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The space of lattices

• Let X
n

denote the space of n-dimensional lattices of
covolume 1.

• We identify X
n

with the homogeneous space
SL(n,Z) \ SL(n,R):

Zng ⇢ Rn  ! SL(n,Z)g

• We equip X
n

with the probability measure µ
n

induced from
the Haar measure on SL(n,R).
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The Epstein zeta function

• For L 2 X
n

and Re s > n

2

the Epstein zeta function is
defined by

E
n

(L, s) :=
X

m2L\{0}

|m|�2s .

• E
n

(L, s) has an analytic continuation to C \ {n

2

} and satisfies
the functional equation

F
n

(L, s) := ⇡�s�(s)E
n

(L, s) = F
n

⇣

L⇤,
n

2
� s

⌘

.

(Here L⇤ := {x 2 Rn | hx , yi 2 Z 8y 2 L} is the dual
lattice of L.)
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The Epstein zeta function is of interest in...

•
Analytic number theory: E

n

(L, s) is analogous to ⇣(s);
⇣(2s) = 1

2

E
1

(Z, s). However, RH for E
n

(L, s) fails for a
generic L 2 X

n

(n � 2).

•
The geometry of numbers: The lattice sphere packing
problem can be formulated as an optimization problem for
E
n

(L, s).

•
Automorphic forms: E

n

(L, s) is a maximal parabolic
Eisenstein series for GL(n,R).

•
Algebraic number theory: A ”twisted” version of E

n

(L, s)
appears in Stark’s proof that there exist exactly nine
imaginary quadratic fields of class number one.

•
Theoretical physics and chemistry: E

n

(L, s) is related to
the electrostatic energy in crystals.
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Minima of En(L, s)

Theorem (Rankin - Cassels - Ennola - Diananda)

Let L
2

denote the hexagonal lattice in X
2

. Then

E
2

(L, s) � E
2

(L
2

, s) 8s > 0, 8L 2 X
2

,

with equality i↵ L = L
2

.
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Minima of En(L, s)

Definition

i) For any n � 2, we let L
n

2 X
n

denote a lattice giving the
densest lattice sphere packing in Rn.

ii) For any n � 2, we call L
n

universal if

E
n

(L, s) � E
n

(L
n

, s) 8s > 0, 8L 2 X
n

,

with equality i↵ L = L
n

.

Theorem (Sarnak - Strömbergsson)

For n = 4, 8 and 24 and s > 0, E
n

(L, s) has a strict local minimum
at L = L

n

.

Question 1 (Sarnak - Strömbergsson)

Does there exist arbitrarily large n for which L
n

is universal?
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Minima of En(L, s)

Question 1 (Sarnak - Strömbergsson)

Does there exist arbitrarily large n for which L
n

is universal?

A straightforward averaging argument shows that if L
n

is universal
then E

n

(L
n

, s) has no zeros in the interval (0,1).

Question 2 (Sarnak - Strömbergsson)

Does there exist, for arbitrarily large n, a lattice L 2 X
n

for which
E
n

(L, s) has no zeros in the interval (0,1)?
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Minima of En(L, s)

Question 2 (Sarnak - Strömbergsson)

Does there exist, for arbitrarily large n, a lattice L 2 X
n

for which
E
n

(L, s) has no zeros in the interval (0,1)?

The first step towards an answer to Question 2 is the following
result.

Theorem (Sarnak - Strömbergsson)

If " > 0 is fixed, then

Probµ
n

n

L 2 X
n

�

�

�

�

�

@
@sEn

(L, s)|s=0

� (1� � � log ⇡)
�

� < "
o

! 1

as n!1, where � is Euler’s constant.
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Value distribution of En(L, s)

• Let V
n

denote the volume of the unit ball in Rn.

• Let P =
�

N(V ),V � 0
 

be a Poisson process on R+ with
constant intensity 1

2

and let R(V ) := 2N(V )� V .

Theorem 1 (S.)

Let 1

4

< c
1

< c
2

< 1

2

. For each n 2 Z+ consider
c 7! V�2c

n

E
n

(·, cn) as a random function in C
�

[c
1

, c
2

]
�

. This
random function converges in distribution to

c 7!
Z 1

0

V�2c dR(V )

as n!1.
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A few remarks

• The limit variable is well-defined and for fixed 1

4

< c < 1

2

the
integral

R1
0

V�2c dR(V ) has a strictly 1

2c

-stable distribution.
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A few remarks

• (2c � 1

2

)
1

2

R1
0

V�2c dR(V ) converges in distribution to
N(0, 1) as c ! 1

4

+.
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A few remarks

• The limit variable is well-defined and for fixed 1

4

< c < 1

2

the
integral

R1
0

V�2c dR(V ) has a strictly 1

2c

-stable distribution.

• (2c � 1

2

)
1

2

R1
0

V�2c dR(V ) converges in distribution to
N(0, 1) as c ! 1

4

+.

• For c > 1

2

, the random variable V�2c

n

E
n

(·, cn) converges to
the distribution of 2

R1
0

V�2c dN(V ) = 2
P1

j=1

T�2c

j

as
n!1.

• At the moment we do not understand the precise behavior of
E
n

(·, cn) as c ! 1

4

and n!1.
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An application

Question 2 (Sarnak - Strömbergsson)

Does there exist, for arbitrarily large n, a lattice L 2 X
n

for which
E
n

(L, s) has no zeros in the interval (0,1)?

Corollary

For any fixed 1

4

< c
1

< c
2

 1

2

,

lim
n!1

Probµ
n

n

L 2 X
n

�

�E
n

(s, L) < 0 for all s 2 [c
1

n, c
2

n] \ {1

2

n}
o

= Prob

⇢

Z 1

0

V�2c dR(V ) < 0 for all c 2 [c
1

, c
2

] \ {1

2

}
�

.

Moreover, the above limit L satisfies 0 < L < 1.

Theorem 2 (S.)

Probµ
n

�

L 2 X
n

�

� E
n

(L, s) has a zero in (0,1)
 

! 1 as n!1.
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Outline of the proof of Theorem 1
We have, for s 2 C \ {0, n

2

},

F
n

(L, s) = ⇡�s�(s)E
n

(L, s) =

✓

� 1
n

2

� s
+

X

m2L\{0}

G
�

s,⇡|m|2
�

◆

+

✓

� 1

s
+

X

m2L⇤\{0}

G
�

n

2

� s,⇡|m|2
�

◆

where

G (s, x) :=

Z 1

1

ts�1e�xt dt, Re x > 0.

Let

H
n

(L, s) := � 1
n

2

� s
+

X

m2L\{0}

G
�

s,⇡|m|2
�

.

Then

F
n

(L, s) = H
n

(L, s) + H
n

(L⇤, n
2

� s).
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Outline of the proof of Theorem 1

The analysis of

H
n

(L, s) := � 1
n

2

� s
+

X

m2L\{0}

G
�

s,⇡|m|2
�

is di�cult since we have exponential cancellation between the
sum and the term �(n

2

� s)�1:

For any fixed c 2 (1
4

, 1
2

) there exists � > 0 such that

Probµ
n

n

L 2 X
n

�

�

�

�

�H
n

(L, cn)
�

� < e��n
o

! 1 as n!1.
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Outline of the proof of Theorem 1

We tackle this problem by writing H
n

(L, cn) as an integral,

H
n

(L, cn) = � 1
n

2

� cn
+

X

m2L\{0}

G
�

cn,⇡|m|2
�

= � 1
n

2

� cn
+

Z 1

0

G
⇣

cn,⇡
⇣ V

V
n

⌘

2

n

⌘

dN
n

(V )

=

Z 1

0

G
⇣

cn,⇡
⇣ V

V
n

⌘

2

n

⌘

dR
n

(V )

⇡ FACTOR(c , n) ·
Z 1

0

V�2c dR(V ),

for all 1

4

< c < 1

2

, where N
n

(V ) = N
n

(L,V ) equals the number of
non-zero lattice points of L in the closed ball of volume V centered
at the origin, and R

n

(V ) = N
n

(V )� V .
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Two main ingredients in the final step above

1. Bound of R
n

(V ):

Theorem 3 (S.)

For any n � 3 and for almost every L 2 X
n

, we have
|R

n

(V )|⌧" V
1

2 (logV )
3

2

+" as V !1.

• Note that R
n

(V ) = N
n

(V )� V is the remainder term in the
circle problem generalized to dimension n and general
ellipsoids.

• The central part of the proof is the variance relation

E
⇣

(R
n

(V +�)� R
n

(V ))2
⌘

< 5�,

valid for V � 0, � > 0 and n � 3.
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Two of the main ingredients in the final step above

• The central part of the proof is the variance relation

E
⇣

(R
n

(V +�)� R
n

(V ))2
⌘

< 5�,

valid for V � 0, � > 0 and n � 3.

This bound is proved using Rogers’ formula
Z

X

n

X

m

1

,m
2

2L\{0}

⇢(m
1

,m
2

) dµ
n

(L)

=

Z

Rn

Z

Rn

⇢(x
1

, x
2

) dx

1

dx

2

+
2

⇣(n)

1
X

d

1

=1

1
X

d

2

=1

Z

Rn

⇢(d
1

x , d
2

x) dx ,

with ⇢ a suitable characteristic function on (Rn)2.
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Two of the main ingredients in the final step above

2. The connection between lengths of lattice vectors and the
Poisson process P =

�

N(V ),V � 0
 

:

• Given L 2 X
n

, order the non-zero vectors by increasing length
as ±v

1

,±v

2

,±v

3

, . . .; define V
j

(L) := V
n

|v
j

|n.

• Let T
1

,T
2

,T
3

, . . . denote the points of the Poisson process P
ordered so that 0 < T

1

< T
2

< T
3

< · · · .

Theorem 4 (S.)

The sequence {V
j

(·)}1
j=1

converges in distribution to the sequence
{T

j

}1
j=1

as n!1.

Corollary

R
n

(V ) tends in distribution to R(V ) as n!1, for any V � 0.
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Outline of the proof of Theorem 1

Recall:

H
n

(L, cn) =

Z 1

0

G
⇣

cn,⇡
⇣ V

V
n

⌘

2

n

⌘

dR
n

(V )

⇡ FACTOR(c , n) ·
Z 1

0

V�2c dR(V ),

for all 1

4

< c < 1

2

, where N
n

(V ) = N
n

(L,V ) equals the number of
non-zero lattice points of L in the closed ball of volume V centered
at the origin, and R

n

(V ) = N
n

(V )� V .
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The central point

Problem
To understand the value distribution of E

n

(L, s) at the central
point, i.e. the distribution of E

n

(L, n
4

), as n!1.

The current work focuses on two key parts:

•
Truncation issues. Need to understand the limit behavior of
the error term in the generalized circle problem in the situation
where the size of the ball is growing with the dimension.

•
The joint distribution of E

n

(L, cn) on c  1

4

and c � 1

4

.
Need to understand the statistical relation between a random
lattice L and its dual L⇤.
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The generalized circle problem for a random lattice

Recall that above we used the following:

Theorem (S.)

For any n � 3 and for almost every L 2 X
n

, we have
|R

n

(V )|⌧" V
1

2 (logV )
3

2

+" as V !1.

What is expected?

Conjecture (Götze?)

For any n � 2 and for almost every L 2 X
n

, we have
|R

n

(V )|⌧
L," V

1

2

� 1

2n

+" as V !1.
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The generalized circle problem for a random lattice

In the situation where the size of the ball is growing with the
dimension we can prove the following central limit theorem:

Theorem (Strömbergsson-S.)

Let f : Z+ ! R+ be any function satisfying lim
n!1 f (n) =1 and

f (n) = O"(e"n) for every " > 0. Then

1
p

2f (n)
R
n

(f (n))
d�! N(0, 1) as n!1.

In fact, if for each n we let S
n

be a Borel measurable subset of Rn

satisfying vol(S
n

) = f (n) and S
n

= �S
n

, then

#(L \ S
n

\ {0})� f (n)
p

2f (n)

d�! N(0, 1) as n!1.
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The generalized circle problem for a random lattice

We also have the following functional version of our result:

Theorem (Strömbergsson-S.)

Let f : Z+ ! R+ be any function satisfying lim
n!1 f (n) =1 and

f (n) = O"(e"n) for every " > 0. The distribution of the random
function

t 7! 1
p

2f (n)
R
n,L (tf (n)) (on the interval [0, 1])

converges in distribution to one-dimensional Brownian motion.

Remark
This result is not strong enough to study E

n

(L, n
4

) as n!1. At
the present preliminary stage we need the above result also for
functions f (n) that grows as rapidly as e

1

2

(1�log 2)n.
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Work in progress

Another central problem in our program is to understand the joint

distribution of the vector lengths of a random lattice L 2 X
n

and
its dual lattice L⇤ (as n!1).

As a first step in this direction we have developed a formula for the
expected value of sums on the form

X

m

1

,...,m
k

1

2L

X

m

k

1

+1

,...,m
k

1

+k

2

2L⇤
f (m

1

, . . . ,m
k

1

+k

2

).

However, it is not yet clear how to express our formula as explicitly
as possible in the case of general k

1

and k
2

.
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Work in progress
In the special case with k

1

= k
2

= 1 and
f (m

1

,m
2

) = f
1

(m
1

)f
2

(m
2

) we have the following explicit result:

Theorem (Strömbergsson-S.)

Let f
1

and f
2

be Schwartz functions. Then
Z

X

n

X

m

1

2L

X

m

2

2L⇤
f
1

(m
1

)f
2

(m
2

) dµ
n

(L) = f
1

(0)f
2

(0) + bf
1

(0)f
2

(0)

+ f
1

(0)bf
2

(0) +
X

k2Z

�
1�n

(k)

⇣(n)

Z

Rn

f
1

(x)|x |�1

✓

Z

{u2Rn|hu,xi=k}

f
2

(u) du

◆

dx ,

where

�
1�n

(k) =
X

d |k
d>0

d1�n.
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Thank you for your attention!
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