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Overview

Research described here is part of a large program to understand
relationship between solvability of certain boundary value problems
and smoothness assumptions on the coe�cients of the operator:
divergence-form, elliptic or parabolic, second or higher-order,
systems.

The operators we focus on in this talk are (one possible)
generalization of the Laplace operator in Rn:

4u =
nX

j=1

@2

u

@x2
j

Note: 4u = divAr where A = Id and we will be considering
variable coe�cient operators, where the matrix A shares certain
structural properties such as positivity or ellipticity.
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Non-smooth Dirichlet data

The solution to Laplace’s equation in Rn

+

with data g(x) on the
boundary t = 0 is given by an explicit formula: the Poisson
extension u(x , t) =

R
Rn�1

g(y)P
t

(x � y)dy . And this integral may
converge even when g is only (Lebesgue) measurable g , not
continuous: for example, if g 2 L

1, then u is bounded and
harmonic. And u converges weak-star to g .

In fact, the Poisson integral of an L

p function for 1  p  1
makes sense, and satisfies the estimate:

lim
t!0

Z

R
|u(x , t)|pdx =

Z

R
|g(x)|pdx

When 1 < p we have: u is the Poisson integral of an L

p function if

and only if

N(u)(x) 2 L

p and u converges in L

p and pointwise almost
everywhere nontangentially to its boundary data.
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Nontangential convergence

Let �(x , 0) = {(x 0, y) : |x � x

0| < cy} denote the cone at (x , 0):

!
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Dirichlet problem on Rn
+

u(x , t) =

Z

R
g(y)P

t

(x � y)dy ,

and
Nu(x) = sup{(u(x 0, t) : (x 0, t) 2 �(x , 0)}
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Nontangential maximal functions and the Dirichlet problem

With

Nu(x) = sup{(x 0, t) 2 �(x , 0) : u(x 0, t)}

The Dirichlet problem with data in L

p is uniquely solvable for
Laplace’s equation when p > 1 in smooth domains:

�u = 0 2 Rn+1

+

, u(x , 0) = f (x) 2 L

p(Rn)

with

kNuk
p

 Ckf k
p

This apriori estimate for continuous f 2 L

p(Rn) implies that
solutions to the L

p Dirichlet problem converge nontangentially to
their boundary values.
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Boundary value problems for second order divergence form
operators

L := � divA(X )r,, where X = (x , t) 2 Rn+1, or more generally
above a Lipschitz graph.

When A is a (possibly non-symmetric) real (n + 1)⇥ (n + 1)
matrix, the ellipticity condition is:

�|⇠|2  hA(X )⇠, ⇠i :=
n+1X

i ,j=1

A

ij

(x)⇠
j

⇠
i

, kAk
L

1
(Rn

)

 ��1, (1)

Since the coe�cients of A are not di↵erentiable, what does

Lu = 0 mean? Z

Rn

+

A(X )ru.r�dX = 0

for all appropriate test functions � and for all u with square

integrable derivatives.
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Motivation for studying regularity of solutions, and sharp
boundary value problems

Change of variables: Laplacian is transformed to another
divergence form equation:
4 in ⌦ ! divA(X )r 2 Rn

+

Regularity of solutions to divA(X )r when A(X ) is merely
bounded, measurable, has applications to nonlinear elliptic
theory
Hilbert’s nineteenth problem: Key estimate (1958) De Giorgi,
Nash: the variational (weak) solutions with real-valued A are
in fact Hölder continuous:

kuk
C

↵
(B)

< Ckuk
L

2

(B)

free boundary problems (Alt-Ca↵arelli, many others....)
Geometry of boundary of a domain properties of the
harmonic/elliptic measure (Kenig-Toro, Milakis-Pipher-Toro,
G. David, S. Hofmann, I., M. Mitrea, ...)
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Motivation for studying regularity of solutions, and sharp
boundary value problems

Study of elliptic systems: elastostatics, Stokes, in non-smooth
domains (Dahlberg, Kenig, Mitrea, Shen, Verchota...)

Study of higher order elliptic and parabolic equations:
Clamped plate - 42(u) = F in a domain ⌦. (Dahlberg,
Kenig, P.,Verchota, Shen, Mayboroda-Mazya, Barton,...)

For both systems and higher order operators, theory is not as
well developed. (Lack of: Positivity, maximum principles, and
the existence of a boundary measure)

When matrix A has complex coe�cients: some milestones,
and some partial progress: Kato square root problem is a
Regularity/Neumann boundary value problem (Auscher -
Hofmann - Lacey - McIntosh - Tchamitchian); perturbations
of operators .
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Properties of solutions to real and complex coe�cient
operators

De Giorgi - Nash - Moser theory for solutions to
L := � divA(X )r, in a domain ⌦, A is merely bounded and
measurable.

Maximum principle, Interior Hölder continuity, Harnack
property: thus one can study the Dirichlet problem via a
mutually absolutely continuous family of representing doubling
measures associated with L.

The solvability of the Dirichlet problem with data in L

p is
equivalent to a real-variable property of the measure, which in
turn depends on the smoothness of the coe�cients and the
geometry of the domain.

None of this applies in the bounded, measurable
complex-coe�cient setting.
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Complex valued elliptic operators

Program: The study of solutions to operators of the form

L := � divA(x , t)r, (x , t) 2 Rn

+

where A may be complex valued, and the natural boundary value
problems associated with them.

Some results in the complex setting takes place under the
assumption that solutions to L satisfy DeG-N-M bounds. Other
work focuses on structural assumptions on these operators. In
[Dindos,P. 2016] we take the latter approach to develop a theory of
regularity of solutions to complex coe�cient operators and use this
to solve certain boundary value problems.
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The Kato square root problem

In 2001-2002: Auscher, Hofmann, Lacey, McIntosh, Tchamitchian
collaborations led to the complete resolution of the Kato square
root conjecture.

Let A by an n ⇥ n matrix of complex valued coe�cients satisfying
�|⇣|2 < Re(A⇣, ⇣) and (A⇣, ⇣) < ⇤|⇣|2, for some real and positive
� and ⇤.

Setting L = � divAr, the ellipticity condition enables one to
define

p
L

The Kato square root problem (as re-formulated by McIntosh) asks
about the domain of

p
L, namely whether one has the estimate

k
p
L(f )k

L

2

. kr
x

f )k
L

2

.
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Structural assumptions

The estimate on
p
L is equivalent to solving an L

2 Regularity
problem for the operator, L̃ below, or a Neumann problem for L̃⇤,
where the matrix for L̃ in dimension n + 1 is

Ã =

"
A

~0

~0 1

#

The structural assumption on this L̃: it is a t-independent block
form matrix.

For L̃ as above in block form, the family of operators {e�t

p
L} is

the Poisson semigroup: solutions to L̃u = 0 in Rn+1

+

with data

f (x) 2 Rn are given by {e�t

p
L

f (x)}, and are uniformly bounded
in L

2 for all t by the L

2 of the norm of the data. (The Dirichlet
problem is solvable in a larger range of p [Mayboroda, 2010].
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The structural assumption on this L̃: it is a t-independent block
form matrix.

For L̃ as above in block form, the family of operators {e�t

p
L} is

the Poisson semigroup: solutions to L̃u = 0 in Rn+1

+

with data

f (x) 2 Rn are given by {e�t

p
L

f (x)}, and are uniformly bounded
in L

2 for all t by the L

2 of the norm of the data. (The Dirichlet
problem is solvable in a larger range of p [Mayboroda, 2010].
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Structural assumptions and p-ellipticity

In a series of papers, Cialdea and Maz’ya define a notion they term
L

p-dissipativity, motivated by understanding when semigroups
generated by second order elliptic operators are contractive in L

p.
(Always true for real second order elliptic operators.)

Our condition, termed p-ellipticity in a very recent paper
[Carbonaro, Dragičević], is a slight strengthening of
L

p-dissipativity.

The matrix A is p-elliptic if

|1� 2/p| < µ(A)

where

µ(A) = ess inf
(x ,⇠)2⌦⇥Cn\{0}

Re

hA(x), ⇠, ⇠i
|hA(x), ⇠, ⇠i|

.
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For p > 1 define the R-linear map J
p

: Cn ! Cn by

J
p

(↵+ i�) =
↵

p

+ i

�

p

0

where p

0 = p/(p � 1) and ↵,� 2 Rn. [CD] shows that the matrix
A is p-elliptic i↵ for a.e. x 2 ⌦

Re hA(x)⇠,J
p

⇠i � �
p

|⇠|2, 8⇠ 2 Cn (2)

for some �
p

> 0.
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Theorem

Assume that the matrix A is p-elliptic. Then there exists

�0
p

= �0
p

(�,⇤,�
p

) > 0 such that for any nonnegative, bounded and

measurable function � and any u such that

|u|(p�2)/2
u 2 W

1,2
loc

(⌦;C), we have

Re

Z

⌦

hA(x)ru,r(|u|p�2

u)i�(x) dx � �0
p

Z

⌦

|u|p�2|ru|2�(x) dx .

(3)

We also observe:
For all p > 1, and for all x for which u(x) 6= 0

|r(|u(x)|p/2�1

u(x))|2 ⇡ |u(x)|p�2|ru(x)|2.
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Regularity result

Suppose that u 2 W

1,2
loc

(⌦;C) is the weak solution to the operator
Lu := divA(x)ru + B(x) ·ru = 0 in ⌦. Let
p

0

= inf{p > 1 : A is p-elliptic}, and suppose that B has
measurable coe�cients B

i

2 L

1
loc

(⌦) satisfying the condition

|B
i

(x)|  K (�(x))�1, 8x 2 ⌦ (4)

where the constant K is uniform, and �(x) denotes the distance of
x to the boundary of ⌦.

Then we have the following improvement in the regularity of u.
For any B

4r

(x) ⇢ ⌦ and " > 0 there exists C" > 0 such that
 Z

B

r

(x)

|u|p dy
!

1/p

 C"

 Z

B

2r

(x)

|u|q dy
!

1/q

+"

 Z

B

2r

(x)

|u|2 dy
!

1/2

(5)

for all p, q 2 (p
0

,
p

0
0

n

n�2

). (Here p

0
0

= p

0

/(p
0

� 1) and when n = 2
one can take p, q 2 (p

0

,1).)
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p

0
0

n

n�2

). (Here p

0
0

= p

0

/(p
0

� 1) and when n = 2
one can take p, q 2 (p

0

,1).)
Jill Pipher Regularity of solutions to divergence form complex p-elliptic operators



References

References

References

Regularity, continued

The constant in the estimate depends on the dimension, the
p-ellipticity constants, ⇤, K and " > 0 but not on x 2 ⌦, r > 0 or
u.

Moreover, for all p 2 (p
0

, p0
0

) and any " > 0

r

2

Z

B

r

(x)

|ru(y)|2|u(y)|p�2

dy  C"

ZZ

B

2r

(x)

|u(y)|pdy+

"

 Z

B

2r

(x)

|u(y)|2dy
!

p/2

where the constants depend only on the dimension, p, ⇤, K and
" > 0. In particular, |u|(p�2)/2

u belongs to W

1,2
loc

(⌦;C). The
range in the reverse Hölder is sharp: Mayboroda gives a
counterexample when q = 2 for any p > 2n

n�2

under the assumption
of 2-ellipticity.
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[Dindos-P., 2016] Let 1 < p < 1, and let ⌦ be the upper
half-space Rn

+

= {(x
0

, x 0) : x
0

> 0 and x

0 2 Rn�1}. Consider the
operator

Lu = @
i

(A
ij

(x)@
j

u) + B

i

(x)@
i

u

and assume that the matrix A is p-elliptic with constants �
p

,⇤ and
ImA

0j

= 0 for all 1  j  n � 1 and A

00

= 1. Assume that

dµ(x) = sup
B�(x)/2(x)

⇥
|rA(x)|2 + |B(x)|2

⇤
�(x) dx (6)

is a Carleson measure in ⌦. Let us also denote

dµ0(x) = sup
B�(x)/2(x)

P
j

|@
0

A

0j

|2 +
���
P

j

@
j

A

0j

���
2

+ |B(x)|2
�
�(x) dx .

(7)
Then there exist K = K (�

p

,⇤, kµkC , n, p) > 0 and
C (�

p

,⇤, kµkC , n, p) > 0 such that if

kµ0kC < K (8)

then the L

p-Dirichlet problem is solvable for L.
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By solvability of the L

p-Dirichlet problem, we mean

kÑ
p,auk

L

p

(@⌦)

 Ckf k
L

p

(@⌦;C)

where
Ñ

p,a(u)(Q) := sup
x2�

a

(Q)

w(x)

with

w(x) :=

 Z

B�(x)/2(x)

|u(z)|p dz
!

1/p

.
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Corollary

Suppose the operator L on Rn

+

has the form

Lu = @2

0

u +
n�1X

i ,j=1

@
i

(A
ij

@
j

u)

where the matrix A has coe�cients satisfying the Carleson

condition.

Then for all 1 < p < 1 for which A is p-elliptic, the L

p

-Dirichlet

problem is solvable for L and the estimate

kÑ
p,auk

L

p

(@⌦)

 Ckf k
L

p

(@⌦;C) (9)

holds for all energy solutions u with datum f .
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Definition

For ⌦ ⇢ Rn as above, the square function of some u 2 W

1,2
loc

(⌦;C)
at Q 2 @⌦ relative to the cone �

a

(Q) is defined by

S

a

(u)(Q) :=

 Z

�

a

(Q)

|ru(x)|2�(x)2�n

dx

!
1/2

(10)

Definition

[Dindos-Petermichl-P.] For ⌦ ⇢ Rn, the p-adapted square function
of u 2 W

1,2
loc

(⌦;C) at Q 2 @⌦ relative to the cone �
a

(Q) is defined
by

S

p,a(u)(Q) :=

 Z

�

a

(Q)

|ru(x)|2|u(x)|p�2�(x)2�n

dx

!
1/2

(11)
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Regularity when p > 2

Lemma

Let the matrix A be p-elliptic for p � 2 and let B have coe�cients

satisfying |B
i

(x)|  K (�(x))�1, 8x 2 ⌦ Suppose that u is a

W

1,2
loc

(⌦;C) solution to L in ⌦. Then, for any ball B

r

(x) with
r < �(x)/4,

Z

B

r

(x)

|ru(y)|2|u(y)|p�2

dy . r

�2

Z

B

2r

(x))

|u(y)|pdy (12)

and

 ZZ

B

r

(x))

|u(y)|qdy
!

1/q

.
 ZZ

B

2r

(x)

|u(y)|2dy
!

1/2

(13)

for all q 2 (2, np

n�2

] when n > 2, and where the implied constants

depend only p-ellipticity and K . When n = 2, q can be any

number in (2,1). In particular, |u|(p�2)/2
u belongs to W

1,2
loc

(⌦;C).
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Sketch of proof

Let v = u' where ' is a cut-o↵ function function associated to
the ball B

r

(x), and compute

Lv = uL'+ Aru ·r'+ A

⇤ru ·r'.

Multiply both sides of this equation by |v |p�2

v and integrate by
parts to obtain:
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Z
r(|v |p�2

v) · Arv dy =

Z
(|v |p�2

v)B ·rv dy

+

Z
r(|v |p�2

vu) · Ar' dy

�
Z

|v |p�2

vu B ·r'dy

�
Z

|v |p�2

vAru ·r' dy

�
Z

|v |p�2

vA

⇤ru ·r' dy

By p-ellipticity, the real part of the left hand side is bounded from
below by �

p

R
|v |p�2|rv |2 dy .
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Each term is treated separately. For example, the first of the five
terms on the right hand side above has the bound

����
Z
(|v |p�2

v) · Brv dy

���� . Kr

�1

✓Z
|v |p�2|rv |2 dy

◆
1/2✓Z

|v |p dy
◆

1/2

which yields
Z

B

r

(x)

|ru(y)|2|u(y)|p�2

dy . r

�2

Z

B

2r

(x))

|u(y)|pdy
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The Sobolev embedding gives

 Z

B

r

(x)

|u|p̃ dy
!

1/p̃

.
 Z

B

2r

(x)

|v |p̃ dy
!

1/p̃

.
 
r

2

Z

B

2r

(x)

|r(|v |p/2�1

v)|2 dy
!

1/p

where p̃ = pn

n�2

.
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This gives a reverse Hölder inequality for u. That is,

 Z

B

r

(x)

|u|p̃ dy
!

1/p̃

.
 Z

B↵r

(x)

|u|p dy
!

1/p

which can be iterated k times to give

 Z

B

r

(x)

|u|pk dy
!

1/p
k

.
 Z

B↵k

r

(x)

|u|2 dy
!

1/2

for p
k

= 2( n

n�2

)k , as long as p
k�1

< p.
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The LpDirichlet problem

From now on, in addition to p-ellipticity, assume that

dµ(x) = sup
B�(x)/2(x)

[|rA|2 + |B |2]�(x) dx

is a Carleson measure in ⌦. Sometimes, and for certain coe�cients
of A, we will assume that their Carleson norm kµkC is small.

The Carleson measure conditions on the coe�cients of L, as well
as p-ellipticity of A, are compatible with a useful change of
variables that is a bijection from Rn

+

onto ⌦.
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Assumptions on the coe�cients, explained

Some observations on the structural assumptions made for
solvability of the Dirichlet problem. It su�ces to formulate the
result in the case ⌦ = Rn

+

by using the pull-back map alluded to
above. Because the coe�cients are required to have small Carleson
norm this puts a restriction on the size of the Lipschitz constant of
the map that defines the domain ⌦.

For technical reasons we also required that all coe�cients A
0j

,
j = 0, 1, . . . , n � 1 are real. This can be ensured as follows. When
j > 0:

@
0

([ImA

0j

]@
i

u) = @
j

([ImA

0j

]@
0

u)+(@
0

[ImA

0j

])@
i

u�([@
i

ImA

0j

])@
0

u

which allows one to move the imaginary part of the coe�cient A
0j

onto the coe�cient A
j0

at the expense of two first order terms.
However, this does not work for the coe�cient A

00

.
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We will require that A
00

is real, then a multiplication of the
coe�cients of L = @

i

(A
ij

(x)@
j

) + B

i

(x)@
i

by ↵ = A

�1

00

reduces one
to A

00

= 1. When ↵ is real (or when Im↵ is su�ciently small)
p-ellipticity of A is equivalent to p-ellipticity of the new operator.

if Im↵ is not small, the p-ellipticity, after multiplication of A by ↵
may not be preserved. Thus, in the most case, one must assume
the p-ellipticity of the new matrix Ã which has all coe�cients Ã

0j

,
j = 0, 1, . . . , n � 1 real.
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The proof proceeds by establishing, through an integration by parts
and stopping time argument, the equivalence of the p-adapted
square function and the p-averaged nontangential maximal
function. The connection to p-ellipticity is made in the following
estimate:

�0
p

ZZ

Rn

+

|ru|2|u|p�2

x

0

dx

0
dx

0


Z

Rn�1

|u(0, x 0)|p dx 0

+ Ckµ0kC
Z

Rn�1

h
Ñ

p,a(u)
i
p

dx

0.
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[3] P. Auscher, L Bathélemy, and E. Ouhabaz, Absence de la L1-contractivité
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