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Structures in sets: some general questions

Does a thin set contain a prescribed configuration?

Must every large set contain one?

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 4 / 46



Structures in sets: some general questions

Does a thin set contain a prescribed configuration?

Must every large set contain one?

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 4 / 46



Words that need clarification

Does a small/sparse set contain a prescribed configuration?

Must every large set contain one?
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What is big? What is small?
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Quantification of size

The size of a set can be specified in terms of

a measure (e.g. counting measure in Zd , Lebesgue measure in Rd)

dimension(s)

density
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What is a configuration?

In principle, any prescribed set.

Could be

- geometric, such as specially arranged points on a line, vertices of an
equilaterial triangle, or

- Algebro-analytic, for example solutions of a polynomial equation.
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A set and a configuration

.
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A congruent copy of the triangle
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An a�ne copy of the triangle

.
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An example: Progressions in the integers

Theorem (Szemerédi 1975)

If E ✓ N with positive asymptotic density, i.e.,

lim sup
N!1

#(E \ [1,N])

N

= � > 0,

then E contains an arithmetic progression of length k , for any k � 3.
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Example (ctd): Progressions in large sets of zero density

(Salem and Spencer 1942, Behrend 1946) There are large sets
E

N

✓ {1, 2, · · · ,N},

#(E
N

) > N

1�c/
p
logN

that contain no three-term arithmetic progression.

But there are other large sets of zero density that have long
progressions!

- random sets (Kohayakawa,  Luczak and Rödl 1996),

- primes (Green and Tao 2008), ...
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Szemerédi-type problems in the continuum

A prototypical question

Given

a class of subsets E in Rn whose members are “large”, and

a choice of geometric configurations F

must every set E 2 E contain one of the prescribed configurations F 2 F?

For instance,

given a fixed F ✓ R, is there a geometrically similar copy of F in
every set of positive Lebesgue measure? Here E = sets of positive
Lebesgue measure, F = similar copies of F .

If yes, call F universal.
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Finite sets are universal

Theorem (Steinhaus 1920)

Given

any finite set F ⇢ R, and

any set E ✓ R of positive Lebesgue measure,

there exists x 2 R and t 6= 0 such that x + tF ✓ E .
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Steinhaus’s theorem - a special case

Suppose F = {�1, 0, 1}, and E has positive Lebesgue measure.

Lebesgue density theorem =) almost every x 2 E is a density point.
What this means is that 9x 2 E such that

lim
r!0

|E \ (x � r , x + r)|
2r

= 1.

If E has no a�ne copy of F , then for every t > 0, either x � t /2 E or
x + t /2 E , so

|E \ (x � r , x + r)|  2r

2
= r 8r ,

contradicting Lebesgue density!
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What about infinite sets F?

Erdős similarity problem 1974

Does there exist an infinite universal set?

“I hope there are no such sets” - Erdős.

$100 prize!

An earlier question:

“If {x
n

} is an infinite sequence ! 0, then for every E ✓ R, |E | > 0,
does 9x 2 R such that x + x

n

2 E for all su�ciently large n?”

answered in the negative by Borwein and Ditor 1978.
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Erdős similarity problem : progress so far

Conjecture restated

Given any infinite set F ✓ R, there exists a set E of positive measure
which does not contain any nontrivial a�ne copy of F .

Conjecture verified for

I slowly decaying sequences {x
i

}, where x

i+1

/x
i

! 1 (Falconer 1984),

I
S

1

+ S

2

+ S

3

, where each S

j

is infinite (Bourgain 1987),

I {2�n

↵}+ {2�n

↵} for 0 < ↵ < 2 (Kolountzakis 1997).

Not known even for {2�n : n � 1}.
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Now what?

Finding similar copies of infinite patterns in sets of positive Lebesgue
measure seems to be hard, but ...

Can one find other large Lebesgue-null sets that contain a�ne copies
of all finite sets?
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Dimension: an alternative notion of size

Given E ✓ Rn, recall

Definition

dimH(E ) := sup

8
><

>:
↵ 2 [0, n]

�����

9 a probability measure µ, supp(µ) ✓ E ,

sup
x2Rn

sup
✏>0

µ(B(x , ✏))

✏↵
< 1

9
>=

>;
.

Agrees with the standard notion of dimension for curves, surfaces etc.

Assigns a quantitative measure of size to less regular objects, such as
fractals.

The Cantor middle-third set has Hausdor↵ dimension log 2/ log 3.
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Dimension of fractals: some examples

Sierpinski triangle

dimension = log
2

3

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 24 / 46



Dimension of fractals: some examples

Graph of Brownian motion

dimension = 3/2
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Dimension: an alternative notion of size

Given E ✓ Rn, recall
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sup
x2Rn

sup
✏>0

µ(B(x , ✏))

✏↵
< 1

9
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>;
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Every set of positive Lebesgue measure has full Hausdor↵ dimension.

Converse is not true. There are many Lebesgue-null sets of full
dimension.
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Universality revisited

Revised questions

Does there exist a Lebesgue-null subset of R of full Hausdor↵
dimension containing an a�ne copy of every finite configuration?

If the answer to the above is yes, must every full-dimensional
Lebesgue-null set have this property?
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Yes! and No!

Theorem (Erdős and Kakutani 1957)

There exists a compact Lebesgue-null set in R of Hausdor↵ dimension 1
containing similar copies of all finite subsets.

Theorem (Keleti 1998, 2008)

For a given distinct triple of points {x , y , z}, there exists a compact
set in R with Hausdor↵ dimension 1 which does not contain any
similar copy of {x , y , z}.

Given any countable A ⇢ (1,1), there exists a compact set E ⇢ R
with Hausdor↵ dimension 1 such that if x < y < z , x , y , z 2 E then
(z � x)/(z � y) /2 A.
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Keleti’s example: Cantor construction with memory

0 1
0 1 2 3 4 5 6 7 8 9 10 11

0 1 Step 1 

Step 2

I1

I2
21I2

{ I1=J1,  I2 = J2,  I2 = J3 }21
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Avoidance of x1 < x2  x3 < x4 with x2 � x1 = x4 � x3

Let x
1

2 J

m�1

, x
2

, x
3

, x
4

/2 J

m�1

.

0 1
0 1 2 3 4 5 6 7 8 9 10 11

0 1 Step 1 

Step 2

I1

I2
21I2

0 1

Step m-11Im-1
2Im-1

jIm-1
(m-1)!Im-1

{ J1 ,  J2 , J3 , ... , Jm-1 , ... , JN = Im-1  }(m-1)!

3 9 15 6m-36m-9

1Im-1

UI Jm-1 

0 6 12 6m-6

jIm-1

UI Jm-1 

Step m

At step m, x
1

2 an interval indexed by 6Z+ 3, but x
2

, x
3

, x
4

-index is 6Z!
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Higher dimensional configurations: di↵erent points of view

Theorem (Maga 2010)

(a) For distinct x , y , z 2 R2, there exists a compact set in R2 with
Hausdor↵ dimension 2 not containing any similar copy of {x , y , z}.

(b) There exists a compact set in Rn with Hausdor↵ dimension n which
does not contain any parallelogram {x , x + y , x + z , x + y + z} with
y , z 6= 0.

Questions (Maga 2010)

(a) If E ✓ R2 is compact with dimH(E ) = 2, must E contain the vertices
of an isosceles triangle?

(b) Given a set E ⇢ Rn, how large can dimH(E ) be if E does not contain
a triple of points forming a particular angle ✓?
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Avoidance: angles, functional zeros

Angles in sets

Say \✓ 2 E ⇢ Rn if there exist distinct points x , y , z 2 E such that the
angle between the vectors y � x and z � x is ✓. Define

C (n, ✓) := sup {s : 9E ✓ Rn compact with dimH(E ) = s, \✓ /2 E}

For ✓ = 0,⇡, C (n, ✓) = n � 1.

For ✓ = ⇡
2

, n/2  C (n, ✓)  b(n + 1)/2c.

Sets of dimension 1/d avoiding zeros of a multivariate polynomial of
degree d with rational coe�cients (Mathé 2012)

Large sets of special Fourier-analytic structure avoiding all k-variate
rational linear relations (Körner 2009)

Generalizations involving non-polynomials (Fraser-P 2016)
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Avoidance of functional zeros

Theorem (Fraser-P 2016)

Given

⌘ > 0,

any countable collection F = {f
q

: Rv ! R}, each f

q

has a
nonvanishing derivative of some finite order on [0, ⌘]v .

Then there exists a set E ✓ [0, ⌘] of full Minkowski dimension and
Hausdor↵ dimension at least 1/(v � 1) such that f

q

(x
1

, · · · , x
q

) 6= 0 for
each q and any v -tuple of distinct points x

1

, · · · , x
v

2 E .

Variants available when

F consists of vector-valued functions,

F possibly uncountable, containing functions with a common
linearization.
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F possibly uncountable, containing functions with a common
linearization.

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 33 / 46



Plan

Setup

History

Avoidance

Existence

Abundance

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 34 / 46



The notion of Fourier dimension

Definition

The Fourier dimension of a set E ✓ Rn is defined as

dimF(E ) = sup

8
><

>:
� 2 [0, n]

�����

9 a probability measure µ, supp(µ) ✓ E ,

sup
⇠2Rn

��bµ(⇠)
���1 + |⇠|

��
2 < 1

9
>=

>;
.

dimF(E )  dimH(E ) for all E ✓ Rn.

Inequality can be strict; for instance, dimH(E ) =
log 2

log 3

and
dimF(E ) = 0 for the Cantor middle-third set.

Sets for which equality holds are called Salem sets.

Deterministic constructions for Salem sets exist, but are rare. They
are however ubiquitous among random sets (Salem, Kahane).
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Large Fourier dimension =) configurations? Take 1

Theorem (Shmerkin 2016)

For every t 2 (0, 1], there exists a Salem set of dimension t that avoids
progressions.
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Large Fourier dimension =) configurations? Take 2

Theorem ( Laba-P 2009)

Suppose E ✓ [0, 1] is a closed set which supports a probability measure µ
with the following properties:

(a) (Ball condition)

µ
�
[x � ✏, x + ✏]

�
 C

1

✏↵ for all 0 < ✏  1,

(b) (Fourier decay condition)

��bµ(⇠)
��  C

2

|⇠|�
�
2 for all ⇠ 6= 0,

where 0 < ↵ < 1 and 2

3

< �  1. If ↵ > 1� ✏
0

(C
1

,C
2

,�), then E

contains a 3-term arithmetic progression.

Many higher dimensional generalizations (Chan, Henriot,  Laba, P)

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 37 / 46



Where have all the points gone?

Metaprinciple: If a set is large, then the class of certain configurations
lying in this space must be large as well, in terms of a natural measure
defined on the class of such configurations.

Steinhaus’s theorem

Every set E of real numbers of positive measure must have a di↵erence set
E � E = {x � y : x , y 2 E} that contains a nontrivial interval centred at
the origin.

Falconer’s conjecture

If E ✓ Rn, dimH(E ) >
n

2

, then the set of distances between pairs of points
in E must have positive Lebesgue measure.
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Large configuration spaces

For E ✓ R2, let T
2

(E ) = E

3/ ⇠, where

(a, b, c) ⇠ (a0, b0, c 0) if and only if 4abc and 4a

0
b

0
c

0 are congruent.

Theorem (Greenleaf and Iosevich 2010)

Let E ✓ R2 be a compact set with dimH(E ) >
7

4

. Then T

2

(E ) has
positive 3-dimensional measure.

Result says that triangles are abundant in sets of large Hausdor↵
dimension. However it does not (and in light of Maga’s theorem
cannot) guarantee the existence of (a similar copy of) a specific
triangle.

Higher dimensional extensions: Erdogan, Hart, Grafakos, Greenleaf,
Iosevich, Taylor, Liu, Mourgoglu, Palsson, P, ...

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 39 / 46



Large configuration spaces

For E ✓ R2, let T
2

(E ) = E

3/ ⇠, where

(a, b, c) ⇠ (a0, b0, c 0) if and only if 4abc and 4a

0
b

0
c

0 are congruent.

Theorem (Greenleaf and Iosevich 2010)

Let E ✓ R2 be a compact set with dimH(E ) >
7

4

. Then T

2

(E ) has
positive 3-dimensional measure.

Result says that triangles are abundant in sets of large Hausdor↵
dimension. However it does not (and in light of Maga’s theorem
cannot) guarantee the existence of (a similar copy of) a specific
triangle.

Higher dimensional extensions: Erdogan, Hart, Grafakos, Greenleaf,
Iosevich, Taylor, Liu, Mourgoglu, Palsson, P, ...

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 39 / 46



Large configuration spaces

For E ✓ R2, let T
2

(E ) = E

3/ ⇠, where

(a, b, c) ⇠ (a0, b0, c 0) if and only if 4abc and 4a

0
b

0
c

0 are congruent.

Theorem (Greenleaf and Iosevich 2010)

Let E ✓ R2 be a compact set with dimH(E ) >
7

4

. Then T

2

(E ) has
positive 3-dimensional measure.

Result says that triangles are abundant in sets of large Hausdor↵
dimension. However it does not (and in light of Maga’s theorem
cannot) guarantee the existence of (a similar copy of) a specific
triangle.

Higher dimensional extensions: Erdogan, Hart, Grafakos, Greenleaf,
Iosevich, Taylor, Liu, Mourgoglu, Palsson, P, ...

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 39 / 46



Large configuration spaces

For E ✓ R2, let T
2

(E ) = E

3/ ⇠, where

(a, b, c) ⇠ (a0, b0, c 0) if and only if 4abc and 4a

0
b

0
c

0 are congruent.

Theorem (Greenleaf and Iosevich 2010)

Let E ✓ R2 be a compact set with dimH(E ) >
7

4

. Then T

2

(E ) has
positive 3-dimensional measure.

Result says that triangles are abundant in sets of large Hausdor↵
dimension. However it does not (and in light of Maga’s theorem
cannot) guarantee the existence of (a similar copy of) a specific
triangle.

Higher dimensional extensions: Erdogan, Hart, Grafakos, Greenleaf,
Iosevich, Taylor, Liu, Mourgoglu, Palsson, P, ...

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 39 / 46



Plan

Setup

History

Avoidance

Existence

Abundance

Malabika Pramanik (UBC) Configurations in sets 19-01-2017 40 / 46



A di↵erent direction: Euclidean Ramsey theory

Suppose that

E ✓ Rn has positive upper density (with respect to Lebesgue
measure), i.e.,

lim sup
R!1

sup
x2Rn

|E \ B(x ;R)|
R

n

> 0.

F is a non-degenerate (k � 1)-dimensional simplex (i.e., a set of k
points in general position).

Theorem (Bourgain 1986)

If k  n, then E contains a translated and rotated copy of �F for all �
su�ciently large.
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All su�ciently large copies of configurations (ctd)

A set E ✓ R2 of positive upper density can reproduce all su�ciently
large distances.

Given three distinct and non-collinear points a, b, c 2 R3 a set
E ✓ R3 of positive upper density contains translated and rotated
copies of 4abc rescaled by �, for all � large enough.

Bourgain’s result applies to triangles in R3 but not to triangles in R2.

The result is false for three collinear equispaced points in R2.

(Graham 1994) The result is false for any non-spherical set in Rn!
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Norms and configurations?

Cook, Magyar, P 2016

- Fix any 1 < p < 1, p 6= 2.

- Then 9n
p

< 1 such that 8n � n

p

,

- any set A ✓ Rn of positive upper density contains a 3-term AP of every
su�ciently large gap length, measured in `p norm.

In other words, 9�
0

> 0 such that for all � � �
0

, 9x , x + y , x + 2y 2 A

such that ||y ||
p

= (
P

d

i=1

|y
i

|p)1/p = �.
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Proving existence and/or abundance: Methodology

Configuration counting functions, such as

⇤(f ) =

ZZ
f (x)f (x + y)f (x + 2y) dy dx .

If f = 1
A

, then ⇤(f ) measures the number of 3 AP-s in A. If A is a
sparse set supporting a measure, finer definitions of ⇤ are necessary.

Estimation of ⇤:

- Fourier-analytic methods, oscillatory integral estimates,

- tools from additive combinatorics, such as Gowers norms,

- tools from time-frequency analysis, e.g. bounds for multilinear singular
integral operators such as the bilinear Hilbert transform.
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Questions

Same result for corners by Durcik, Kovac̆ and Rimanić, ... other
examples and/or counterexamples?

To what extent do configuration results rely on the underlying
topology?
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Thank you!
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