Consider the operator

Consider the operator  

$$(H\Psi)_{n} = \Psi_{n+1} + \Psi_{n-1} + 2\lambda \cos 2\pi (\alpha n + \theta) \Psi_{n}$$

$$\begin{array}{c} coverpoinds & magnetic \\ to geometry & flux \\ of lattice \end{array}$$
Note that this is the simplest model that   
advibits transitions as we change those parameters.   
Fix  $\alpha, \lambda$ . We define the level of exponent:   

$$L(E) := \lim_{n \to \infty} \frac{\int ln ||A_{n}(\theta)|| \ d\theta}{n}$$
we have  $(\Psi_{n+1})_{n} = A_{E} (\theta + n\alpha) (\Psi_{n}) \\ \Psi_{n-1})$ 
where  $A_{E}(\theta) = \begin{pmatrix} E - 2\lambda \cos(2\pi\theta) & -1 \\ 1 & 0 \end{pmatrix}$  is the transfer matrix.

Then, 
$$\binom{Y_{n+1}}{Y_n} = \prod_{k} A_E (\theta + K_k) \binom{Y_i}{Y_o}$$
  

$$= A_n(\theta) \binom{Y_i}{Y_o}$$

$$= A_n(\theta) \binom{Y_i}{Y_o}$$

$$\prod_{n \text{ skep transfer matrix}} L(E) (an be computed explicitly.$$
In fact,  

$$L(E) |_{E \in G} = \max(0, \ln |\lambda|) (\text{proved by Bourgain, SS})$$
we have:  $\lambda > 1 \Rightarrow L > 0 \ \text{on } \sigma$   

$$\lambda < 1 \Rightarrow L > 0 \ \text{on } \sigma$$
Avila proved  $\lambda < 1 \Rightarrow \text{ always absolutely continuous}$ 

$$\text{spectrum for all } a, \theta.$$
In this lecture, we will talk about :  $\lambda > 1 \Rightarrow L > 0 \ \text{on } \sigma$   
Since  $L > 0$ , there are no absolutely continuous spectrums  
we consider two arithmetic parameters.  

$$\beta(x) := \lim_{n} \frac{-\ln \||nx||}{q_n} \in [0, \infty] \quad \text{where } \|x\| = \text{dist to } \mathbb{Z}$$
and  

$$\beta(x, \theta) := \lim_{n} \frac{-\ln \||z\theta + nx\||}{q_n} \in [0, \infty] \qquad 2$$

\_

We say a is Diophantine if 
$$\beta(\alpha) = 0$$
  
and  $\theta$  is  $\alpha$ -Diophantine if  $\delta(\alpha) = 0$ .  
  
Conjecture (94):  
part I: Suppose  $\theta$  is  $\alpha$ -Diophantine  
 $I_{p}: L > \beta \Rightarrow pp$  spectrum ( $pp: pure point$   
 $se = significe ontinuous)$   
 $I_{s}: L < \beta \Rightarrow se spectrum
(transition happens at  $\beta$ )  
part II: Suppose  $\alpha$  is Diophantine  
 $I_{p}: L > \delta \Rightarrow pp$   
 $I_{s}: L < \delta \Rightarrow sc$   
Question: What is the reason for such conjecture?  
Say we have 3 almost repeating pieces.  
 $\frac{1}{\beta} \frac{\beta(\alpha) > 0}{e^{1+\beta_{n}}} = \frac{1}{q_{n}\alpha - p_{n}} \frac{1}{q_{n+1}}$   
the eigenfunctions cannot deray as a corresponding  
local scale if the scale is large enough  
 $I_{g} q_{nn} \sim e^{\beta q_{n}}$  then we have sepetition  
The decay is governed by the level of exponent =$ 

$$\begin{split} & I_{f}(\overline{S} > 0): \int_{1}^{\infty} \int_{$$

Some history about the conjecture : part I:  $L > \frac{16}{9} \beta$  (Avila - SJ)  $L < \frac{3}{2}\beta$  (Liu - Yuan) Avila-You-Zhou proved L>B for a.e. O "Is was also proved by Avila-You-Zhou. part II was proved by Lin, SJ. We say Ko is a j- maximum if Ko is a maximum on I where  $|I| \sim q_j'$   $\xrightarrow{f'_j \leftarrow sequence of}_{K}$  denominators. We say to is a non-resonant j-max of  $\|2\Theta + (2K_0 + K) \propto \| > \frac{c}{\kappa^{\tau}}$  for  $|K| \leq 2q$ . Theorem: Let K. be a non-resonant j-max  $\frac{\|U(K_{a}+K)\|}{\sim} \sim f(K) \quad \text{for } |K| < q_j$ then || U(K\_)|| As max

We have a hierarchical structure of local  
maxima 
$$b_{a_j \dots a_{j-s}}$$
 which satisfy the following.  
Let K<sub>0</sub> be a global maximum  
 $\exists n_0(\alpha, E)$  such that  
1)  $b_{a_j \dots a_{j-s}}$  is  $(j-s)$  - maximum  
2)  $|b_{a_j} - K_0 - a_jq_j | \langle q_{n_0}$   
 $\exists) |b_{a_j}a_{j-1} - b_{a_j} - a_{j-1}q_{j-1}| \langle q_{n_0}$   
 $\vdots$   
 $|b_{a_j \dots a_{j-k}} - b_{a_j} \dots a_{j-k}q_{j-k}| \langle q_{n_{0+k}}$   
and we have,  
 $\frac{|| U(b_{a_j \dots a_{j-k}} + x)||}{|| U(b_{a_j \dots a_{j-k}})||} \sim f(x)$  for  $|x| \langle c q_{j-k}$ 

For  $I_p$ , there is a hierarchical structure of the form  $b_{k_j k_{j-1} \cdots k_{j-s}}$  so that  $\frac{\|U(b_{k_j \cdots k_{j-s}} + x)\|}{\|U(b_{k_j \cdots k_{j-s}})\|} \sim f((-1)^s x)$ 

If. 5>0 then we have infinitely many almost reflections at  $\frac{n}{2}$ .



Lastly, note that I is the behavior of eigenfunctions and g is the behavior of the norm of the transfer matrix, Question: why isn't this redundant? we have  $||A_{n,2}(0)|| \sim g(n)$  : norm of most expanded vector Il Un II ~ f(n) : norm of most contracted vector Let  $V(n) = angle between (u, \overline{u})$ we have contracted expanded

 $\lim_{n \to \infty} \frac{-\ln \delta(n)}{n} = \beta_{\mathcal{S}}.$ 

Quasiperiodic Schrodinger operators: sharp arithmetic spectral transitions and universal hierarchical structure of eigenfunctions

S. Jitomirskaya

UCI

MSRI, January 20, 2017

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

E 900

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta), \ \alpha \text{ irrational},$ 

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

+ロ> +団> (目> (目) 目 のQ()

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu (\theta + n\alpha) \Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta), \alpha$  irrational,

Tight-binding model of 2D Bloch electrons in magnetic fields



S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta), \ \alpha \ \text{irrational},$ 

Tight-binding model of 2D Bloch electrons in magnetic fields



• First introduced by R. Peierls in 1933

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

5 9 Q (~

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta), \ \alpha \ \text{irrational},$ 

Tight-binding model of 2D Bloch electrons in magnetic fields



- First introduced by R. Peierls in 1933
- Further studied by a Ph.D. student of Peierls, P.G. Harper (1955)

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

<br />

Ξ

SQA

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta), \ \alpha \ \text{irrational},$ 

Tight-binding model of 2D Bloch electrons in magnetic fields



- First introduced by R. Peierls in 1933
- Further studied by a Ph.D. student of Peierls, P.G. Harper (1955)
- Is called Harper's model

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

(4日) (日) (日)

Ξ

 $(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_n$ 

 $v(\theta) = 2\cos 2\pi(\theta), \ \alpha \text{ irrational},$ 

Tight-binding model of 2D Bloch electrons in magnetic fields



- First introduced by R. Peierls in 1933
- Further studied by a Ph.D. student of Peierls, P.G. Harper (1955)
- Is called Harper's model
- With a choice of Landau gauge effectively reduces to  $h_{\theta}$
- $\alpha$  is a dimensionless parameter equal to the ratio of flux through a lattice cell to one flux quantum.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

# Hofstadter butterfly



S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

・ロト・日下・モン・モン ヨークタウ

# Hofstadter butterfly



Gregory Wannier to Lars Onsager: "It looks much more complicated than I ever imagined it to be"

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

・ロン ・白シ ・ヨン ・ヨン

Ξ

SQ (~

# Hofstadter butterfly



Gregory Wannier to Lars Onsager: "It looks much more complicated than I ever imagined it to be" David Jennings described it as a picture of God

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

▶ < ∃ >

Ξ



S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

### Butterfly in the Quantum World

The story of the most fascinating quantum fractal

#### Indubala I Satija

with contributions by Douglas Hofstadter



S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

**∃** ⊳

Ξ

590

Ξ



Predicted by M. Azbel (1964) Spectrum: only known that the spectrum is a Cantor set (Ten Martini problem)

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

・日、< E、 + E、 E のへで</p>

Predicted by M. Azbel (1964) Spectrum: only known that the spectrum is a Cantor set (Ten Martini problem) Eigenfunctions: History: Bethe Ansatz solutions (Wiegmann, Zabrodin, et al) Sinai, Hellffer-Sjostrand, Buslaev-Fedotov

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

・日 ・ ・ E ・ ・ E ・ ・

E 900

Predicted by M. Azbel (1964) Spectrum: only known that the spectrum is a Cantor set (Ten Martini problem) Eigenfunctions: History: Bethe Ansatz solutions (Wiegmann, Zabrodin, et al) Sinai, Hellffer-Sjostrand, Buslaev-Fedotov remained a challenge even at the physics level

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

く 白 と く 白 と く 白 と

Ξ

Predicted by M. Azbel (1964) **Spectrum**: only known that the spectrum is a Cantor set (Ten Martini problem) **Eigenfunctions**: **History**: Bethe Ansatz solutions (Wiegmann, Zabrodin, et al) Sinai, Hellffer-Sjostrand, Buslaev-Fedotov remained a challenge even at the physics level **Today**: universal self-similar exponential structure of eigenfunctions throughout the entire localization regime.

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Ξ

# Arithmetic spectral transitions

1D Quasiperiodic operators:

$$(h_{\theta}\Psi)_{n} = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_{n}$$

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

(口)(回)(目)(日)(日)) 日)

## Arithmetic spectral transitions

1D Quasiperiodic operators:

$$(h_{\theta}\Psi)_{n} = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_{n}$$

Transitions in the coupling  $\lambda$ 

- originally approached by KAM (Dinaburg, Sinai, Bellissard, Frohlich-Spencer-Wittwer, Eliasson)
- nonperturbative methods (SJ, Bourgain-Goldstein for L > 0; Last,SJ,Avila for L = 0) reduced the transition to the transition in the Lyapunov exponent (for analytic v): L(E) > 0 implies pp spectrum for a.e. α, θ L(E + iε) = 0, ε > 0 implies pure ac spectrum for all α, θ

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

## Arithmetic spectral transitions

1D Quasiperiodic operators:

$$(h_{\theta}\Psi)_{n} = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_{n}$$

Transitions in the coupling  $\lambda$ 

- originally approached by KAM (Dinaburg, Sinai, Bellissard, Frohlich-Spencer-Wittwer, Eliasson)
- nonperturbative methods (SJ, Bourgain-Goldstein for L > 0; Last,SJ,Avila for L = 0) reduced the transition to the transition in the Lyapunov exponent (for analytic v): L(E) > 0 implies pp spectrum for a.e. α, θ L(E + iε) = 0, ε > 0 implies pure ac spectrum for all α, θ

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Given  $E \in \mathbb{R}$  and  $\theta \in \mathbb{T}$ , solve  $H_{\lambda,\alpha,\theta}\psi = E\psi$  over  $\mathbb{C}^{\mathbb{Z}}$ :

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

・ロシュ 白シュ キャ キャー キー シタク

Given  $E \in \mathbb{R}$  and  $\theta \in \mathbb{T}$ , solve  $H_{\lambda,\alpha,\theta}\psi = E\psi$  over  $\mathbb{C}^{\mathbb{Z}}$ : transfer matrix:

$$A^{E}( heta) := egin{pmatrix} E - \lambda v( heta) & -1 \ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = A_n^E(\alpha, \theta) \begin{pmatrix} \psi_0 \\ \psi_{-1} \end{pmatrix}$$
$$A_n^E(\alpha, \theta) := A(\theta + \alpha(n-1)) \dots A(\theta)$$

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

・ロッ (白) (言) (言) (言) (つ)

Given  $E \in \mathbb{R}$  and  $\theta \in \mathbb{T}$ , solve  $H_{\lambda,\alpha,\theta}\psi = E\psi$  over  $\mathbb{C}^{\mathbb{Z}}$ : transfer matrix:

$$A^{E}( heta) := egin{pmatrix} E - \lambda v( heta) & -1 \ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = A_n^E(\alpha, \theta) \begin{pmatrix} \psi_0 \\ \psi_{-1} \end{pmatrix}$$
$$A_n^E(\alpha, \theta) := A(\theta + \alpha(n-1)) \dots A(\theta)$$

The Lyapunov exponent (LE):

$$L(lpha, {\sf E})$$
 :=  $\lim_{n o \infty} rac{1}{n} \int_{\mathbb{T}} \log ||A^{\sf E}_{(n)}(x)|| dx$  ,

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

うしゃ 山下 エロ・エロ・トロ・

Given  $E \in \mathbb{R}$  and  $\theta \in \mathbb{T}$ , solve  $H_{\lambda,\alpha,\theta}\psi = E\psi$  over  $\mathbb{C}^{\mathbb{Z}}$ : transfer matrix:

$$A^{E}( heta) := egin{pmatrix} E - \lambda v( heta) & -1 \ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = A_n^E(\alpha, \theta) \begin{pmatrix} \psi_0 \\ \psi_{-1} \end{pmatrix}$$
$$A_n^E(\alpha, \theta) := A(\theta + \alpha(n-1)) \dots A(\theta)$$

The Lyapunov exponent (LE):

$$L(lpha, {\sf E})$$
 :=  $\lim_{n o \infty} rac{1}{n} \int_{\mathbb{T}} \log ||A^{\sf E}_{(n)}(x)|| dx$  ,

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

うしゃ 山下 エロ・エロ・トロ・

### Arithmetic transitions in the supercritical (L > 0) regime

Small denominators - resonances -  $(v(\theta + k\alpha) - v(\theta + \ell\alpha))^{-1}$  are in competition with  $e^{L(E)|\ell-k|}$ .

*L* very large compared to the resonance strength leads to more localization

L small compared to the resonance strength leads to delocalization

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ④ Q @

Exponential strength of a resonance:

$$eta(lpha) := \limsup_{n o \infty} - rac{\ln ||n lpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

and

$$\delta(\alpha,\theta) := \limsup_{n \to \infty} -\frac{\ln ||2\theta + n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

 $\alpha$  is Diophantine if  $\beta(\alpha) = 0$  $\theta$  is  $\alpha$ -Diophantine if  $\delta(\alpha) = 0$ 

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

く 白 と く 白 と く 白 と

Ξ

Exponential strength of a resonance:

$$eta(lpha) := \limsup_{n \to \infty} - \frac{\ln ||n lpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

and

$$\delta(\alpha,\theta) := \limsup_{n \to \infty} -\frac{\ln ||2\theta + n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

 $\alpha$  is Diophantine if  $\beta(\alpha) = 0$  $\theta$  is  $\alpha$ -Diophantine if  $\delta(\alpha) = 0$ For the almost Mathieu, on the spectrum  $L(E) = \max(0, \ln \lambda)$ (Bourgain-SJ, 2001).

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

(1) マン・ (1) マン・ (1)

Exponential strength of a resonance:

$$eta(lpha) := \limsup_{n o \infty} - rac{\ln ||n lpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

and

$$\delta(\alpha,\theta) := \limsup_{n \to \infty} -\frac{\ln ||2\theta + n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

 $\alpha$  is Diophantine if  $\beta(\alpha) = 0$  $\theta$  is  $\alpha$ -Diophantine if  $\delta(\alpha) = 0$ For the almost Mathieu, on the spectrum  $L(E) = \max(0, \ln \lambda)$ (Bourgain-SJ, 2001).

 $\lambda < 1 \rightarrow$  pure ac spectrum (Dinaburg-Sinai 76, Aubry-Andre 80, Bellissard-Lima-Testard, Eliasson,Last,..., Avila 2008)

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

4**6** | > 4 = > 4 = >

Exponential strength of a resonance:

$$eta(lpha) := \limsup_{n o \infty} - rac{\ln ||n lpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

and

$$\delta(\alpha,\theta) := \limsup_{n \to \infty} -\frac{\ln ||2\theta + n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

 $\alpha$  is Diophantine if  $\beta(\alpha) = 0$  $\theta$  is  $\alpha$ -Diophantine if  $\delta(\alpha) = 0$ For the almost Mathieu, on the spectrum  $L(E) = \max(0, \ln \lambda)$ (Bourgain-SJ, 2001).  $\lambda < 1 \rightarrow$  pure ac spectrum (Dinaburg-Sinai 76, Aubry-Andre 80, Bellissard-Lima-Testard, Eliasson,Last,..., Avila 2008)  $\lambda > 1 \rightarrow$  no ac spectrum (Ishii-Kotani-Pastur)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

. . . . . . .

Conjecture for the sharp transition (1994):

- If  $\beta(\alpha) = 0$ , then  $\lambda_0 = e^{\delta(\alpha, \theta)}$  is the transition line:
  - $H_{\lambda,\alpha,\theta}$  has purely singular continuous spectrum for  $|\lambda| < e^{\delta(\alpha,\theta)}$ ,
  - $H_{\lambda,\alpha,\theta}$  has Anderson localization (stronger than pure point spectrum ) for  $|\lambda| > e^{\delta(\alpha,\theta)}$ .

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

▶ ◆ □ ▶ ▲ 三 ▶ ▲ 三 ● ● ○ ●

Conjecture for the sharp transition (1994):

- If  $\beta(\alpha) = 0$ , then  $\lambda_0 = e^{\delta(\alpha, \theta)}$  is the transition line:
  - $H_{\lambda,\alpha,\theta}$  has purely singular continuous spectrum for  $|\lambda| < e^{\delta(\alpha,\theta)}$ ,
  - $H_{\lambda,\alpha,\theta}$  has Anderson localization (stronger than pure point spectrum ) for  $|\lambda| > e^{\delta(\alpha,\theta)}$ .

(all  $\theta$ , Diophantine  $\alpha$ )

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

・ 《日》 《日》 《日》 三 ・ のへの

Conjecture for the sharp transition (1994):

- If  $\beta(\alpha) = 0$ , then  $\lambda_0 = e^{\delta(\alpha, \theta)}$  is the transition line:
  - $H_{\lambda,\alpha,\theta}$  has purely singular continuous spectrum for  $|\lambda| < e^{\delta(\alpha,\theta)}$ ,
  - $H_{\lambda,\alpha,\theta}$  has Anderson localization (stronger than pure point spectrum ) for  $|\lambda| > e^{\delta(\alpha,\theta)}$ .

(all  $\theta$ , Diophantine  $\alpha$ )

- If  $\delta(\alpha, \theta) = 0$ , then  $L(E) = \beta(\alpha)$  is the transition line.
  - *H*<sub>λ,α,θ</sub> has purely singular continuous spectrum for *L*(*E*) < β(α)</li>
  - $H_{\lambda,\alpha,\theta}$  has Anderson localization for  $L(E) > \beta(\alpha)$ .

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

(4日) シスヨシスヨシー

E

Conjecture for the sharp transition (1994):

- If  $\beta(\alpha) = 0$ , then  $\lambda_0 = e^{\delta(\alpha, \theta)}$  is the transition line:
  - $H_{\lambda,\alpha,\theta}$  has purely singular continuous spectrum for  $|\lambda| < e^{\delta(\alpha,\theta)}$ ,
  - $H_{\lambda,\alpha,\theta}$  has Anderson localization (stronger than pure point spectrum ) for  $|\lambda| > e^{\delta(\alpha,\theta)}$ .

(all  $\theta$ , Diophantine  $\alpha$ )

- If  $\delta(\alpha, \theta) = 0$ , then  $L(E) = \beta(\alpha)$  is the transition line.
  - *H*<sub>λ,α,θ</sub> has purely singular continuous spectrum for *L*(*E*) < β(α)</li>
  - $H_{\lambda,\alpha,\theta}$  has Anderson localization for  $L(E) > \beta(\alpha)$ .

(all  $\alpha$ , Diophantine  $\theta$ )

sc spectrum for  $\beta = \infty$  proved in Gordon, Avron-Simon (82), and for  $\delta = \infty$  in SJ-Simon (94)

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロト (日) (日) (日) (日) (日) (日) (日) (日)

Conjecture for the sharp transition (1994):

- If  $\beta(\alpha) = 0$ , then  $\lambda_0 = e^{\delta(\alpha, \theta)}$  is the transition line:
  - $H_{\lambda,\alpha,\theta}$  has purely singular continuous spectrum for  $|\lambda| < e^{\delta(\alpha,\theta)}$ ,
  - $H_{\lambda,\alpha,\theta}$  has Anderson localization (stronger than pure point spectrum ) for  $|\lambda| > e^{\delta(\alpha,\theta)}$ .

(all  $\theta$ , Diophantine  $\alpha$ )

- If  $\delta(\alpha, \theta) = 0$ , then  $L(E) = \beta(\alpha)$  is the transition line.
  - *H*<sub>λ,α,θ</sub> has purely singular continuous spectrum for *L*(*E*) < β(α)</li>
  - $H_{\lambda,\alpha,\theta}$  has Anderson localization for  $L(E) > \beta(\alpha)$ .

(all  $\alpha$ , Diophantine  $\theta$ )

sc spectrum for  $\beta = \infty$  proved in Gordon, Avron-Simon (82), and for  $\delta = \infty$  in SJ-Simon (94)

pp spectrum for  $\beta = \delta = 0$  proved in SJ (99).

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

E SQA

We say  $\phi$  is a generalized eigenfunction if it is a polynomially bounded solution of  $H_{\lambda,\alpha,\theta}\phi = E\phi$ .

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

We say  $\phi$  is a generalized eigenfunction if it is a polynomially bounded solution of  $H_{\lambda,\alpha,\theta}\phi = E\phi$ . Let  $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k-1) \end{pmatrix}$ .

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

日・・ヨ・・ヨ・・

200

Ξ

We say  $\phi$  is a generalized eigenfunction if it is a polynomially bounded solution of  $H_{\lambda,\alpha,\theta}\phi = E\phi$ . Let  $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k-1) \end{pmatrix}$ .

#### Theorem

(SJ-W.Liu, 16) There exist explicit universal functions f, g s.t. throughout the entire predicted pure point regime, for any generalized eigenfunction  $\phi$  and any  $\varepsilon > 0$ , there exists K such that for any  $|k| \ge K$ , U(k) and  $A_k$  satisfy

S. Jitomirskaya

We say  $\phi$  is a generalized eigenfunction if it is a polynomially bounded solution of  $H_{\lambda,\alpha,\theta}\phi = E\phi$ . Let  $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k-1) \end{pmatrix}$ .

#### Theorem

(SJ-W.Liu, 16) There exist explicit universal functions f, g s.t. throughout the entire predicted pure point regime, for any generalized eigenfunction  $\phi$  and any  $\varepsilon > 0$ , there exists K such that for any  $|k| \ge K$ , U(k) and  $A_k$  satisfy

 $f(|k|)e^{-\varepsilon|k|} \leq ||U(k)|| \leq f(|k|)e^{\varepsilon|k|},$ 

and

## $g(|k|)e^{-arepsilon|k|} \leq ||A_k|| \leq g(|k|)e^{arepsilon|k|}.$

S. Jitomirskaya

(all  $\alpha$ , Diophantine  $\theta$ ) Let  $\frac{p_n}{q_n}$  be the continued fraction expansion of  $\alpha$ . For any  $\frac{q_n}{2} \le k < \frac{q_{n+1}}{2}$ , define explicit functions f(k), g(k) as follows(depend on  $\alpha$  through the sequence of  $q_n$ ):

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

<br/>

E 900

(all  $\alpha$ , Diophantine  $\theta$ ) Let  $\frac{p_n}{q_n}$  be the continued fraction expansion of  $\alpha$ . For any  $\frac{q_n}{2} \leq k < \frac{q_{n+1}}{2}$ , define explicit functions f(k), g(k) as follows(depend on  $\alpha$  through the sequence of  $q_n$ ): Case 1:  $q_{n+1}^{\frac{8}{9}} \geq \frac{q_n}{2}$  or  $k \geq q_n$ .

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

(4日) とうちょう (日) (1)

E 900

(all  $\alpha$ , Diophantine  $\theta$ ) Let  $\frac{p_n}{q_n}$  be the continued fraction expansion of  $\alpha$ . For any  $\frac{q_n}{2} \leq k < \frac{q_{n+1}}{2}$ , define explicit functions f(k), g(k) as follows(depend on  $\alpha$  through the sequence of  $q_n$ ): Case 1:  $q_{n+1}^{\frac{8}{9}} \geq \frac{q_n}{2}$  or  $k \geq q_n$ . If  $\ell q_n \leq k < (\ell + 1)q_n$  with  $\ell \geq 1$ , set

$$f(k) = e^{-|k-\ell q_n|\ln|\lambda|}\overline{r}_{\ell}^n + e^{-|k-(\ell+1)q_n|\ln|\lambda|}\overline{r}_{\ell+1}^n,$$

and

$$g(k)=e^{-|k-\ell q_n|\ln|\lambda|}\frac{q_{n+1}}{\overline{r}_\ell^n}+e^{-|k-(\ell+1)q_n|\ln|\lambda|}\frac{q_{n+1}}{\overline{r}_{\ell+1}^n},$$

where for  $\ell \geq 1$ ,

$$\overline{r}_{\ell}^{n}=e^{-(\ln|\lambda|-rac{\ln q_{n+1}}{q_n}+rac{\ln \ell}{q_n})\ell q_n}.$$

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

A > 4 > 4 > 4

(all  $\alpha$ , Diophantine  $\theta$ ) Let  $\frac{p_n}{q_n}$  be the continued fraction expansion of  $\alpha$ . For any  $\frac{q_n}{2} \leq k < \frac{q_{n+1}}{2}$ , define explicit functions f(k), g(k) as follows(depend on  $\alpha$  through the sequence of  $q_n$ ): Case 1:  $q_{n+1}^{\frac{8}{9}} \geq \frac{q_n}{2}$  or  $k \geq q_n$ . If  $\ell q_n \leq k < (\ell + 1)q_n$  with  $\ell \geq 1$ , set

$$f(k) = e^{-|k-\ell q_n|\ln|\lambda|}\overline{r}_{\ell}^n + e^{-|k-(\ell+1)q_n|\ln|\lambda|}\overline{r}_{\ell+1}^n,$$

and

$$g(k)=e^{-|k-\ell q_n|\ln|\lambda|}\frac{q_{n+1}}{\overline{r}_\ell^n}+e^{-|k-(\ell+1)q_n|\ln|\lambda|}\frac{q_{n+1}}{\overline{r}_{\ell+1}^n},$$

where for  $\ell \geq 1$ ,

$$\overline{r}_{\ell}^{n}=e^{-(\ln|\lambda|-rac{\ln q_{n+1}}{q_n}+rac{\ln \ell}{q_n})\ell q_n}.$$

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

A > 4 > 4 > 4

If 
$$\frac{q_n}{2} \leq k < q_n$$
, set

$$f(k) = e^{-k \ln |\lambda|} + e^{-|k-q_n| \ln |\lambda|} \overline{r}_1^n,$$

and

$$g(k)=e^{k\ln|\lambda|}.$$

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

・ロ・・ 御・・ 言・・ 言・ の へ の・

If  $\frac{q_n}{2} \leq k < q_n$ , set

$$f(k) = e^{-k \ln |\lambda|} + e^{-|k-q_n| \ln |\lambda|} \overline{r}_1^n,$$

and

$$g(k)=e^{k\ln|\lambda|}.$$

Case 2.  $q_{n+1}^{\frac{8}{9}} < \frac{q_n}{2}$  and  $\frac{q_n}{2} \le k \le \min\{q_n, \frac{q_{n+1}}{2}\}$ . Set

$$f(k)=e^{-k\ln|\lambda|},$$

and

$$g(k)=e^{k\ln|\lambda|}.$$

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

If  $\frac{q_n}{2} \leq k < q_n$ , set

$$f(k) = e^{-k \ln |\lambda|} + e^{-|k-q_n| \ln |\lambda|} \overline{r}_1^n,$$

and

$$g(k)=e^{k\ln|\lambda|}.$$

Case 2.  $q_{n+1}^{\frac{8}{9}} < \frac{q_n}{2}$  and  $\frac{q_n}{2} \le k \le \min\{q_n, \frac{q_{n+1}}{2}\}$ . Set

$$f(k)=e^{-k\ln|\lambda|},$$

and

$$g(k)=e^{k\ln|\lambda|}.$$

**Note:** f(k) decays exponentially and g(k) grows exponentially. However the decay rate and growth rate are not always the same.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロト 4回下 4 日下 4 日 「 9 9 9

## The behavior of f(k)



S. Jitomirskaya

## The behavior of g(k)



S. Jitomirskaya

## Arithmetic spectral transition

Corollary

Anderson localization holds throughout the entire conjectured pure point regime.

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

・ロット間をすばをする。 聞い シタク

## Arithmetic spectral transition

#### Corollary

Anderson localization holds throughout the entire conjectured pure point regime.

Singular continuous spectrum holds for I.  $\lambda > e^{\beta(\alpha)}$  (Avila-You-Zhou, 15) II.  $\lambda > e^{\delta(\alpha,\theta)}$  (SJ-Liu, 16)

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

## Arithmetic spectral transition

#### Corollary

Anderson localization holds throughout the entire conjectured pure point regime.

Singular continuous spectrum holds for I.  $\lambda > e^{\beta(\alpha)}$  (Avila-You-Zhou, 15) II.  $\lambda > e^{\delta(\alpha,\theta)}$  (SJ-Liu, 16)

#### Corollary

The arithmetic spectral transition conjecture holds as stated.

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロ > < 同 > < 三 > < 三 > ―

 $= \mathcal{O} \mathcal{O} \mathcal{O}$ 

#### **Localization Method:**

• Avila-SJ: if  $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$  and  $\delta(\alpha, \theta) = 0$ , then  $H_{\lambda,\alpha,\theta}$  satisfies AL (Ten Martini Problem)

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

#### **Localization Method:**

- Avila-SJ: if  $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$  and  $\delta(\alpha, \theta) = 0$ , then  $H_{\lambda,\alpha,\theta}$  satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime  $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$ .

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

#### **Localization Method:**

- Avila-SJ: if  $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$  and  $\delta(\alpha, \theta) = 0$ , then  $H_{\lambda,\alpha,\theta}$  satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime  $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$ .

#### **Reducibility Method:**

Avila-You-Zhou proved that there exists a full Lebesgue measure set S such that for θ ∈ S, H<sub>λ,α,θ</sub> satisfies AL if |λ| > e<sup>β(α)</sup>, thus proving the transition line at |λ| > e<sup>β(α)</sup> for a.e. θ. However, S can not be described in their proof.

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

#### **Localization Method:**

- Avila-SJ: if  $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$  and  $\delta(\alpha, \theta) = 0$ , then  $H_{\lambda,\alpha,\theta}$  satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime  $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$ .

#### **Reducibility Method:**

- Avila-You-Zhou proved that there exists a full Lebesgue measure set S such that for θ ∈ S, H<sub>λ,α,θ</sub> satisfies AL if |λ| > e<sup>β(α)</sup>, thus proving the transition line at |λ| > e<sup>β(α)</sup> for a.e. θ. However, S can not be described in their proof.
- SJ-Kachkovskiy: alternative argument, still without an arithmetic condition

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

#### **Localization Method:**

- Avila-SJ: if  $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$  and  $\delta(\alpha, \theta) = 0$ , then  $H_{\lambda,\alpha,\theta}$  satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime  $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$ .

#### **Reducibility Method:**

- Avila-You-Zhou proved that there exists a full Lebesgue measure set S such that for θ ∈ S, H<sub>λ,α,θ</sub> satisfies AL if |λ| > e<sup>β(α)</sup>, thus proving the transition line at |λ| > e<sup>β(α)</sup> for a.e. θ. However, S can not be described in their proof.
- SJ-Kachkovskiy: alternative argument, still without an arithmetic condition

0

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

## Local *j*-maxima

Local *j*-maximum is a local maximum on a segment  $|I| \sim q_j$ . A local *j*-maximum  $k_0$  is *nonresonant* if

$$||2 heta + (2k_0 + k)lpha||_{\mathbb{R}/\mathbb{Z}} > rac{\kappa}{q_{j-1}
u}$$

for all  $|k| \leq 2q_{j-1}$  and

$$||2\theta + (2k_0 + k)\alpha||_{\mathbb{R}/\mathbb{Z}} > \frac{\kappa}{|k|^{\nu}}, \qquad (0.1)$$

for all  $2q_{j-1} < |k| \le 2q_j$ . A local *j*-maximum is *strongly nonresonant* if

$$||2\theta + (2k_0 + k)\alpha||_{\mathbb{R}/\mathbb{Z}} > \frac{\kappa}{|k|^{\nu}}, \qquad (0.2)$$

for all  $0 < |k| \le 2q_j$ .

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

《白》 《日》 《日》

Ξ

SQA

# Universality of behavior at all (strongly) nonresonant local maxima:

#### Theorem

(SJ-W.Liu, 16) Suppose  $k_0$  is a local *j*-maximum. If  $k_0$  is nonresonant, then

$$f(|s|)e^{-\varepsilon|s|} \le \frac{||U(k_0+s)||}{||U(k_0)||} \le f(|s|)e^{\varepsilon|s|},$$
 (0.3)

for all  $2s \in I$ ,  $|s| > \frac{q_{j-1}}{2}$ . If  $k_0$  is strongly nonresonant, then

$$f(|s|)e^{-\varepsilon|s|} \le \frac{||U(k_0+s)||}{||U(k_0)||} \le f(|s|)e^{\varepsilon|s|}, \quad (0.4)$$

for all  $2s \in I$ .

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロッス回アメヨアメヨア

E 990

## Universal hierarchical structure

## All $\alpha$ , Diophantine $\theta$ , pp regime. Let $k_0$ be the global maximum Theorem

 $\begin{array}{l} (SJ-W. \ Liu, \ 16) \ There \ exists \ \hat{n}_{0}(\alpha, \lambda, \varsigma, \epsilon) < \infty \ such \ that \ for \ any \\ k \geq \hat{n}_{0}, \ n_{j-k} \geq \hat{n}_{0} + k, \ and \ 0 < a_{n_{i}} < e^{\varsigma \ln |\lambda| q_{n_{i}}}, \ i = j - k, \ldots, j, \\ for \ all \ 0 \leq s \leq k \ there \ exists \ a \ local \ n_{j-s}-maximum \\ b_{a_{n_{j}},a_{n_{j-1}},\ldots,a_{n_{j-s}}} \ such \ that \ the \ following \ holds: \\ I. \ |b_{a_{n_{j}}} - (k_{0} + a_{n_{j}}q_{n_{j}})| \leq q_{\hat{n}_{0}+1}, \\ II. \ For \ s \leq k, \ |b_{a_{n_{j}},\ldots,a_{n_{j-s}}} - (b_{a_{n_{j}},\ldots,a_{n_{j-s+1}}} + a_{n_{j-s}}q_{n_{j-s}})| \leq q_{\hat{n}_{0}+s+1}. \\ III. \ if \ q_{\hat{n}_{0}+k} \leq |(x - b_{a_{n_{j}},a_{n_{j-1}},\ldots,a_{n_{j-k}}}| \leq cq_{n_{j-k}}, \ then \ for \\ s = 0, 1, \ldots, k, \\ f(x_{s})e^{-\varepsilon|x_{s}|} \leq \frac{||U(x)||}{||U(b_{a_{n_{j}},a_{n_{j-1}},\ldots,a_{n_{j-s}}})||} \leq f(x_{s})e^{\varepsilon|x_{s}|}, \\ \\ Moreover, \ every \ local \ n_{j-s}-maximum \ on \ the \ interval \\ b_{a_{n_{j}},a_{n_{j-1}},\ldots,a_{n_{j-s}+1}} + [-e^{\epsilon\ln\lambda q_{n_{j-s}}}, e^{\epsilon\ln\lambda q_{n_{j-s}}}] \ is \ of \ the \ form \\ b_{a_{n_{j},a_{n_{j-1}},\ldots,a_{n_{j-s}}}} \ for \ some \ a_{n_{j-s}}. \end{array}$ 

S. Jitomirskaya



S. Jitomirskaya

## Universal reflexive-hierarchical structure

#### Theorem

(SJ-W. Liu,16) For Diophantine  $\alpha$  and all  $\theta$  in the pure point regime there exists a hierarchical structure of local maxima as above, such that

$$f((-1)^{s+1}x_s)e^{-\varepsilon|x_s|} \leq \frac{||U(x)||}{||U(b_{\mathcal{K}_j,\mathcal{K}_{j-1},\ldots,\mathcal{K}_{j-s}})||} \leq f((-1)^{s+1}x_s)e^{\varepsilon|x_s|},$$

where  $x_s = x - b_{K_j, K_{j-1}, ..., K_{j-s}}$ .

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

## Further corollaries

#### Corollary

Let  $\psi(k)$  be any solution to  $H_{\lambda,\alpha,\theta}\psi = E\psi$  that is linearly independent with respect to  $\phi(k)$ . Let  $\overline{U}(k) = \begin{pmatrix} \psi(k) \\ \psi(k-1) \end{pmatrix}$ , then  $g(|k|)e^{-\varepsilon|k|} \le ||\overline{U}(k)|| \le g(|k|)e^{\varepsilon|k|}.$ 

Let  $0 \le \delta_k \le \frac{\pi}{2}$  be the angle between vectors U(k) and  $\overline{U}(k)$ .





S. Jitomirskaya

#### Corollary

We have

- i)  $\limsup_{k\to\infty} \frac{-\ln ||U(k)||}{k} = \ln |\lambda|,$
- ii)  $\liminf_{k\to\infty} \frac{-\ln ||U(k)||}{k} = \ln |\lambda| \beta.$
- iii) There is an explicit sequence of upper density  $1 \frac{1}{2} \frac{\beta}{\ln |\lambda|}$ , along which

$$\lim_{k\to\infty}\frac{-\ln||U(k)||}{k}=\ln|\lambda|.$$

iv) There is an explicit sequence of upper density  $\frac{1}{2} \frac{\beta}{\ln |\lambda|}$ , along which

$$\limsup_{k\to\infty}\frac{-\ln||U(k)||}{k}<\ln|\lambda|.$$

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロ と 4 🗇 と 4 差 と 4 差 と 👘

E 990

## Further applications

- Upper bounds on fractal dimensions of spectral measures and quantum dynamics for trigonometric polynomials (SJ-W.Liu-S.Tcheremchantzev, SJ-W.Liu).
- The exact rate for exponential dynamical localization in expectation for the Diophantine case (SJ-H.Krüger-W.Liu). The first result of its kind, for any model.
- The same universal asymptotics of eigenfunctions for the Maryland Model (R. Han-SJ-F.Yang).

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

> 4回> 4 回> 4 回> ···

E 920

## Key ideas of the proof

Resonant points (small divisors):  $k : ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$  or  $||2\theta + k\alpha||_{\mathbb{R}/\mathbb{Z}}$  is small.

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

## Key ideas of the proof

Resonant points (small divisors):  $k : ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$  or  $||2\theta + k\alpha||_{\mathbb{R}/\mathbb{Z}}$  is small.

• New way to deal with resonant points in the positive Lyapunov regime (supercritical regime)

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

< □ > < ≧ > < ≧ > ≤ ≧ > < ○ < ○ <

## Key ideas of the proof

Resonant points (small divisors):  $k : ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$  or  $||2\theta + k\alpha||_{\mathbb{R}/\mathbb{Z}}$  is small.

- New way to deal with resonant points in the positive Lyapunov regime (supercritical regime)
- Develop Gordon and palindromic methods to study the trace of transfer matrices to obtain lower bounds on solutions Gordon potential (periodicity):  $|V(j + q_n) - V(j)|$  is small (control by  $||q_n\alpha|| \simeq e^{-\beta(\alpha)q_n}$ ) palindromic potential (symmetry): |V(k - j) - V(j)| is small (control by  $||2\theta + k\alpha|| \simeq e^{-\delta(\alpha, \theta)|k|}$ )
- Bootstrap starting around the (local) maxima leads to effective estimates
- Reverse induction proof that local j 1-maxima are close to  $aq_{i-1}$  shifts of the local *j*-maxima, up to a constant scale
- Deduce that all the local maxima are (strongly) non-resonant and apply reverse induction (라) (도) (도) 도

S. Jitomirskaya

Assume *E* is a generalized eigenvalue and  $\phi$  is the associated generalized eigenfunction  $(|\phi(n)| < 1 + |n|)$ . Let  $\varphi$  be another solution of Hu = Eu. Let  $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k-1) \end{pmatrix}$  and  $\bar{U}(k) = \begin{pmatrix} \varphi(k) \\ \varphi(k-1) \end{pmatrix}$ .

**Step 1:**Sharp estimates for the non-resonant points.

- $||U(k)|| \simeq e^{-\ln \lambda |k-k_i|} ||U(k_i)|| + e^{-\ln \lambda |k-k_{i+1}|} ||U(k_{i+1})||$
- $||\bar{U}(k)|| \simeq e^{-\ln\lambda|k-k_i|} ||\bar{U}(k_i)|| + e^{-\ln\lambda|k-k_{i+1}|} ||\bar{U}(k_{i+1})||$

where  $k_i$  is the resonant point and  $k \in [k_i, k_{i+1}]$ .

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

<**(日) > < 三 > < 三 >** 

Assume *E* is a generalized eigenvalue and  $\phi$  is the associated generalized eigenfunction  $(|\phi(n)| < 1 + |n|)$ . Let  $\varphi$  be another solution of Hu = Eu. Let  $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k-1) \end{pmatrix}$  and

 $\overline{U}(k) = \left( egin{array}{c} arphi(k) \ arphi(k-1) \end{array} 
ight).$ 

**Step 1:**Sharp estimates for the non-resonant points.

• 
$$||U(k)|| \simeq e^{-\ln \lambda |k-k_i|} ||U(k_i)|| + e^{-\ln \lambda |k-k_{i+1}|} ||U(k_{i+1})||$$

• 
$$||ar{U}(k)|| \simeq e^{-\ln\lambda|k-k_i|}||ar{U}(k_i)|| + e^{-\ln\lambda|k-k_{i+1}|}||ar{U}(k_{i+1})||$$

where  $k_i$  is the resonant point and  $k \in [k_i, k_{i+1}]$ . **Step 2:**Sharp estimates for the resonant points.

• 
$$||U(k_{i+1})|| \simeq e^{-c(k_i,k_{i+1})|k_{i+1}-k_i|}||U(k_i)||$$

• 
$$||\bar{U}(k_{i+1})|| \simeq e^{c'(k_i,k_{i+1})|k_{i+1}-k_i|}||\bar{U}(k_i)||$$

where  $c(k_i, k_{i+1}), c'(k_i, k_{i+1})$  can be given explicitly.

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

A (1) × A (2) × A (2) ×

## Current quasiperiodic preprints

#### Almost Mathieu operator:

- Avila-You-Zhou: sharp transition in  $\alpha$  between pp and sc
- Avila-You-Zhou: dry Ten Martini, non-critical, all  $\alpha$
- Shamis-Last, Krasovsky, SJ- S. Zhang: gap size/dimension results for the critical case
- Avila-SJ-Zhou: critical line  $\lambda = e^{\beta}$
- Damanik-Goldstein-Schlag-Voda: homogeneous spectrum, Diophantine  $\alpha$
- W. Liu-SJ: sharp transitions in  $\alpha$  and  $\theta$  and universal (reflective) hierarchical structure

#### **Unitary almost Mathieu:**

Fillman-Ong-Z. Zhang: complete a.e. spectral description

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

(口) (日) (日) (日) (日) (日)

## Current quasiperiodic preprints

#### **Extended Harper's model:**

- Avila-SJ-Marx: complete spectral description in the coupling phase space (+Erdos-Szekeres conjecture!)
- R. Han: an alternative argument
- R. Han-J: sharp transition in  $\alpha$  between pp and sc spectrum in the positive Lyapunov exponent regime
- R. Han: dry Ten Martini (non-critical Diophantine)

#### **General 1-frequency quasiperiodic:**

analytic: SJ- S. Zhang: sharp arithmetic criterion for full spectral dimensionality (quasiballistic motion)

R. Han-SJ: sharp topological criterion for dual reducibility to imply localization

Damanik-Goldstein-Schlag-Voda: homogeneous spectrum,

supercritical

monotone: SJ-Kachkovskiy: all coupling localization

meromorphic: SJ-Yang: sharp criterion for sc spectrum

S. Jitomirskaya

## Current quasiperiodic preprints

#### Maryland model:

W. Liu-SJ: complete arithmetic spectral transitions for all  $\lambda, \alpha, \theta$ W. Liu: surface Maryland model SJ-Yang: a constructive proof of localization General Multi-frequency:

- R. Han-SJ: localization-type results with arithmetic conditions (general zero entropy dynamics; including the skew shift)
- R. Han-Yang: generic continuous spectrum
- Hou-Wang-Zhou: ac spectrum for Liouville (presence)
- Avila-SJ: ac spectrum for Liouville (absence)

## Deift's problem (almost periodicity of KdV solutions with almost periodic initial data) :

Binder-Damanik-Goldstein-Lukic: a solution under certain conditions.

S. Jitomirskaya

Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロ・スピ・スティー

E 920