INTRODUCI	tion Minima	VALUE DISTRIBUTIO	N OUTLINE OF PRO	OF THE CIRCLE PRO	OBLEM WORK IN PROGRES	s
000	0000	000000	0000000	0000	000	

On Epstein's zeta function and related results in the geometry of numbers

Anders Södergren

Department of Mathematical Sciences Chalmers University of Technology

2017-02-09

INTRODUCTION	Minima	VALUE DISTRIBUTION	Outline of proof	The circle problem	Work in progress
000	0000	000000	000000	0000	000

- 1. Introduction
- 2. Minima of $E_n(L, s)$
- 3. Value distribution of $E_n(L, s)$
- 4. Outline of proof of the main result
- 5. The generalized circle problem for a random lattice

6. Work in progress

The space of lattices

- Let X_n denote the space of *n*-dimensional lattices of covolume 1.
- We identify X_n with the homogeneous space $SL(n,\mathbb{Z}) \setminus SL(n,\mathbb{R})$:

$$\mathbb{Z}^n g \subset \mathbb{R}^n \longleftrightarrow \mathrm{SL}(n,\mathbb{Z})g$$

 We equip X_n with the probability measure μ_n induced from the Haar measure on SL(n, ℝ).

The Epstein zeta function

For L ∈ X_n and Re s > ⁿ/₂ the Epstein zeta function is defined by

$$E_n(L,s) := \sum_{\boldsymbol{m} \in L \setminus \{\boldsymbol{0}\}} |\boldsymbol{m}|^{-2s}$$

 E_n(L, s) has an analytic continuation to C \ {ⁿ/₂} and satisfies the functional equation

$$F_n(L,s) := \pi^{-s} \Gamma(s) E_n(L,s) = F_n\left(L^*, \frac{n}{2} - s\right).$$

(Here $L^* := \{ \boldsymbol{x} \in \mathbb{R}^n \mid \langle \boldsymbol{x}, \boldsymbol{y} \rangle \in \mathbb{Z} \mid \forall \boldsymbol{y} \in L \}$ is the dual lattice of L.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Epstein zeta function is of interest in...

- Analytic number theory: E_n(L, s) is analogous to ζ(s);
 ζ(2s) = ½E₁(ℤ, s). However, RH for E_n(L, s) fails for a generic L ∈ X_n (n ≥ 2).
- The geometry of numbers: The lattice sphere packing problem can be formulated as an optimization problem for $E_n(L, s)$.

The Epstein zeta function is of interest in...

- Analytic number theory: E_n(L, s) is analogous to ζ(s);
 ζ(2s) = ½E₁(ℤ, s). However, RH for E_n(L, s) fails for a generic L ∈ X_n (n ≥ 2).
- The geometry of numbers: The lattice sphere packing problem can be formulated as an optimization problem for $E_n(L, s)$.
- Automorphic forms: E_n(L, s) is a maximal parabolic Eisenstein series for GL(n, ℝ).
- Algebraic number theory: A "twisted" version of $E_n(L, s)$ appears in Stark's proof that there exist exactly nine imaginary quadratic fields of class number one.
- **Theoretical physics and chemistry**: $E_n(L, s)$ is related to the electrostatic energy in crystals.

MINIMA VALUE DISTR •000 000000 Outline of prod 0000000 THE CIRCLE PROBLEM 0000

WORK IN PROGRESS 000

Minima of $E_n(L, s)$

Theorem (Rankin - Cassels - Ennola - Diananda) Let L_2 denote the hexagonal lattice in X_2 . Then

 $E_2(L,s) \ge E_2(L_2,s) \qquad \forall s > 0, \forall L \in X_2,$

with equality iff $L = L_2$.

MINIMA VALUE DISTRI

OUTLINE OF PROC

THE CIRCLE PROBLEM 0000

WORK IN PROGRESS

Minima of $E_n(L, s)$

Definition

- i) For any $n \ge 2$, we let $L_n \in X_n$ denote a lattice giving the densest lattice sphere packing in \mathbb{R}^n .
- *ii)* For any $n \ge 2$, we call L_n **universal** if

$$E_n(L,s) \ge E_n(L_n,s) \qquad \forall s > 0, \forall L \in X_n,$$

with equality iff $L = L_n$.

MINIMA VALUE DISTRI 0000 000000 OUTLINE OF PROC

THE CIRCLE PROBLEM 0000

WORK IN PROGRESS 000

Minima of $E_n(L, s)$

Definition

- *i)* For any $n \ge 2$, we let $L_n \in X_n$ denote a lattice giving the densest lattice sphere packing in \mathbb{R}^n .
- *ii)* For any $n \ge 2$, we call L_n **universal** if

$$E_n(L,s) \ge E_n(L_n,s) \qquad \forall s > 0, \forall L \in X_n,$$

with equality iff $L = L_n$.

Theorem (Sarnak - Strömbergsson)

For n = 4, 8 and 24 and s > 0, $E_n(L, s)$ has a strict local minimum at $L = L_n$.

MINIMA VALUE DISTRI

OUTLINE OF PROC

THE CIRCLE PROBLEM 0000

WORK IN PROGRESS

Minima of $E_n(L, s)$

Definition

- *i)* For any $n \ge 2$, we let $L_n \in X_n$ denote a lattice giving the densest lattice sphere packing in \mathbb{R}^n .
- *ii)* For any $n \ge 2$, we call L_n **universal** if

$$E_n(L,s) \ge E_n(L_n,s) \qquad \forall s > 0, \forall L \in X_n,$$

with equality iff $L = L_n$.

Theorem (Sarnak - Strömbergsson)

For n = 4, 8 and 24 and s > 0, $E_n(L, s)$ has a strict local minimum at $L = L_n$.

Question 1 (Sarnak - Strömbergsson)

Does there exist arbitrarily large n for which L_n is universal?

MINIMA VALUE DISTR

OUTLINE OF PROC

THE CIRCLE PROBLEM

Work in progress 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Minima of $E_n(L, s)$

Question 1 (Sarnak - Strömbergsson)

Does there exist arbitrarily large n for which L_n is universal?

MINIMA VALUE DISTR

OUTLINE OF PROC

THE CIRCLE PROBLEM

WORK IN PROGRESS

Minima of $E_n(L, s)$

Question 1 (Sarnak - Strömbergsson)

Does there exist arbitrarily large n for which L_n is universal?

A straightforward averaging argument shows that if L_n is universal then $E_n(L_n, s)$ has no zeros in the interval $(0, \infty)$.

MINIMA VALUE DISTR 0000 000000 OUTLINE OF PROC

THE CIRCLE PROBLEM

WORK IN PROGRESS 000

Minima of $E_n(L, s)$

Question 1 (Sarnak - Strömbergsson)

Does there exist arbitrarily large n for which L_n is universal?

A straightforward averaging argument shows that if L_n is universal then $E_n(L_n, s)$ has no zeros in the interval $(0, \infty)$.

Question 2 (Sarnak - Strömbergsson)

Does there exist, for arbitrarily large n, a lattice $L \in X_n$ for which $E_n(L, s)$ has no zeros in the interval $(0, \infty)$?

MINIMA

0000

Minima of $E_n(L, s)$

Question 2 (Sarnak - Strömbergsson)

Does there exist, for arbitrarily large n, a lattice $L \in X_n$ for which $E_n(L,s)$ has no zeros in the interval $(0,\infty)$?

The first step towards an answer to *Question 2* is the following result.

$$\begin{array}{l} Theorem \ (Sarnak - Strömbergsson)\\ If \ \varepsilon > 0 \ is \ fixed, \ then\\ Prob_{\mu_n}\Big\{L \in X_n \ \Big| \ \Big| \frac{\partial}{\partial s} E_n(L,s)_{|s=0} - (1 - \gamma - \log \pi) \Big| < \varepsilon \Big\} \rightarrow 1 \end{array}$$

as $n \to \infty$, where γ is Euler's constant.

TRODUCTION MINIMA

VALUE DISTRIBUTION •00000 OUTLINE OF PROC

THE CIRCLE PROBLEM

WORK IN PROGRESS 000

Value distribution of $E_n(L, s)$

- Let V_n denote the volume of the unit ball in \mathbb{R}^n .
- Let $\mathcal{P} = \{N(V), V \ge 0\}$ be a Poisson process on \mathbb{R}^+ with constant intensity $\frac{1}{2}$ and let R(V) := 2N(V) V.

TRODUCTION MINI

VALUE DISTRIBUTION •00000 OUTLINE OF PROC

THE CIRCLE PROBLEM

WORK IN PROGRESS

Value distribution of $E_n(L, s)$

- Let V_n denote the volume of the unit ball in \mathbb{R}^n .
- Let $\mathcal{P} = \{N(V), V \ge 0\}$ be a Poisson process on \mathbb{R}^+ with constant intensity $\frac{1}{2}$ and let R(V) := 2N(V) V.

Theorem 1 (S.)

Let $\frac{1}{4} < c_1 < c_2 < \frac{1}{2}$. For each $n \in \mathbb{Z}^+$ consider $c \mapsto V_n^{-2c} E_n(\cdot, cn)$ as a random function in $C([c_1, c_2])$. This random function converges in distribution to

$$c\mapsto \int_0^\infty V^{-2c}\,dR(V)$$

as $n \to \infty$.

A few remarks

The limit variable is well-defined and for fixed ¹/₄ < c < ¹/₂ the integral ∫₀[∞] V^{-2c} dR(V) has a strictly ¹/_{2c}-stable distribution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

A VALUE DISTRIBUTION 000000

OUTLINE OF PROC

THE CIRCLE PROBLEM

WORK IN PROGRESS

A few remarks

• $(2c - \frac{1}{2})^{\frac{1}{2}} \int_0^\infty V^{-2c} dR(V)$ converges in distribution to N(0,1) as $c \to \frac{1}{4}+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

INTRODUCTION MINIMA VALUE DISTRIBUTION OUTLINE OF PROOF THE CIRCLE PROBLEM WORK IN PROGRESS

A few remarks

- The limit variable is well-defined and for fixed ¹/₄ < c < ¹/₂ the integral ∫₀[∞] V^{-2c} dR(V) has a strictly ¹/_{2c}-stable distribution.
- $(2c \frac{1}{2})^{\frac{1}{2}} \int_0^\infty V^{-2c} dR(V)$ converges in distribution to N(0,1) as $c \to \frac{1}{4}+$.
- For $c > \frac{1}{2}$, the random variable $V_n^{-2c}E_n(\cdot, cn)$ converges to the distribution of $2\int_0^{\infty} V^{-2c} dN(V) = 2\sum_{j=1}^{\infty} T_j^{-2c}$ as $n \to \infty$.
- At the moment we do not understand the precise behavior of $E_n(\cdot, cn)$ as $c \to \frac{1}{4}$ and $n \to \infty$.

VALUE DISTRIBUTION

OUTLINE OF PRO

THE CIRCLE PROBLEM 0000 WORK IN PROGRESS 000

An application

Question 2 (Sarnak - Strömbergsson)

Does there exist, for arbitrarily large n, a lattice $L \in X_n$ for which $E_n(L, s)$ has no zeros in the interval $(0, \infty)$?

VALUE DISTRIBUTION

OUTLINE OF PROC

THE CIRCLE PROBLEM

WORK IN PROGRESS

An application

Question 2 (Sarnak - Strömbergsson)

Does there exist, for arbitrarily large n, a lattice $L \in X_n$ for which $E_n(L, s)$ has no zeros in the interval $(0, \infty)$?

Corollary

For any fixed
$$rac{1}{4} < c_1 < c_2 \leq rac{1}{2}$$
,

$$\lim_{n \to \infty} \operatorname{Prob}_{\mu_n} \left\{ L \in X_n \, \big| \, E_n(s,L) < 0 \text{ for all } s \in [c_1n,c_2n] \setminus \left\{ \frac{1}{2}n \right\} \right\}$$
$$= \operatorname{Prob} \left\{ \int_0^\infty V^{-2c} \, dR(V) < 0 \text{ for all } c \in [c_1,c_2] \setminus \left\{ \frac{1}{2} \right\} \right\}.$$

Moreover, the above limit \mathcal{L} satisfies $0 < \mathcal{L} < 1$.

VALUE DISTRIBUTION 000000

An application

Question 2 (Sarnak - Strömbergsson)

Does there exist, for arbitrarily large n, a lattice $L \in X_n$ for which $E_n(L,s)$ has no zeros in the interval $(0,\infty)$?

Corollary

For any fixed
$$rac{1}{4} < c_1 < c_2 \leq rac{1}{2}$$
,

$$\lim_{n \to \infty} \operatorname{Prob}_{\mu_n} \left\{ L \in X_n \, \big| \, E_n(s,L) < 0 \text{ for all } s \in [c_1n,c_2n] \setminus \left\{ \frac{1}{2}n \right\} \right\}$$
$$= \operatorname{Prob} \left\{ \int_0^\infty V^{-2c} \, dR(V) < 0 \text{ for all } c \in [c_1,c_2] \setminus \left\{ \frac{1}{2} \right\} \right\}.$$

Moreover, the above limit \mathcal{L} satisfies $0 < \mathcal{L} < 1$.

Theorem 2(S.) $Prob_{\mu_n} \{ L \in X_n \mid E_n(L,s) \text{ has a zero in } (0,\infty) \} \to 1 \text{ as } n \to \infty.$

VTRODUCTION MIN 00 000 VALUE DISTRIBUTION 000000 Outline of proc

THE CIRCLE PROBLEM

WORK IN PROGRESS

Value distribution of $E_n(L, s)$

- Let V_n denote the volume of the unit ball in \mathbb{R}^n .
- Let $\mathcal{P} = \{N(V), V \ge 0\}$ be a Poisson process on \mathbb{R}^+ with constant intensity $\frac{1}{2}$ and let R(V) := 2N(V) V.

Theorem 1 (S.)

Let $\frac{1}{4} < c_1 < c_2 < \frac{1}{2}$. For each $n \in \mathbb{Z}^+$ consider $c \mapsto V_n^{-2c} E_n(\cdot, cn)$ as a random function in $C([c_1, c_2])$. This random function converges in distribution to

$$c\mapsto \int_0^\infty V^{-2c}\,dR(V)$$

as $n \to \infty$.

MA VALUE DISTRII O 000000 Outline of proof •000000 THE CIRCLE PROBLEM

WORK IN PROGRESS

Outline of the proof of Theorem 1 We have, for $s \in \mathbb{C} \setminus \{0, \frac{n}{2}\}$,

 $F_n(L,s) = \pi^{-s} \Gamma(s) E_n(L,s) = \left(-\frac{1}{\frac{n}{2}-s} + \sum_{\boldsymbol{m} \in L \setminus \{\boldsymbol{0}\}} G(s,\pi|\boldsymbol{m}|^2) \right) \\ + \left(-\frac{1}{s} + \sum_{\boldsymbol{m} \in L^* \setminus \{\boldsymbol{0}\}} G(\frac{n}{2}-s,\pi|\boldsymbol{m}|^2) \right)$

where

$$G(s,x):=\int_1^\infty t^{s-1}e^{-xt}\,dt,\qquad {\rm Re}\,x>0.$$

MA VALUE DISTRII 0 000000

1

Outline of proof •000000 THE CIRCLE PROBLEM

WORK IN PROGRESS

Outline of the proof of Theorem 1 We have, for $s \in \mathbb{C} \setminus \{0, \frac{n}{2}\}$,

 $F_n(L,s) = \pi^{-s} \Gamma(s) E_n(L,s) = \left(-\frac{1}{\frac{n}{2}-s} + \sum_{\boldsymbol{m} \in L \setminus \{\boldsymbol{0}\}} G(s,\pi|\boldsymbol{m}|^2) \right) \\ + \left(-\frac{1}{s} + \sum_{\boldsymbol{m} \in L^* \setminus \{\boldsymbol{0}\}} G(\frac{n}{2}-s,\pi|\boldsymbol{m}|^2) \right)$

where

$$G(s,x):=\int_1^\infty t^{s-1}e^{-xt}\,dt,\qquad \operatorname{Re} x>0.$$

Let

$$H_n(L,s) := -\frac{1}{\frac{n}{2}-s} + \sum_{\boldsymbol{m} \in L \setminus \{\boldsymbol{0}\}} G(s,\pi|\boldsymbol{m}|^2).$$

Then

$$F_n(L,s) = H_n(L,s) + H_n(L^*, \frac{n}{2} - s).$$

Outline of the proof of Theorem 1

The analysis of

$$H_n(L,s) := -rac{1}{rac{n}{2}-s} + \sum_{oldsymbol{m} \in L \setminus \{oldsymbol{0}\}} Gig(s,\pi |oldsymbol{m}|^2ig)$$

is difficult since we have **exponential cancellation** between the sum and the term $-(\frac{n}{2} - s)^{-1}$:

For any fixed $c \in (\frac{1}{4}, \frac{1}{2})$ there exists $\delta > 0$ such that

$$\mathsf{Prob}_{\mu_n}\Big\{L\in X_n\ \Big|\ \big|\mathcal{H}_n(L,cn)ig|< e^{-\delta n}\Big\}
ight\}
ightarrow 1\qquad ext{as}\ n
ightarrow\infty.$$

Outline of the proof of Theorem 1

We tackle this problem by writing $H_n(L, cn)$ as an integral,

$$H_n(L, cn) = -\frac{1}{\frac{n}{2} - cn} + \sum_{\boldsymbol{m} \in L \setminus \{\boldsymbol{0}\}} G(cn, \pi |\boldsymbol{m}|^2)$$
$$= -\frac{1}{\frac{n}{2} - cn} + \int_0^\infty G(cn, \pi \left(\frac{V}{V_n}\right)^{\frac{2}{n}}) dN_n(V)$$
$$= \int_0^\infty G(cn, \pi \left(\frac{V}{V_n}\right)^{\frac{2}{n}}) dR_n(V)$$
$$\approx \text{FACTOR}(c, n) \cdot \int_0^\infty V^{-2c} dR(V),$$

for all $\frac{1}{4} < c < \frac{1}{2}$, where $N_n(V) = N_n(L, V)$ equals the number of non-zero lattice points of L in the closed ball of volume V centered at the origin, and $R_n(V) = N_n(V) - V$.

Two main ingredients in the final step above

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

1. Bound of $R_n(V)$:

Theorem 3 (S.)

For any $n \ge 3$ and for almost every $L \in X_n$, we have $|R_n(V)| \ll_{\varepsilon} V^{\frac{1}{2}} (\log V)^{\frac{3}{2}+\varepsilon}$ as $V \to \infty$.

Two main ingredients in the final step above

1. Bound of $R_n(V)$:

Theorem 3 (S.)

For any $n \ge 3$ and for almost every $L \in X_n$, we have $|R_n(V)| \ll_{\varepsilon} V^{\frac{1}{2}} (\log V)^{\frac{3}{2}+\varepsilon}$ as $V \to \infty$.

- Note that R_n(V) = N_n(V) V is the remainder term in the circle problem generalized to dimension n and general ellipsoids.
- The central part of the proof is the variance relation

$$\mathbb{E}\left(\left(R_n(V+\Delta)-R_n(V)\right)^2\right)<5\Delta,$$

valid for $V \ge 0$, $\Delta > 0$ and $n \ge 3$.

INTRODUCTION MINIMA VALUE DISTRIBUTION OUTLINE OF PROOF THE CIRCLE PROBLEM WORK IN PROGRESS

Two of the main ingredients in the final step above

• The central part of the proof is the variance relation

$$\mathbb{E}\left(\left(R_n(V+\Delta)-R_n(V)\right)^2\right)<5\Delta,$$

valid for $V \ge 0$, $\Delta > 0$ and $n \ge 3$.

This bound is proved using Rogers' formula

$$\int_{X_n} \sum_{\boldsymbol{m}_1, \boldsymbol{m}_2 \in L \setminus \{\boldsymbol{0}\}} \rho(\boldsymbol{m}_1, \boldsymbol{m}_2) d\mu_n(L)$$

=
$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \rho(\boldsymbol{x}_1, \boldsymbol{x}_2) d\boldsymbol{x}_1 d\boldsymbol{x}_2 + \frac{2}{\zeta(n)} \sum_{d_1=1}^{\infty} \sum_{d_2=1}^{\infty} \int_{\mathbb{R}^n} \rho(d_1 \boldsymbol{x}, d_2 \boldsymbol{x}) d\boldsymbol{x},$$

with ρ a suitable characteristic function on $(\mathbb{R}^n)^2$.

Two of the main ingredients in the final step above

- 2. The connection between lengths of lattice vectors and the Poisson process $\mathcal{P} = \{N(V), V \ge 0\}$:
- Given L ∈ X_n, order the non-zero vectors by increasing length as ±v₁, ±v₂, ±v₃,...; define V_j(L) := V_n|v_j|ⁿ.
- Let T₁, T₂, T₃,... denote the points of the Poisson process P ordered so that 0 < T₁ < T₂ < T₃ < ···.

Two of the main ingredients in the final step above

- 2. The connection between lengths of lattice vectors and the Poisson process $\mathcal{P} = \{N(V), V \ge 0\}$:
- Given L ∈ X_n, order the non-zero vectors by increasing length as ±v₁, ±v₂, ±v₃,...; define V_j(L) := V_n|v_j|ⁿ.
- Let T_1, T_2, T_3, \ldots denote the points of the Poisson process \mathcal{P} ordered so that $0 < T_1 < T_2 < T_3 < \cdots$.

Theorem 4 (S.)

The sequence $\{\mathcal{V}_j(\cdot)\}_{j=1}^{\infty}$ converges in distribution to the sequence $\{T_j\}_{j=1}^{\infty}$ as $n \to \infty$.

Corollary

 $R_n(V)$ tends in distribution to R(V) as $n \to \infty$, for any $V \ge 0$.

MA VALUE DISTI O 000000 OUTLINE OF PROOF

THE CIRCLE PROBLEM

WORK IN PROGRESS

Outline of the proof of Theorem 1

Recall:

$$H_n(L, cn) = \int_0^\infty G\left(cn, \pi\left(\frac{V}{V_n}\right)^{\frac{2}{n}}\right) dR_n(V)$$

\$\approx FACTOR(c, n) \cdot \int_0^\infty V^{-2c} dR(V),

for all $\frac{1}{4} < c < \frac{1}{2}$, where $N_n(V) = N_n(L, V)$ equals the number of non-zero lattice points of *L* in the closed ball of volume *V* centered at the origin, and $R_n(V) = N_n(V) - V$.

ma Value disti o oooooo OUTLINE OF PRO

THE CIRCLE PROBLEM

WORK IN PROGRESS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The central point

Problem

To understand the value distribution of $E_n(L, s)$ at the central point, i.e. the distribution of $E_n(L, \frac{n}{4})$, as $n \to \infty$.

The central point

Problem

To understand the value distribution of $E_n(L, s)$ at the central point, i.e. the distribution of $E_n(L, \frac{n}{4})$, as $n \to \infty$.

The current work focuses on two key parts:

- **Truncation issues.** Need to understand the limit behavior of the error term in the generalized circle problem in the situation where the size of the ball is growing with the dimension.
- The joint distribution of E_n(L, cn) on c ≤ ¹/₄ and c ≥ ¹/₄. Need to understand the statistical relation between a random lattice L and its dual L*.

The generalized circle problem for a random lattice

Recall that above we used the following:

Theorem (S.) For any $n \ge 3$ and for almost every $L \in X_n$, we have $|R_n(V)| \ll_{\varepsilon} V^{\frac{1}{2}} (\log V)^{\frac{3}{2}+\varepsilon}$ as $V \to \infty$.

The generalized circle problem for a random lattice

Recall that above we used the following:

Theorem (S.) For any $n \ge 3$ and for almost every $L \in X_n$, we have $|R_n(V)| \ll_{\varepsilon} V^{\frac{1}{2}} (\log V)^{\frac{3}{2}+\varepsilon}$ as $V \to \infty$.

What is expected?

Conjecture (Götze?)

For any $n \ge 2$ and for almost every $L \in X_n$, we have $|R_n(V)| \ll_{L,\varepsilon} V^{\frac{1}{2} - \frac{1}{2n} + \varepsilon}$ as $V \to \infty$.

 Introduction
 Minima
 Value distribution
 Outline of proof
 The circle problem
 Work in progress

 000
 00000
 000000
 00000
 000
 000

The generalized circle problem for a random lattice

In the situation where the size of the ball is growing with the dimension we can prove the following **central limit theorem**:

Theorem (Strömbergsson-S.)

Let $f : \mathbb{Z}^+ \to \mathbb{R}^+$ be any function satisfying $\lim_{n\to\infty} f(n) = \infty$ and $f(n) = O_{\varepsilon}(e^{\varepsilon n})$ for every $\varepsilon > 0$. Then

$$rac{1}{\sqrt{2f(n)}} R_n(f(n)) \stackrel{ ext{d}}{ o} N(0,1) \qquad ext{as} \ n o \infty.$$

 Introduction
 Minima
 Value distribution
 Outline of proof
 The circle problem
 Work in progress

 000
 00000
 000000
 00000
 000
 000

The generalized circle problem for a random lattice

In the situation where the size of the ball is growing with the dimension we can prove the following **central limit theorem**:

Theorem (Strömbergsson-S.)

Let $f : \mathbb{Z}^+ \to \mathbb{R}^+$ be any function satisfying $\lim_{n\to\infty} f(n) = \infty$ and $f(n) = O_{\varepsilon}(e^{\varepsilon n})$ for every $\varepsilon > 0$. Then

$$rac{1}{\sqrt{2f(n)}}R_n(f(n))\stackrel{\mathsf{d}}{\longrightarrow} N(0,1) \quad \text{as } n o \infty.$$

In fact, if for each n we let S_n be a Borel measurable subset of \mathbb{R}^n satisfying $vol(S_n) = f(n)$ and $S_n = -S_n$, then

$$\frac{\#(L \cap S_n \setminus \{\mathbf{0}\}) - f(n)}{\sqrt{2f(n)}} \xrightarrow{\mathsf{d}} \mathcal{N}(0,1) \qquad \text{as } n \to \infty$$

The generalized circle problem for a random lattice

We also have the following functional version of our result:

Theorem (Strömbergsson-S.)

Let $f : \mathbb{Z}^+ \to \mathbb{R}^+$ be any function satisfying $\lim_{n\to\infty} f(n) = \infty$ and $f(n) = O_{\varepsilon}(e^{\varepsilon n})$ for every $\varepsilon > 0$. The distribution of the random function

$$t \mapsto \frac{1}{\sqrt{2f(n)}} R_{n,L}(tf(n))$$
 (on the interval [0,1])

converges in distribution to one-dimensional Brownian motion.

The generalized circle problem for a random lattice

We also have the following functional version of our result:

Theorem (Strömbergsson-S.)

Let $f : \mathbb{Z}^+ \to \mathbb{R}^+$ be any function satisfying $\lim_{n\to\infty} f(n) = \infty$ and $f(n) = O_{\varepsilon}(e^{\varepsilon n})$ for every $\varepsilon > 0$. The distribution of the random function

$$t\mapsto rac{1}{\sqrt{2f(n)}}R_{n,L}\left(tf(n)
ight)$$
 (on the interval $[0,1]$)

converges in distribution to one-dimensional Brownian motion.

Remark

This result is not strong enough to study $E_n(L, \frac{n}{4})$ as $n \to \infty$. At the present preliminary stage we need the above result also for functions f(n) that grows as rapidly as $e^{\frac{1}{2}(1-\log 2)n}$.

Another central problem in our program is to understand the **joint distribution** of the vector lengths of a random lattice $L \in X_n$ and its dual lattice L^* (as $n \to \infty$).

As a first step in this direction we have developed a formula for the expected value of sums on the form

$$\sum_{\boldsymbol{m}_1,\ldots,\boldsymbol{m}_{k_1}\in L}\sum_{\boldsymbol{m}_{k_1+1},\ldots,\boldsymbol{m}_{k_1+k_2}\in L^*}f(\boldsymbol{m}_1,\ldots,\boldsymbol{m}_{k_1+k_2}).$$

However, it is not yet clear how to express our formula as explicitly as possible in the case of general k_1 and k_2 .

Work in progress

In the special case with $k_1 = k_2 = 1$ and $f(\boldsymbol{m}_1, \boldsymbol{m}_2) = f_1(\boldsymbol{m}_1)f_2(\boldsymbol{m}_2)$ we have the following *explicit* result:

Theorem (Strömbergsson-S.)

Let f_1 and f_2 be Schwartz functions. Then

$$\begin{split} &\int_{X_n} \sum_{\boldsymbol{m}_1 \in L} \sum_{\boldsymbol{m}_2 \in L^*} f_1(\boldsymbol{m}_1) f_2(\boldsymbol{m}_2) \, d\mu_n(L) = f_1(\boldsymbol{0}) f_2(\boldsymbol{0}) + \widehat{f_1}(\boldsymbol{0}) f_2(\boldsymbol{0}) \\ &+ f_1(\boldsymbol{0}) \widehat{f_2}(\boldsymbol{0}) + \sum_{k \in \mathbb{Z}} \frac{\sigma_{1-n}(k)}{\zeta(n)} \int_{\mathbb{R}^n} f_1(\boldsymbol{x}) |\boldsymbol{x}|^{-1} \bigg(\int_{\{\boldsymbol{u} \in \mathbb{R}^n | \langle \boldsymbol{u}, \boldsymbol{x} \rangle = k\}} f_2(\boldsymbol{u}) \, d\boldsymbol{u} \bigg) \, d\boldsymbol{x}, \end{split}$$

where

$$\sigma_{1-n}(k) = \sum_{\substack{d \mid k \\ d > 0}} d^{1-n}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

INTRODUCTION	Minima	VALUE DISTRIBUTION	Outline of proof	The circle problem	Work in progress
000	0000	000000	000000	0000	000

Thank you for your attention!

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○