.
- There are only 3 starters with squarefull part 49: 294 = $2 \cdot 3 \cdot 7^2$, $1470 = 2 \cdot 3 \cdot 5 \cdot 7^2$, $735 = 3 \cdot 5 \cdot 7^2$.
- There are infinitely many starters with squarefull part 9.

Proof Sketch

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

Proof Sketch:

- **1** Partition φ -practicals according to their starters: n = mb.
- ② Use Weingartner's machinery to show that, for any fixed $m \ge 1$, there exist sequences of real numbers c_m and r_m such that

$$B_m(x) = c_m \frac{x}{\log x} + O\left(r_m \frac{x}{\log^2 x}\right),$$

where $B_m := \#\{\varphi \text{-practical } n \leq x \text{ with starter } m\}.$

③ Show that $\sum c_m$ and $\sum r_m$ are finite.

Estimating the asymptotic constant

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

arphi-practical numbers

Asymptotics

A generalization

We can use Sage to compute	$F(X)/\frac{X}{\log X}$:
----------------------------	---------------------------

X	F(X)	$F(X)/(X/\log X)$	$F(X)/(\mathrm{Li}(X))$
10^{1}	6	1.381551	0.973141
10^{2}	28	1.289448	0.929425
10^{3}	174	1.201949	0.979676
10^{4}	1198	1.103399	0.961371
10^{5}	9301	1.070817	0.965855
10^{6}	74461	1.028717	0.947009
10^{7}	635528	1.024350	0.955799
10^{8}	5525973	1.017922	0.959002
10^{9}	48386047	1.002717	0.951559
10^{10}	431320394	0.993152	0.947841
10^{11}	3907994621	0.989834	0.948988

Table: Ratios for φ -practicals

A generalization

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

 $S_f(n) = \sum_{d|n} f(d) = f * \mathbb{1}(n).$

Definition

Let

A positive integer n is called f-practical if for every positive integer $m \leq S_f(n)$ there is a set \mathcal{D} of divisors of n for which

$$m = \sum_{d \in \mathcal{D}} f(d)$$

holds.

Example f = I: practical numbers.

Example $f = \varphi$: φ -practical numbers.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

arphi-practical numbers

Asymptotics

A generalization

Example All positive integers are τ -practical.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

arphi-practical numbers

Asymptotics

A generalization

43 / 50

Example All positive integers are τ -practical.

Example The set of λ -practical numbers has asymptotic density 0.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

arphi-practical numbers

Asymptotics

A generalization

Example All positive integers are τ -practical.

Example The set of λ -practical numbers has asymptotic density 0.

Example Let $g: \mathbb{N} \to \mathbb{N}$, where g(1) = 1, $g(2^k) = 2$, and $g(p^k) = 3$ for all $p \ge 3$ and all $k \ge 1$. The set of g-practical numbers has asymptotic density 1/2.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

Theorem (Schwab, T., 2016)

For each $n \in \mathbb{N}$, there is a function f_n such that the asymptotic density of f_n -practical numbers in \mathbb{N} is $1 - \frac{\varphi(n)}{n}$.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

46 / 50

Theorem (Schwab, T., 2016)

For each $n \in \mathbb{N}$, there is a function f_n such that the asymptotic density of f_n -practical numbers in \mathbb{N} is $1 - \frac{\varphi(n)}{n}$.

Corollary (Schwab, T., 2016)

The densities of f-practical sets are dense in [0, 1].

Other results

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

We also:

• Classified the multiplicative functions *f* for which the *f*-practical numbers can be completely determined via a Stewart-like criterion;

Other results

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization

We also:

- Classified the multiplicative functions *f* for which the *f*-practical numbers can be completely determined via a Stewart-like criterion;
- Proved Chebyshev-type bounds for certain *f*-practical sets;

Other results

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

 φ -practical numbers

Asymptotics

A generalization We also:

- Classified the multiplicative functions *f* for which the *f*-practical numbers can be completely determined via a Stewart-like criterion;
- Proved Chebyshev-type bounds for certain *f*-practical sets;

• Classified the additive functions *f* for which all positive integers are *f*-practical.

Sums of distinct divisors

Lola Thompson

Introduction

Practical numbers

arphi-practical numbers

Asymptotics

A generalization

Thank you!