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Classical mechanics vs. quantum mechanics

Consider a compact orientable Riemannian manifold M, and
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Classical mechanics vs. quantum mechanics

Consider a compact orientable Riemannian manifold M, and
consider a particle moving freely on M with unit speed.
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Wigner measure and quantum limits

Orthonormal Laplace eigenbasis of L2(M)

��j = �j�j , 0 = �
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Solutions of the Schrödinger equation

 (t) = Ut( (0)) =
1X

j=0

cje
�it

p
�j�j , (cj)
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2 `2(N)

Wigner measures on SM

hOp(a)�j ,�ji =
R
SM a d!j for a 2 C1(SM)

d!j restricts to dµj := |�j |2dµ on M

Question

What are the possible weak* limits of the Wigner measures d!j?
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Weyl’s law
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Corollary

If the Wigner measures d!j converge along a subsequence of �j ’s
of density 1, then the limit is the normalized Liouville measure d!.
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Egorov’s theorem

Theorem (Egorov 1969)

For a given a 2 C1(SM) and t 2 R, let us write

Op(a � G t) = U�t Op(a)Ut + K (a, t).

Then
p
�K (a, t) is a bounded operator from L2(M) to L2(M).

Corollary
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Corollary

Quantum limits on SM are invariant under the geodesic flow.
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Standard real spherical harmonics of degree 11

Mathematica R� code credit: Vitaliy Kaurov



Standard complex spherical harmonics of degree 11

Mathematica R� code credit: Vitaliy Kaurov



Random complex spherical harmonics of degree 11

Mathematica R� code credits: Vitaliy Kaurov & Maris Ozols



Quantum limits on the sphere (1 of 2)

Theorem (Uribe 1985, Zelditch 1990)

Let {�j} be the standard basis of L2(M). Consider the orbits in
SM of the joint action of the geodesic flow and the rotation group
around the vertical axis. The uniform measure on each orbit is a
quantum limit on SM, and these are all the quantum limits on SM.

Theorem (Jakobson–Zelditch 1999)

Every probability measure on SM invariant under the geodesic flow
is a quantum limit for some �-eigenbasis {�j} of L2(M).

Theorem (Zelditch 1992, VanderKam 1997)

For almost all �-eigenbases {�j} of L2(M), the normalized
Liouville measure d! is the only quantum limit on SM.
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Quantum limits on the sphere (2 of 2)

Averaging operators on the sphere

For a finite set of rotations R ⇢ SO
3

(R), consider the operator

TR�(m) :=
1

2|R |
X

r2R

�
�(rm) + �(r�1m)

�
, � 2 L2(M).

Let {�j} be an orthonormal (�,TR)-eigenbasis of L2(M).

Theorem (Jakobson–Zelditch 1999)

If R satisfies a mild technical assumption, then no quantum limit
on SM is supported on a closed geodesic.

Theorem (Brooks–Masson-Lindenstrauss 2016)

If R generates a free subgroup of SO
3

(R), then on M the projected
measures dµj = |�j |2dµ converge to dµ along a subsequence of
�j ’s of density 1.
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Arithmetic quantum limits on the sphere (1 of 2)

Let us identify S2 with {x i+ y j+ zk : x2 + y2 + z2 = 1}, then
each nonzero quaternion � acts on S2 via m 7! �m�/(��). Let

O :=

⇢
a+ bi+ cj+ dk

2
: a, b, c , d 2 Z, a ⌘ b ⌘ c ⌘ d mod 2

�

be the ring of Hurwitz
quaternions.

The 24 units of this
ring act on S2 by the
group O⇥/{±1} ⇠= A

4

.

A fundamental domain is
the spherical quadrangle
T
1

[ T
2

in the picture.
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Figure 1. The fundamental domain for O⇥ is T1 [ T2 (up to a
measure zero set).

but at the large expense that his results only hold true for ‘almost all’ forms in a
su�ciently large range. In this regard his result is in the same spirit as Corollary
1.4. However the exponent obtained by Jung is not as large as in Corollary 1.4
(1/8 versus 1/4) and his range of spectral parameter is wider. Jung’s method is
essentially to apply estimates for averaged quantities to the argument of Ghosh,
Reznikov and Sarnak from [GRS-12] whereas ours, as previously outlined, relies
on Diophantine analysis and sieving. It has also come to our attention since this
paper was written that essentially the same argument concerning Euler’s formula
in Section 2 has appeared in work of Jung and Zelditch [JZ-13]. We have retained
the argument here for completeness.

2. Topology of O⇥\S2 and Euler’s formula

In this section we give an argument which reduces the counting of nodal domains
to counting zeros on certain geodesic arcs.

The fixed points of elements of O⇥ are given by plus or minus their imaginary
parts (rescaled so as to have norm 1). A fundamental domain for the action of O⇥
is given by the union of the spherical triangles T1 and T2 as illustrated in Figure 1.
The triangle T1 has vertices i, k and (i + j + k)/

p
3 and T2 has vertices i, k and

(i� j+ k)/
p
3.

In the case that f 2 HO⇥
l

with l even, which will be our focus, the function f is
actually invariant under a larger group of symmetries which we will call �. It turns
out that � is generated by the projectivization of O⇥ and reflection in the origin.
The group � contains O⇥/Z(O⇥) as an index 2 subgroup, so � has size 24. For us,

Image credit: Michael Magee



Arithmetic quantum limits on the sphere (2 of 2)

Hecke operators on the sphere

Let M := O⇥\S2. For a prime p > 2, consider the Hecke operator

Tp�(m) :=
1
p
p

X

�2O⇥\O
��=p

�(�.m), � 2 L2(M).

Let {�j} be an orthonormal Hecke eigenbasis of L2(M).

Theorem (Böcherer–Sarnak–Schulze-Pillot 2003)

For j > k > 1 we have
����
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M
�k dµj

����
2

⌧
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✓
1

2
, fj ⌦ f̃j ⌦ fk

◆
,

where fj and fk are the holomorphic cuspidal newforms associated
to �j and �k by the Eichler/Jacquet–Langlands correspondence.

In particular, GRH (or subconvexity) implies that dµj
⇤! dµ.
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Maass forms on the modular surface

Image credits: Fredrik Strömberg & www.lmfdb.org
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Quantum ergodicity on the modular surface (1 of 2)

Theorem (Hopf 1936)

Let M := SL
2

(Z)\H2 be the modular surface. The geodesic flow
on SM is ergodic.

Proof (sketch).

By Iwasawa, SM can be identified with SL
2

(Z)\ SL
2

(R), and then

the geodesic flow G t acts by right multiplication by
⇣

et/2

e�t/2

⌘
.

Assume that f 2 L2(SL
2

(Z)\ SL
2

(R)) is fixed by this action. Then,
for any fixed b 2 R and for a > 0 tending to infinity,

��� 1 b
1

�
f � f
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��� 1 b
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( a a�1

) f � ( a a�1

) f
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1 b
1

�
( a a�1

) f � f
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=
��� 1 a�1b

1

�
f � f

�� ! kf � f k = 0.

Hence any upper triangular matrix in SL
2

(R) fixes f . Similarly, any
lower triangular matrix in SL

2

(R) fixes f . In the end, the entire
group SL

2

(R) fixes f , and so f is constant almost everywhere.
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Quantum ergodicity on the modular surface (2 of 2)

Theorem (Shnirelman 1974, Colin de Verdière 1985, Zelditch 1987)

Assume that the geodesic flow on SM is ergodic, and let {�j} be

any orthonormal Laplace eigenbasis of L2(M). Then d!j
⇤! d!

along a subsequence of �j ’s of density 1.

Proof (sketch).

Assume that a 2 C1(SM) has space average
R
SM a d! = 0.

Consider also a fixed time average aT := 1

T

R T
0

a � G t dt.
By Egorov, Cauchy–Schwarz, Weyl, and Birkho↵, we have
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for T = T
0

(") and � > �
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("). Hence the left hand side is o(1).
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The quantum unique ergodicity conjecture

Assume that M has negative sectional curvature, and let {�j} be
any orthonormal Laplace eigenbasis of L2(M).

Theorem (Anosov–Sinai 1967)

The geodesic flow on SM is ergodic.

Conjecture (Rudnick–Sarnak 1994)

The normalized Liouville measure is the only quantum limit on SM.

Theorem (Anantharaman 2008)

Quantum limits on SM have positive entropy for the geodesic flow.

Theorem (Hassell–Hillairet 2010)

In the above conjecture, it is not enough to assume that M has
nonpositive sectional curvature with ergodic geodesic flow on SM.
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Arithmetic QUE on the modular surface (1 of 2)

Hecke operators on the sphere

Let M := SL
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(Z)\H2. For a prime p, consider the Hecke operator

Tp�(m) :=
1
p
p

X

�2SL
2

(Z)\M
2

(Z)
det �=p

�(�.m), � 2 L2(M).

Let {�j} be an orthonormal Hecke eigenbasis of L2(M).
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In particular, GRH (or subconvexity) implies that dµj
⇤! dµ.
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Arithmetic QUE on the modular surface (2 of 2)

Theorem (Lindenstrauss 2006, Soundararajan 2010)

The arithmetic quantum unique ergodicity conjecture is true on
the modular surface (or on any arithmetic hyperbolic surface).

Theorem (Brooks–Lindenstrauss 2016)

In the above theorem, a single Hecke operator Tp su�ces. More
precisely, if {�j} is a (�,Tp)-eigenbasis of L2(M), then on M the
projected measures dµj = |�j |2dµ converge to dµ.
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