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Let £: y? = x3 + Ax + B be an elliptic curve.

Theorem (Mordell-Weil)
The rational points E(Q) are a finitely generated abelian group, i.e.
E(Q) = 2™ @ E(Q)sors,

where E(Q)ors is finite.

Theorem (Mazur)

E(Q)sors is one of:
e Z/NZ for N € {1,2,3,4,5,6,7,8,9,10,12}, or
e /22 ®7/NZ for N € {2,4,6,8}.
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Examples
Example
Let £: y?> = x> — x. Then

E(Q) = {(0,0),(i1,0),00}
~ 7)27.&7)27.

Thus, r(E) =0.

Example
Let E: y2 +y = x> — x. Then

E@Q) = ((0,0))

so r(E) = 1.
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Ranks of elliptic curves

For any given E/Q, computing r(E) can be hard, but:

Theorem
Assuming BSD + GRH, 3 algorithm to compute r(E).

Question
How does r(E) behave for “typical” E? e.g.

e What is Prob.(r(E) = m) for given m > 07

e What is Avg.(r(E))?
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Parity

The L-function of E/Q satisfies

L(s,E)=w(E)-L(2—s,E), w(E)==+1.

Conjecture (Birch and Swinnerton-Dyer)
For any E/Q, r(E) = ords=1 L(s, E).

Corollary (Parity conjecture)
Assuming BSD, for any E/Q,

(—1)"E) = w(E).
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Expectations via root numbers

Conjecture
w(E) =1 for 50% of E/Q and w(E) = —1 for 50% of E/Q.

Parity + minimality hypothesis leads to:

Conjecture (Katz-Sarnak)
r(E) =0 for 50% of E/Q, and r(E) =1 for 50% of E/Q.

Theorem (Bhargava-Shankar, Bhargava-Skinner-Zhang)
At least 20% of E/Q have rank 0, and at least 20% have rank 1.
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Quadratic Twists

Definition
Given E: y? = x3 4+ Ax + B, the quadratic twist by d is
Eqj:dy? =x3+Ax+B +— y?=x34+d’AX +d°B.

Theorem
Given E, w(E4) =1 for 50% of d, and w(E4) = —1 for 50% of d.

Conjecture (Goldfeld)
Given E, r(E4) = 0 for 50% of d, and r(E4) =1 for 50% of d.

Question (Weak Goldfeld)
Do r(E4) =0 and r(E4) =1 hold for a positive proportion of d?
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Theorem (Heath-Brown)
Let E: y?> = x3 — x. Then:

e the average rank of E;/Q is at most 3/2,
o r(E4) =0 for at least 20.9% of d, and

e r(Eq) =1 for at least 41.9% of d, assuming finiteness of Sha.

Theorem (Smith)
r(Eq) =1 for at least 27.9% of d unconditionally.
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|dea of the proof of Heath-Brown

Use 2-Selmer groups,

0 — E4(Q)/2E4(Q) — Sela(E4/Q) — III(E4/Q)[2] — O.

Point
The 2-Selmer group is an algebraic proxy for E4(Q), and satisfies

[Sela(Eq/Q)| = 2052(Ea) > or(Eq)+2
since E4(Q)[2] ~ Z/2Z & Z)27.

|dea (Heath-Brown)
Study the distribution of sp(Ey).
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Explicitly accessing the 2-Selmer group

Elements of Selp(Ey/Q) correspond to

e biquadratic fields Q(\/m1, \/m2)
e that are unramified away from 2d, and
e which satisfy nested local conditions at primes dividing 2d.

We (=Heath-Brown) can count these things!

(Secretly, what's going on is that

Selh(E4/Q) € HY(Q, Eq[2])
~ HYQ,Z/2Z & 7./27)
< biquadratic fields.

But let's agree to mostly ignore this picture!)
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This works for any elliptic curve with E(Q)[2] ~ Z/27 & Z./2Z:

Theorem (Kane, Swinnerton-Dyer)
If E(Q)[2] ~ Z/2Z & Z/2Z, then:

e the average rank of E;/Q is at most 3/2,
o r(E4) =0 for at least 20.9% of d, and

o r(Ey) =1 for at least 41.9% of d, assuming finiteness of Sha.

Question
How common are curves with E(Q)[2] ~ Z/27Z & Z /277
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Counting curves by height

Definition
Given E: y? = x3 + Ax + B, let Ht(E) := max(|A[?, B2).

Fact

There are ~ X5/® non-isomorphic E /Q with Ht(E) < X.

_4
¢(10)
Theorem (Harron-Snowden)

There are < X'/3 non-isomorphic curves with Ht(E) < X and
E(Q)~Z/2Z & Z)?7.

Question
Are there bigger families for which we can prove weak Goldfeld?
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Theorem (Bhargava-Klagsbrun-LO-Shnidman)
Let E/Q have a 3-isogeny*. Then:

e the average rank of E;/Q is bounded,

e r(E4) = 0 for a positive proportion of d, and

e r(Ey) =1 for a positive proportion of d, assuming finiteness of
Sha.

Remark
Kriz and Li recently obtained r(E4) =0 and r(Ey) =1
unconditionally, but with weaker proportions.

Remark
It follows from Harron and Snowden that there are = X1/2 such
curves.

More on this in a second.
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Explicit Examples

Corollary

Let E: y? +y = x>+ x?> 4+ x. Then E has a 3-isogeny, and
e the average rank of E;/Q is at most 7/6,
e r(E4) =0 for at least 25% of d, and

o r(Eg4) =1 for at least 5/12 ~ 41.6% of d, assuming finiteness
of Sha.

Remark
The above corollary also holds for E: y? = x3 + 208 and
E:y? +y=x34x?—3x+ 1, among others.
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Isogenies

Definition
An m-isogeny is a degree m rational function ¢: E — E’ that is
also a group homomorphism.

Example

2

Multiplication-by-m is an m*-isogeny.

Fact
E has a 3-isogeny iff there exists d such that E4(Q)[3] ~ Z/3Z.
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Examples of isogenies

Example
Let E: y?2 +y = x3 + x? + x. Then E(Q) ~ Z/3Z, so E has a
3-isogeny.

In fact, let E: y? 4+ y = x3 + x> — 9x — 15, and define

x34+2x+1 x32xyx2y1>

)

X2 x3

ot =

Then ¢: E — E’ is a 3-isogeny.

Point
If $: E — E’ is an isogeny, then r(E) = r(E’). We will use the
¢-Selmer group to access the rank.
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¢-Selmer groups

Let ¢: E — E’ be an isogeny. Then

0 — E/(Q)/$(E(Q) — Sel(E/Q) — LI(E/Q)[¢] — 0.

Theorem (Bhargava-Klagsbrun-LO-Shnidman)
Let ¢: E — E' be a 3-isogeny. The average size of Sely(Eq/Q) is

exactly )
1+ 3 H Avg.(cp(d)),
p|Ne
where
_ 1E(Q@p)/d(Ea(@p))|

@0a) = T @)
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Let

c(¢a) = [[ cp(¢a)

p<oo

and T, ={d : c(¢q) =3"}.
Theorem (Bhargava-Klagsbrun-LO-Shnidman)

o T, is empty for all but finitely many m

e Fach non-empty T,, has positive density

e Ford e Tp, Avg.[Sely(Eq/Q)| =1+ 37
For d € T, the average rank of E;/Q is at most |m| + 3™
For at least 1/2 of d € Ty, r(E4) =0

For at least 5/6 of d € T{ U T_1, r(Ey4) =1, assuming Sha is
finite
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Returning to the example

Example
Let E: y2+y = x3+x%+x. Then c(¢q) = c19(¢dd)Coo(Pd), where

1, d>0
COO(¢d) :{ 1/37 d<0

and t (d)
_ 3, if19fdand (&) =+1,
c9(¢a) = { 1, otherwise.

Thus, T, is empty unless m € {—1,0,1}.

Moreover, dens(Ty) =1/2, so r(Ey) =0 for 1/4 of d.
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|dea of the proof

Any E/Q with a 3-isogeny can be written as

E:y? = x*+ D(ax + b)*.

Very loosely, elements of Sel,(Eq4/Q) correspond to
e cubic fields,
e that are unramified away from 6dD, and

e which satisfy local conditions at primes dividing 6dD.

Better: Elements of Sely(Eq/Q) correspond to binary cubic forms.
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Binary cubic forms

Theorem (Delone-Fadeev)

Cubic tields <— GLy(Z)-classes of binary cubic forms that are
irreducible and maximal.

Theorem (Davenport-Heilbronn)

The number of cubic fields of discriminant up to X is ~

Proof.

Use Delone-Fadeev and geometry of numbers.

1
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Binary cubic forms and ¢-Selmer elements

Let E: y?2 = x3 + D(ax + b)>.

Theorem (Bhargava-Klagsbrun-LO-Shnidman)

There is a bijection between Sely(Eq/Q) and the SLy(Q)-orbits of
locally E-soluble integral binary cubic forms of discriminant
—12dDM?, where M is an integer depending only on E.

Idea

Use geometry of numbers + theorem to count ¢-Selmer elements.
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A more explicit result

Theorem (Bhargava-Klagsbrun-LO-Shnidman)
Let E/Q have a 3-isogeny. Then
o Avg.(r(Eg)) < (Im|+37I™) - dens(Tp),
o r(E4) =0 for at least 3dens(Ty) of d, and

e r(Eq) =1 for at least 2dens(T_1 U Ty) of d, assuming Sha is
finite.

Question
How do these results depend on E?
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Typical behavior

Our results are sensitive to the number of bad primes, but for
“typical” curves E:

e the average rank of E;/Q is O(/log log NE),
e the proportion of d with r(Ey) = 0is > 1/4/loglog Ng, and

e the same holds for the proportion of d with r(Ey) =1,
assuming Sha is finite.

However, there exist “extreme” curves for which we can show only:
e Avg.(r(Eq)) < log Ng/loglog Ng, and
o r(Eg4) =0 for > exp(— log Ng/ loglog Ng) of d.

Question
Are we just inefficient, or is there something weird with ¢-Selmer?
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Averages in big families

Theorem (Bhargava-Shankar)

Let m € {2,3,4,5}. Then Avg.|Sel,(E/Q)| = o(m), where the
average is over all elliptic curves.

Theorem (Klagsbrun-LO)

Let p € {3,5,7,13}, and let E range over all elliptic curves with a
p-isogeny and Ht*(E) < X. Then

Avg.[Sel4(E/Q)| > (log X)(P~1)1/2p,

Corollary
For E/Q with a 3-isogeny, Avg.|Sel,(E/Q)| > (log X)?/3.
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A more explicit result

Theorem (Bhargava-Klagsbrun-LO-Shnidman)
Let E/Q have a 3-isogeny. Then
o Avg.(r(Eq)) < (Im|+37™) - dens(Tp),
o r(E4) =0 for at least 3dens(Ty) of d, and

e r(Eq) =1 for at least 2dens(T_1 U Ty) of d, assuming Sha is
finite.

Remark

Also works over number fields. There are examples with
r(Eq/K) = 0 for 50% of d, but all have w(Ey) = +1.



