Consider the operator

$$
(H\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + 2\lambda \cos 2\Pi(\alpha n + \theta) \Psi_n
$$
\n
$$
\begin{array}{ll}\n\text{cosupends} & \text{magnetic} \\
\text{to geometry} & \text{flux} \\
\text{to geometry} & \text{flux} \\
\text{with } t \text{ in } t \text{ in
$$

Then,
\n
$$
\begin{pmatrix}\nV_{n+1} \\
V_{n}\n\end{pmatrix} = \prod_{k} A_{E} (\theta + K_{\alpha}) \begin{pmatrix}\nV_{1} \\
V_{2}\n\end{pmatrix}
$$
\n
$$
= A_{n}(\theta) \begin{pmatrix}\nV_{1} \\
V_{2}\n\end{pmatrix}
$$
\n
$$
L(E) \text{ tan be computed explicitly.}
$$
\nIn fact,
\n
$$
L(E) |_{E \in \mathbb{F}} = \max (0, ln \text{ 11}) \text{ (proved by. Borgain, S3)}
$$
\nwe have: $3 \times 1 \Rightarrow L > 0$ on \mathbb{F}
\n
$$
A \leq 1 \Rightarrow L = 0 \text{ on } \mathbb{F}
$$
\n
$$
A \leq 1 \Rightarrow L \geq 0 \text{ on } \mathbb{F}
$$
\n
$$
A \leq 1 \Rightarrow L \geq 0 \text{ on } \mathbb{F}
$$
\n
$$
A \leq 1 \Rightarrow L \geq 0 \text{ on } \mathbb{F}
$$
\n
$$
A \leq 1 \Rightarrow L \geq 0 \text{ on } \mathbb{F}
$$
\n
$$
A \leq 1 \Rightarrow L \geq 0 \text{ on } \mathbb{F}
$$
\n
$$
A \leq 1 \Rightarrow L \geq 0 \text{ on } \mathbb{F}
$$
\n
$$
A \leq 1 \Rightarrow L \geq 0 \text{ on } \mathbb{F}
$$
\n
$$
S \text{ in } L > 0, \text{ there are no absolutely continuous sections, } |_{\mathcal{H} \times L} = 2 \times 0 \text{ on } \mathbb{F}
$$
\n
$$
U_{E} \text{ coviolet two arithmetic, parameters.}
$$
\n
$$
\beta(x) := \lim_{n} \frac{\beta_{n} \text{ d} x_{n+1}}{n} \quad \text{where } \frac{\beta_{n}}{q_{n}} \sim \alpha
$$
\n
$$
= \lim_{n} \frac{\beta_{n} \text{ d} x_{n+1}}{q_{n}} \quad \text{where } \frac{\beta_{n}}{q_{n}} \sim \alpha
$$

l.

We say a is Diophantine if
$$
\beta(\alpha) = 0
$$

\nand θ is α -Diophantine if $\delta(\alpha) = 0$.

\nConjecture (94):

\nput I: Suppose θ is α -Diophantine

\n $T_p: L > \beta \Rightarrow pp$ spectrum (Figure 196/8)

\n $T_s: L < \beta \Rightarrow \text{se spectrum}$

\n(transition happens at β)

\npart I: Suppose α is Diophantine

\n $T_p: L > \delta \Rightarrow PP$

\n $T_p: L > \delta \Rightarrow \text{se}$

\nQuation: What is the reason for such conjecture?

\nSay we have 3 almost repeating pieces.

\nFigure 19n^α - Pn¹ α

\nthen eigenfunctions cannot decay as a co-seaponding

\nlocal scale if the scale is large enough

\nIf $q_{nn} \approx \frac{q_{nn}}{q_{nn}}$ then we have *sepeath*thm

\nThe decay is governed by the level of exponent

If $S > 0$:	1	
He's implies that $\frac{n}{2}$ will be almost a point		
He's implies that $\frac{n}{2}$ will be allowed a point		
He, potential is reflected (almost)		
He, following is at value e^{-kn} .		
The following is a 30int work with the mean' Lit:		
The following is a 30int work with the mean' Lit:		
The formula:	1	1
The formula:	1	1
The formula:	1	
The formula:		

 $\frac{1}{4}$

Some history about the conjecture: part I $L > \frac{16}{9} \beta$ (Avrila - SJ) $L < \frac{3}{2} \beta$ (Liu - Yuan) Avila - You - Zhou proved L>B for a.e. O I was also proved by Avila-You-Zhou. part II was proved by Lin, SJ. We say K. is a j-maximum if K. is a maximum on I where $|I| \sim q_j$ $\frac{q_j}{k}$ sequence of denominators. We say K, is a non-resonant j-max if $\|2\theta + (2K_s + K)_{\alpha}\| > \frac{c}{\kappa^{\tau}}$ for $|K| \leq 2q$. Theorem: Let K. be a non-resonant j-max $\frac{\|\Upsilon\|_{K_{\sigma}+K}\|}{K_{\sigma}+K_{\sigma}} \sim f(k) \quad \text{for} \quad |k| < q_{j}$ then $||U(k_{0})||$ APM Jaround each max

We have a hierarchical structure of local
\nmorphism
$$
b_{a_j...a_{j-s}}
$$
 which satisfy the following.

\nLet k , be a global maximum

\nand $a_1, (a, \ell)$ such that

\n1) $b_{a_j...a_{j-s}}$ is $(j-s)$ - maximum

\n2) $|b_{a_j} - k_s - a_j a_j| \leq 4n$.

\n3) $|b_{a_j a_{j-1}} - b_{a_j} - a_{j-1} a_{j-1}| \leq 4n$.

\n3) $|b_{a_j a_{j-1}} - b_{a_j} - a_{j-1} a_{j-1}| \leq 4n$.

\n4) $\frac{k}{k_0} \frac{b_{k_0 a_{j-1}}}{b_{k_0 a_{j-1}}} k_0 + b_{a_j a_{j-k+1}} - a_{j-k} a_{j-k} + b_{a_{j-k}} a_{j-k} + b_{k_0 a_{j-1}} a_{k_0 a_{j-k}}$

\nand we have,

\n $\frac{||U(b_{a_j...a_{j-k}} + x)||}{||U(b_{a_j...a_{j-k}})||} \sim 4(x)$ for $|x| \leq c_1 a_{j-k}$

For II, there is a hierarchical structure of the so that $f_{\theta\ell m}$ $b_{kj} k_{j-1} - k_{j-1} - k_{j-1}$ $\frac{\|U(b_{k_j-k_{j-s}}+x)\|}{\|U(b_{k_j}-k_{j-s})\|} \sim f((-1)^s x)$

Note:
If:5>0 then we have infinitely many almost reflections at $\frac{n}{2}$.

Lastly, note that + is the behavior of cignifications and g is the behavior of the norm of the transfer matrix, Question: why in't this redundant? we have $||A_{n,\pm}(\Theta)|| \sim q(n)$: norm of most expanded vector $||U_{n}|| \sim f(n)$: norm of most contracted vector Let $\gamma(n) = \text{angle between } (\mu, \bar{u})$
we have angle between (μ, \bar{u}) most most anded

 $\overline{\lim_{n}}$ = $ln N(n)$ = β_{s} .

Quasiperiodic Schrodinger operators: sharp arithmetic spectral transitions and universal hierarchical structure of eigenfunctions

S. Jitomirskaya

UCI

MSRI, January 20, 2017

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

→ ④ ▶ → 全 ▶ → 重 ▶ │ 重 │ ◆ 9 Q (→

$$
(H_{\lambda,\alpha,\theta}\Psi)_n=\Psi_{n+1}+\Psi_{n-1}+\lambda v(\theta+n\alpha)\Psi_n
$$

 $v(\theta) = 2 \cos 2\pi(\theta)$, α irrational,

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

K ロ K x 行 K K を K K を K X B X X G K を K の Q Q C

$$
(H_{\lambda,\alpha,\theta}\Psi)_n=\Psi_{n+1}+\Psi_{n-1}+\lambda v(\theta+n\alpha)\Psi_n
$$

 $v(\theta) = 2 \cos 2\pi(\theta)$, α irrational,

Tight-binding model of 2D Bloch electrons in magnetic fields

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

$$
(H_{\lambda,\alpha,\theta}\Psi)_n=\Psi_{n+1}+\Psi_{n-1}+\lambda v(\theta+n\alpha)\Psi_n
$$

 $v(\theta) = 2 \cos 2\pi(\theta)$, α irrational,

Tight-binding model of 2D Bloch electrons in magnetic fields

First introduced by R. Peierls in 1933

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 \Box > < \Box + < Ξ + < Ξ + < Ξ + \Box

 $E \nabla Q$

$$
(H_{\lambda,\alpha,\theta}\Psi)_n=\Psi_{n+1}+\Psi_{n-1}+\lambda v(\theta+n\alpha)\Psi_n
$$

 $v(\theta) = 2 \cos 2\pi(\theta)$, α irrational,

Tight-binding model of 2D Bloch electrons in magnetic fields

- **•** First introduced by R. Peierls in 1933
- Further studied by a Ph.D. student of Peierls, P.G. Harper (1955)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 \Box > < \Box > < Ξ > < \Box > < \Box

 $E \Omega Q Q$

$$
(H_{\lambda,\alpha,\theta}\Psi)_n=\Psi_{n+1}+\Psi_{n-1}+\lambda v(\theta+n\alpha)\Psi_n
$$

 $v(\theta) = 2 \cos 2\pi(\theta)$, α irrational,

Tight-binding model of 2D Bloch electrons in magnetic fields

- **•** First introduced by R. Peierls in 1933
- Further studied by a Ph.D. student of Peierls, P.G. Harper (1955)
- o Is called Harper's model

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 $E \nabla Q$

 $(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_n$

 $v(\theta) = 2 \cos 2\pi(\theta)$, α irrational,

Tight-binding model of 2D Bloch electrons in magnetic fields

- **First introduced by R. Peierls in 1933**
- Further studied by a Ph.D. student of Peierls, P.G. Harper (1955)
- o Is called Harper's model
- With a choice of Landau gauge effectively reduces to h_{θ}
- \bullet α is a dimensionless parameter equal to the ratio of flux through a lattice cell to one flux quantum.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 $E \Omega Q$

Hofstadter butterfly

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

KOKK@KKEKKEK E DAG

Hofstadter butterfly

Gregory Wannier to Lars Onsager: "It looks much more complicated than I ever imagined it to be"

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure Structure of Eigen

K ロ K K 레 K K Z K K 코 K X H K K K X A C Y Q Q Q

Hofstadter butterfly

Gregory Wannier to Lars Onsager: "It looks much more complicated than I ever imagined it to be" David Jennings described it as a picture of God EXIST N

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

重

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure Structure of Eigen

KOKK@KKBKKBK B YOQO

Butterfly in the Quantum World

The story of the most fascinating quantum fractal

Indubala I Satija

with contributions by Douglas Hofstadter

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Ė,

Тb \mathcal{A} . Ξ QQ

Ξ

Predicted by M. Azbel (1964) Spectrum: only known that the spectrum is a Cantor set (Ten Martini problem)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

▶ <伊 ▶ <唐 ▶ <唐 ▶ │ 唐│ ◆ 9 Q (2)

Predicted by M. Azbel (1964) Spectrum: only known that the spectrum is a Cantor set (Ten Martini problem) Eigenfunctions: History: Bethe Ansatz solutions (Wiegmann, Zabrodin, et al) Sinai, Hellffer-Sjostrand, Buslaev-Fedotov

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

▶ <伊 ▶ <唐 ▶ <唐 ▶ 『唐』 めんぺ

Predicted by M. Azbel (1964) Spectrum: only known that the spectrum is a Cantor set (Ten Martini problem) Eigenfunctions: History: Bethe Ansatz solutions (Wiegmann, Zabrodin, et al) Sinai, Hellffer-Sjostrand, Buslaev-Fedotov remained a challenge even at the physics level

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 $E \nabla Q$

Predicted by M. Azbel (1964) Spectrum: only known that the spectrum is a Cantor set (Ten Martini problem) Eigenfunctions: History: Bethe Ansatz solutions (Wiegmann, Zabrodin, et al) Sinai, Hellffer-Sjostrand, Buslaev-Fedotov remained a challenge even at the physics level Today: universal self-similar exponential structure of eigenfunctions throughout the entire localization regime.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 \triangleright \triangleleft \oplus \triangleright \triangleleft $\ \oplus$ \triangleright \dashv $\ \oplus$ \triangleright \dashv

 $E \nabla Q$

Arithmetic spectral transitions

1D Quasiperiodic operators:

$$
(h_{\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_n
$$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Arithmetic spectral transitions

1D Quasiperiodic operators:

$$
(h_{\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_n
$$

Transitions in the coupling *⁄*

- o originally approached by KAM (Dinaburg, Sinai, Bellissard, Frohlich-Spencer-Wittwer, Eliasson)
- nonperturbative methods (SJ, Bourgain-Goldstein for *L >* 0; Last, SJ, Avila for $L = 0$) reduced the transition to the transition in the Lyapunov exponent (for analytic *v*): $L(E) > 0$ implies pp spectrum for a.e. α, θ $L(E + i\epsilon) = 0, \epsilon > 0$ implies pure ac spectrum for all α, θ

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 \triangleright (d) \triangleright () () () (

÷.

Arithmetic spectral transitions

1D Quasiperiodic operators:

$$
(h_{\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda v(\theta + n\alpha)\Psi_n
$$

Transitions in the coupling *⁄*

- o originally approached by KAM (Dinaburg, Sinai, Bellissard, Frohlich-Spencer-Wittwer, Eliasson)
- nonperturbative methods (SJ, Bourgain-Goldstein for *L >* 0; Last, SJ, Avila for $L = 0$) reduced the transition to the transition in the Lyapunov exponent (for analytic *v*): $L(E) > 0$ implies pp spectrum for a.e. α, θ $L(E + i\epsilon) = 0, \epsilon > 0$ implies pure ac spectrum for all α, θ

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 \triangleright (d) \triangleright () () () (

÷.

Given $E \in \mathbb{R}$ and $\theta \in \mathbb{T}$, solve $H_{\lambda,\alpha,\theta}\psi = E\psi$ over $\mathbb{C}^{\mathbb{Z}}$:

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure Structure of Eigen

K ロ K x 行 K K を K K を K X B X X G K を K の Q Q C

Given $E \in \mathbb{R}$ and $\theta \in \mathbb{T}$, solve $H_{\lambda,\alpha,\theta}\psi = E\psi$ over $\mathbb{C}^{\mathbb{Z}}$: transfer matrix:

$$
\mathcal{A}^E(\theta):=\begin{pmatrix}E-\lambda\mathsf{v}(\theta)&-1\\1&0\end{pmatrix}
$$

$$
\begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = A_n^E(\alpha, \theta) \begin{pmatrix} \psi_0 \\ \psi_{-1} \end{pmatrix}
$$

$$
A_n^E(\alpha, \theta) := A(\theta + \alpha(n-1)) \dots A(\theta)
$$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

K ロ K x 行 K K を K K を K X B X X G K を K の Q Q C

Given $E \in \mathbb{R}$ and $\theta \in \mathbb{T}$, solve $H_{\lambda,\alpha,\theta}\psi = E\psi$ over $\mathbb{C}^{\mathbb{Z}}$: transfer matrix:

$$
\mathcal{A}^E(\theta):=\begin{pmatrix}E-\lambda\mathsf{v}(\theta)&-1\\1&0\end{pmatrix}
$$

$$
\begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = A_n^E(\alpha, \theta) \begin{pmatrix} \psi_0 \\ \psi_{-1} \end{pmatrix}
$$

$$
A_n^E(\alpha, \theta) := A(\theta + \alpha(n-1)) \dots A(\theta)
$$

The Lyapunov exponent (LE):

$$
L(\alpha, E) \quad := \quad \lim_{n \to \infty} \frac{1}{n} \int_{\mathbb{T}} \log ||A_{(n)}^{E}(x)|| dx \ ,
$$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

KOKK@KKEKKEK E 1990

Given $E \in \mathbb{R}$ and $\theta \in \mathbb{T}$, solve $H_{\lambda,\alpha,\theta}\psi = E\psi$ over $\mathbb{C}^{\mathbb{Z}}$: transfer matrix:

$$
\mathcal{A}^E(\theta):=\begin{pmatrix}E-\lambda\mathsf{v}(\theta)&-1\\1&0\end{pmatrix}
$$

$$
\begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = A_n^E(\alpha, \theta) \begin{pmatrix} \psi_0 \\ \psi_{-1} \end{pmatrix}
$$

$$
A_n^E(\alpha, \theta) := A(\theta + \alpha(n-1)) \dots A(\theta)
$$

The Lyapunov exponent (LE):

$$
L(\alpha, E) \quad := \quad \lim_{n \to \infty} \frac{1}{n} \int_{\mathbb{T}} \log ||A_{(n)}^{E}(x)|| dx \ ,
$$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

KOKK@KKEKKEK E 1990

Arithmetic transitions in the supercritical (*L >* 0) regime

Small denominators - resonances - $(v(\theta + k\alpha) - v(\theta + \ell\alpha))^{-1}$ are in competition with $e^{L(E)|\ell-k|}$.

L very large compared to the resonance strength leads to more localization

L small compared to the resonance strength leads to delocalization

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

▶ (御) (星) (星) (星) のQ (V

Exponential strength of a resonance:

$$
\beta(\alpha) := \limsup_{n \to \infty} -\frac{\ln ||n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}
$$

and

$$
\delta(\alpha,\theta) := \limsup_{n\to\infty} -\frac{\ln ||2\theta+n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}
$$

 α is Diophantine if $\beta(\alpha) = 0$ θ is α -Diophantine if $\delta(\alpha) = 0$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 \Box > < \Box > < Ξ > < \Box > < \Box

 $E \Omega Q Q$

Exponential strength of a resonance:

$$
\beta(\alpha) := \limsup_{n \to \infty} -\frac{\ln ||n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}
$$

and

$$
\delta(\alpha,\theta) := \limsup_{n\to\infty} -\frac{\ln ||2\theta+n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}
$$

 α is Diophantine if $\beta(\alpha) = 0$ θ is α -Diophantine if $\delta(\alpha) = 0$ For the almost Mathieu, on the spectrum $L(E) = \max(0, \ln \lambda)$ (Bourgain-SJ, 2001).

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 \Box > < \Box > < Ξ > < \bot + \Box

目

 Ω

Exponential strength of a resonance:

$$
\beta(\alpha) := \limsup_{n \to \infty} -\frac{\ln ||n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}
$$

and

$$
\delta(\alpha,\theta) := \limsup_{n\to\infty} -\frac{\ln ||2\theta+n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}
$$

 α is Diophantine if $\beta(\alpha) = 0$ θ is α -Diophantine if $\delta(\alpha) = 0$

For the almost Mathieu, on the spectrum $L(E) = \max(0, \ln \lambda)$ (Bourgain-SJ, 2001).

⁄ < 1 æ pure ac spectrum (Dinaburg-Sinai 76, Aubry-Andre 80, Bellissard-Lima-Testard, Eliasson,Last,..., Avila 2008)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 $\Box \rightarrow \neg \neg \Box \rightarrow \neg \neg \Box \rightarrow \neg \neg \Box \rightarrow \neg \neg \Box$

Exponential strength of a resonance:

$$
\beta(\alpha) := \limsup_{n \to \infty} -\frac{\ln ||n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}
$$

and

$$
\delta(\alpha,\theta) := \limsup_{n\to\infty} -\frac{\ln ||2\theta+n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}
$$

 α is Diophantine if $\beta(\alpha) = 0$ θ is α -Diophantine if $\delta(\alpha) = 0$

For the almost Mathieu, on the spectrum $L(E) = \max(0, \ln \lambda)$ (Bourgain-SJ, 2001).

⁄ < 1 æ pure ac spectrum (Dinaburg-Sinai 76, Aubry-Andre 80, Bellissard-Lima-Testard, Eliasson,Last,..., Avila 2008)

 $\lambda > 1 \rightarrow$ no ac spectrum (Ishii-Kotani-Pastur)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 \rightarrow 4 dp \rightarrow 4 d \rightarrow 4 d \rightarrow
Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
	- $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha, \theta)},$
	- $H_{\lambda,\alpha,\theta}$ has Anderson localization (stronger than pure point $\mathsf{spectrum}$) for $|\lambda| > e^{\delta(\alpha,\theta)}$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロト (母) (ミ) (ミ) ミ りんぐ

Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
	- $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha, \theta)},$
	- $H_{\lambda,\alpha,\theta}$ has Anderson localization (stronger than pure point $\mathsf{spectrum}$) for $|\lambda| > e^{\delta(\alpha,\theta)}$.

(all θ , Diophantine α)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

▶ (母) (目) (目) (目) (目) のQ (2)

Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
	- $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha, \theta)},$
	- *H⁄,–,◊* has Anderson localization (stronger than pure point $\mathsf{spectrum}$) for $|\lambda| > e^{\delta(\alpha,\theta)}$.

(all θ , Diophantine α)

- If $\delta(\alpha, \theta) = 0$, then $L(E) = \beta(\alpha)$ is the transition line.
	- $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $L(E) < \beta(\alpha)$
	- $H_{\lambda,\alpha,\theta}$ has Anderson localization for $L(E) > \beta(\alpha)$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

 \rightarrow 4 d \rightarrow

 \mathbf{E} Ω

Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
	- $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha, \theta)},$
	- **•** $H_{λ, α, θ}$ has Anderson localization (stronger than pure point $\mathsf{spectrum}$) for $|\lambda| > e^{\delta(\alpha,\theta)}$.

(all θ , Diophantine α)

- If $\delta(\alpha, \theta) = 0$, then $L(E) = \beta(\alpha)$ is the transition line.
	- $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $L(E) < \beta(\alpha)$
	- $H_{\lambda,\alpha,\theta}$ has Anderson localization for $L(E) > \beta(\alpha)$.

 $($ all α , Diophantine θ)

sc spectrum for $\beta = \infty$ proved in Gordon, Avron-Simon (82), and for $\delta = \infty$ in SJ-Simon (94)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

←ロト ←伊ト ←ヨト ←ヨト │ヨー つQ <mark>へ</mark>

Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
	- $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha, \theta)},$
	- *H⁄,–,◊* has Anderson localization (stronger than pure point $\mathsf{spectrum}$) for $|\lambda| > e^{\delta(\alpha,\theta)}$.

(all θ , Diophantine α)

- If $\delta(\alpha, \theta) = 0$, then $L(E) = \beta(\alpha)$ is the transition line.
	- $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $L(E) < \beta(\alpha)$
	- $H_{\lambda,\alpha,\theta}$ has Anderson localization for $L(E) > \beta(\alpha)$.

 $($ all α , Diophantine θ)

sc spectrum for $\beta = \infty$ proved in Gordon, Avron-Simon (82), and for $\delta = \infty$ in SJ-Simon (94)

pp spectrum for $\beta = \delta = 0$ proved in SJ (99).

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

←ロト ←伊ト ←ヨト ←ヨト │ヨー ◆Q <mark>へ</mark>

We say ϕ is a generalized eigenfunction if it is a polynomially bounded solution of $H_{\lambda,\alpha,\theta}\phi = E\phi$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

KA → K 星 → K 星 → 三 → D Q Q →

We say ϕ is a generalized eigenfunction if it is a polynomially bounded solution of $H_{\lambda,\alpha,\theta}\phi = E\phi$. Let $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k) \end{pmatrix}$ $\phi(k-1)$ $\sum_{i=1}^{n}$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 $(1 + \frac{1}{2})$ and $(1 + \frac{1}{2})$ and $(1 + \frac{1}{2})$

 $E \Omega Q$

We say ϕ is a generalized eigenfunction if it is a polynomially bounded solution of $H_{\lambda,\alpha,\theta}\phi = E\phi$. Let $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k) \end{pmatrix}$ $\phi(k-1)$ $\sum_{i=1}^{n}$.

Theorem

(SJ-W.Liu, 16) There exist explicit universal functions f , g s.t. throughout the entire predicted pure point regime, for any generalized eigenfunction ϕ *and any* $\varepsilon > 0$, *there exists K such that for any* $|k| \geq K$, $U(k)$ and A_k *satisfy*

 $AP + 4B$ **S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral**

We say ϕ is a generalized eigenfunction if it is a polynomially bounded solution of $H_{\lambda,\alpha,\theta}\phi = E\phi$. Let $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k) \end{pmatrix}$ $\phi(k-1)$ $\sum_{i=1}^{n}$.

Theorem

(SJ-W.Liu, 16) There exist explicit universal functions f , g s.t. throughout the entire predicted pure point regime, for any generalized eigenfunction ϕ *and any* $\varepsilon > 0$, *there exists K such that for any* $|k| \geq K$, $U(k)$ and A_k *satisfy*

 $f(|k|)e^{-\varepsilon|k|} \leq ||U(k)|| \leq f(|k|)e^{\varepsilon|k|},$

and

$g(|k|)e^{-\varepsilon|k|} \leq ||A_k|| \leq g(|k|)e^{\varepsilon|k|}.$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

(同) - (三

(all *–,* Diophantine *◊*) Let $\frac{p_n}{q_n}$ be the continued fraction expansion of α . For any $\frac{q_n}{2} \leq k < \frac{q_{n+1}}{2}$, define explicit functions $f(k), g(k)$ as follows(depend on α through the sequence of q_n):

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

▶ (御) (唐) (唐) (唐) のQ (2)

(all *–,* Diophantine *◊*) Let $\frac{p_n}{q_n}$ be the continued fraction expansion of α . For any $\frac{q_n}{2} \leq k < \frac{q_{n+1}}{2}$, define explicit functions $f(k), g(k)$ as follows(depend on α through the sequence of q_n): Case 1: *q* 8 $\frac{\frac{3}{9}}{n+1} \geq \frac{q_n}{2}$ or $k \geq q_n$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

▶ (御) (唐) (唐) (唐) ○○○

 $($ all α , Diophantine θ) Let $\frac{p_n}{q_n}$ be the continued fraction expansion of α . For any $\frac{q_n}{2} \leq k < \frac{q_{n+1}}{2}$, define explicit functions $f(k), g(k)$ as follows(depend on α through the sequence of q_n): Case 1: *q* 8 $\frac{\frac{3}{9}}{n+1} \geq \frac{q_n}{2}$ or $k \geq q_n$. If $\ell q_n \leq k < (\ell + 1)q_n$ with $\ell \geq 1$, set

$$
f(k) = e^{-|k-\ell q_n| \ln |\lambda|} \bar{r}_{\ell}^{n} + e^{-|k-(\ell+1)q_n| \ln |\lambda|} \bar{r}_{\ell+1}^{n},
$$

and

$$
g(k) = e^{-|k-\ell q_n| \ln |\lambda|} \frac{q_{n+1}}{\bar{r}_\ell^n} + e^{-|k-(\ell+1)q_n| \ln |\lambda|} \frac{q_{n+1}}{\bar{r}_{\ell+1}^n},
$$

where for $\ell \geq 1$,

$$
\overline{r}_{\ell}^{n} = e^{-(\ln |\lambda| - \frac{\ln q_{n+1}}{q_n} + \frac{\ln \ell}{q_n})\ell q_n}.
$$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

← イヨン ← ヨン →

目

 \bigcirc \bigcirc \bigcirc

 $($ all α , Diophantine θ) Let $\frac{p_n}{q_n}$ be the continued fraction expansion of α . For any $\frac{q_n}{2} \leq k < \frac{q_{n+1}}{2}$, define explicit functions $f(k), g(k)$ as follows(depend on α through the sequence of q_n): Case 1: *q* 8 $\frac{\frac{3}{9}}{n+1} \geq \frac{q_n}{2}$ or $k \geq q_n$. If $\ell q_n \leq k < (\ell + 1)q_n$ with $\ell \geq 1$, set

$$
f(k) = e^{-|k-\ell q_n| \ln |\lambda|} \bar{r}_{\ell}^{n} + e^{-|k-(\ell+1)q_n| \ln |\lambda|} \bar{r}_{\ell+1}^{n},
$$

and

$$
g(k) = e^{-|k-\ell q_n| \ln |\lambda|} \frac{q_{n+1}}{\bar{r}_\ell^n} + e^{-|k-(\ell+1)q_n| \ln |\lambda|} \frac{q_{n+1}}{\bar{r}_{\ell+1}^n},
$$

where for $\ell \geq 1$,

$$
\overline{r}_{\ell}^{n} = e^{-(\ln |\lambda| - \frac{\ln q_{n+1}}{q_n} + \frac{\ln \ell}{q_n})\ell q_n}.
$$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

← イヨン ← ヨン →

目

 \bigcirc \bigcirc \bigcirc

$$
If \frac{q_n}{2} \leq k < q_n, \text{ set}
$$

$$
f(k) = e^{-k \ln |\lambda|} + e^{-|k-q_n| \ln |\lambda|} \overline{r}_1^n,
$$

and

$$
g(k)=e^{k\ln|\lambda|}.
$$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

If $\frac{q_n}{2} \leq k < q_n$, set

$$
f(k) = e^{-k \ln |\lambda|} + e^{-|k-q_n| \ln |\lambda|} \overline{r}_1^n,
$$

and

$$
g(k)=e^{k\ln|\lambda|}.
$$

Case 2. *q* 8 $\frac{6}{9}$ and $\frac{q_n}{2} \le k \le \min\{q_n, \frac{q_{n+1}}{2}\}.$ Set

$$
f(k) = e^{-k \ln |\lambda|},
$$

and

$$
g(k) = e^{k \ln |\lambda|}.
$$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure Structure of Eigen

KO K K @ K K B K K B K X K K K K K K K K

If $\frac{q_n}{2} \leq k < q_n$, set

$$
f(k) = e^{-k \ln |\lambda|} + e^{-|k-q_n| \ln |\lambda|} \overline{r}_1^n,
$$

and

$$
g(k)=e^{k\ln|\lambda|}.
$$

Case 2. *q* 8 $\frac{6}{9}$ and $\frac{q_n}{2} \le k \le \min\{q_n, \frac{q_{n+1}}{2}\}.$ Set

$$
f(k) = e^{-k \ln |\lambda|},
$$

and

$$
g(k) = e^{k \ln |\lambda|}.
$$

Note:*f* (*k*) decays exponentially and *g*(*k*) grows exponentially. However the decay rate and growth rate are not always the same.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

K ロ K K 行 K K ミ K K 王 K K H K K K K K K K K

The behavior of *f* (*k*)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

The behavior of *g*(*k*)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Arithmetic spectral transition

Corollary

Anderson localization holds throughout the entire conjectured pure point regime.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

K ロ K K 御 K K 로 K K 로 K T B K Y Q Q C

Arithmetic spectral transition

Corollary

Anderson localization holds throughout the entire conjectured pure point regime.

Singular continuous spectrum holds for **I**. *λ* > e^{β(α)} (Avila-You-Zhou, 15) $\Pi. \ \lambda > e^{\delta(\alpha,\theta)}$ (SJ-Liu, 16)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

K ロ K K 伊 K K B K K B K Y B K Y Q Q Q

Arithmetic spectral transition

Corollary

Anderson localization holds throughout the entire conjectured pure point regime.

Singular continuous spectrum holds for $I. \ \lambda > e^{\beta(\alpha)}$ (Avila-You-Zhou, 15) $II. \ \lambda > e^{\delta(\alpha, \theta)}$ (SJ-Liu, 16)

Corollary

The arithmetic spectral transition conjecture holds as stated.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ │ 할 │ ◆ Q Q ○

Localization Method:

Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha,\theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

Localization Method:

- Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha,\theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Localization Method:

- Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha,\theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$.

Reducibility Method:

Avila-You-Zhou proved that there exists a full Lebesgue measure set *S* such that for $\theta \in S$, $H_{\lambda,\alpha,\theta}$ satisfies AL if $|\lambda| > e^{\beta(\alpha)}$, thus proving the transition line at $|\lambda| > e^{\beta(\alpha)}$ for a.e. *◊.* However, *S* can not be described in their proof.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Localization Method:

- Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha,\theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$.

Reducibility Method:

- Avila-You-Zhou proved that there exists a full Lebesgue measure set *S* such that for $\theta \in S$, $H_{\lambda,\alpha,\theta}$ satisfies AL if $|\lambda| > e^{\beta(\alpha)}$, thus proving the transition line at $|\lambda| > e^{\beta(\alpha)}$ for a.e. *◊.* However, *S* can not be described in their proof.
- SJ-Kachkovskiy: alternative argument, still without an arithmetic condition

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロメスタメス ミメスミメー ミー めんぴ

Localization Method:

- Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha,\theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$.

Reducibility Method:

- Avila-You-Zhou proved that there exists a full Lebesgue measure set *S* such that for $\theta \in S$, $H_{\lambda,\alpha,\theta}$ satisfies AL if $|\lambda| > e^{\beta(\alpha)}$, thus proving the transition line at $|\lambda| > e^{\beta(\alpha)}$ for a.e. *◊.* However, *S* can not be described in their proof.
- SJ-Kachkovskiy: alternative argument, still without an arithmetic condition

 \bullet

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロメスタメス ミメスミメー ミー めんぴ

Local *j*-maxima

Local *j*-maximum is a local maximum on a segment $|I| \sim q_i$. A local *j*-maximum *k*⁰ is *nonresonant* if

$$
||2\theta+(2k_0+k)\alpha||_{\mathbb{R}/\mathbb{Z}}>\frac{\kappa}{q_{j-1}\nu},
$$

for all $|k| \leq 2q_{i-1}$ and

$$
||2\theta + (2k_0 + k)\alpha||_{\mathbb{R}/\mathbb{Z}} > \frac{\kappa}{|k|^\nu}, \qquad (0.1)
$$

for all $2q_{i-1} < |k| \leq 2q_i$. A local *j*-maximum is *strongly nonresonant* if

$$
||2\theta + (2k_0 + k)\alpha||_{\mathbb{R}/\mathbb{Z}} > \frac{\kappa}{|k|^\nu},
$$
\n(0.2)

for all $0 < |k| \leq 2q_i$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

 $E \Omega Q Q$

Universality of behavior at all (strongly) nonresonant local maxima:

Theorem

(SJ-W.Liu, 16) Suppose k_0 *is a local j-maximum. If* k_0 *is nonresonant, then*

$$
f(|s|)e^{-\varepsilon|s|} \leq \frac{||U(k_0+s)||}{||U(k_0)||} \leq f(|s|)e^{\varepsilon|s|}, \qquad (0.3)
$$

for all $2s \in I$, $|s| > \frac{q_{j-1}}{2}$. *If k*⁰ *is strongly nonresonant, then*

$$
f(|s|)e^{-\varepsilon|s|} \leq \frac{||U(k_0+s)||}{||U(k_0)||} \leq f(|s|)e^{\varepsilon|s|}, \qquad (0.4)
$$

for all $2s \in I$ *.*

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Universal hierarchical structure

All α , Diophantine θ , pp regime. Let k_0 be the global maximum Theorem

(SJ-W. Liu, 16) There exists $\hat{n}_0(\alpha, \lambda, \varsigma, \epsilon) < \infty$ such that for any $k \geq \hat{n}_0, n_{j-k} \geq \hat{n}_0 + k$, and $0 < a_{n_i} < e^{\varsigma \ln |\lambda| q_{n_i}}, i = j - k, \ldots, j$, f or all $0 \le s \le k$ *there exists a local* n_{i-s} -maximum $b_{a_{n_i},a_{n_{i-1}},...,a_{n_{i-s}}}$ such that the following holds: *I.* $|b_{a_{n_i}} - (k_0 + a_{n_j}q_{n_j})| \le q_{\hat{n}_0+1}$ *II.For* $s \leq k$, $|b_{a_{n_j},...,a_{n_{j-s}}}-(b_{a_{n_j},...,a_{n_{j-s+1}}}+a_{n_{j-s}}q_{n_{j-s}})| \leq q_{n_0+s+1}$. *III.* if $q_{\hat{n}_0+k} \leq |(x-b_{a_{n_i},a_{n_{i-1}},...,a_{n_{i-k}}}| \leq cq_{n_{j-k}},$ then for $s = 0, 1, ..., k,$ $f(x_s)e^{-\varepsilon|x_s|} \leq \frac{||U(x)||}{||U(h_{s-1})||}$ $\frac{||U(X)||}{||U(b_{a_{n_j},a_{n_{j-1}},...,a_{n_{j-s}}})||} \leq f(x_s)e^{\varepsilon|x_s|},$ *Moreover, every local n*_{*j* $-s$} *-maximum on the interval* $b_{a_{n_j},a_{n_{j-1}},...,a_{n_{j-s+1}}}$ + $[-e^{\epsilon \ln \lambda q_{n_{j-s}}},e^{\epsilon \ln \lambda q_{n_{j-s}}}]$ *is of the form* $b_{a_{n_j},a_{n_{j-1}},...,a_{n_{j-s}}}$ *for some* $a_{n_{j-s}}$ *.*

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure Structure of Eigen

Universal reflexive-hierarchical structure

Theorem

(SJ-W. Liu,16) For Diophantine α *and all* θ *in the pure point regime there exists a hierarchical structure of local maxima as above, such that*

$$
f((-1)^{s+1}x_s)e^{-\varepsilon|x_s|}\leq \frac{||U(x)||}{||U(b_{K_j,K_{j-1},\ldots,K_{j-s}})||}\leq f((-1)^{s+1}x_s)e^{\varepsilon|x_s|},
$$

where $x_s = x - b_{K_j, K_{j-1},...,K_{j-s}}$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

KOKK@KKBKKBK B YOQO

Further corollaries

Corollary

Let $\psi(k)$ *be any solution to* $H_{\lambda,\alpha,\theta}\psi = E\psi$ *that is linearly* \hat{U} independent with respect to $\phi(k)$. Let $\bar{U}(k) = \begin{pmatrix} \psi(k) & \psi(k) & \psi(k) \end{pmatrix}$ $\psi({\sf k} - 1)$ $\overline{\mathcal{N}}$ *, then* $g(|k|)e^{-\varepsilon|k|} \leq ||\bar{U}(k)|| \leq g(|k|)e^{\varepsilon|k|}.$

Let $0 \le \delta_k \le \frac{\pi}{2}$ be the angle between vectors $U(k)$ and $\bar{U}(k)$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Corollary

We have

- $i)$ lim sup $_{k\to\infty}$ $\frac{-\ln ||U(k)||}{k} = \ln |\lambda|,$
- $\liminf_{k \to \infty} \frac{-\ln ||U(k)||}{k} = \ln |\lambda| \beta.$
- iii) There is an explicit sequence of upper density $1-\frac{1}{2}$ β $|n|\lambda|$ *, along which*

$$
\lim_{k\to\infty}\frac{-\ln||U(k)||}{k}=\ln|\lambda|.
$$

iv) There is an explicit sequence of upper density $\frac{1}{2}$ β $|n|\lambda|$ *,along which*

$$
\limsup_{k\to\infty}\frac{-\ln||U(k)||}{k}<\ln|\lambda|.
$$

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロト (個) (星) (星) 星 りゅつ

Further applications

- Upper bounds on fractal dimensions of spectral measures and quantum dynamics for trigonometric polynomials (SJ-W.Liu-S.Tcheremchantzev, SJ-W.Liu).
- The exact rate for exponential dynamical localization in expectation for the Diophantine case (SJ-H.Krüger-W.Liu). The first result of its kind, for any model.
- The same universal asymptotics of eigenfunctions for the Maryland Model (R. Han-SJ-F.Yang).

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

ロトメタトメミトメミト ミニのダム

Key ideas of the proof

 R esonant points (small divisors): $k : ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$ or $||2\theta + k\alpha||_{\mathbb{R}/\mathbb{Z}}$ is small.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral
Key ideas of the proof

Resonant points (small divisors): $k : ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$ or $||2\theta + k\alpha||_{\mathbb{R}/\mathbb{Z}}$ is small.

New way to deal with resonant points in the positive Lyapunov regime (supercritical regime)

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

→ 伊 ▶ → 王 ▶ → 王 ▶ │ 王 │ ◆ 9 Q (*

Key ideas of the proof

Resonant points (small divisors): $k : ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$ or $||2\theta + k\alpha||_{\mathbb{R}/\mathbb{Z}}$ is small.

- New way to deal with resonant points in the positive Lyapunov regime (supercritical regime)
- Develop Gordon and palindromic methods to study the trace of transfer matrices to obtain lower bounds on solutions Gordon potential (periodicity): $|V(j + q_n) - V(j)|$ is small $|Q_n \alpha|| \simeq e^{-\beta(\alpha) q_n}$ palindromic potential (symmetry): $|V(k - j) - V(j)|$ is small $\left(\text{control by }||2\theta+k\alpha||\simeq e^{-\delta(\alpha,\theta)|k|}\right)$
- Bootstrap starting around the (local) maxima leads to effective estimates
- **•** Reverse induction proof that local $j 1$ -maxima are close to aq_{i-1} shifts of the local *j*-maxima, up to a constant scale
- Deduce that all the local maxima are (strongly) non-resonant and apply reverse induction ▶ <伊 ▶ <唐 ▶ <唐 > 『唐』 の&◎

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Assume *E* is a generalized eigenvalue and ϕ is the associated generalized eigenfunction $(|\phi(n)| < 1 + |n|)$. Let φ be another solution of $Hu = Eu$. Let $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k) \end{pmatrix}$ $\phi(k-1)$ $\sum_{i=1}^{n}$ and $\bar{U}(k) = \begin{pmatrix} \varphi(k) \\ \varphi(k) \end{pmatrix}$ $\sum_{i=1}^{n}$.

 $\varphi(k-1)$ **Step 1:**Sharp estimates for the non-resonant points.

- $||U(k)|| \simeq e^{-\ln \lambda |k-k_i|}||U(k_i)|| + e^{-\ln \lambda |k-k_{i+1}|}||U(k_{i+1})||$
- $||\bar{U}(k)|| \simeq e^{-\ln \lambda |k-k_i|}||\bar{U}(k_i)|| + e^{-\ln \lambda |k-k_{i+1}|}||\bar{U}(k_{i+1})||$

where k_i is the resonant point and $k \in [k_i, k_{i+1}]$.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral dividents and universal structure of eigenfunctions and universal structure of exceptions and universal structure of eigenfunctions and univ

→ 何 ▶ → 言 ▶ → 臣 ▶ →

 QQQ

Assume *E* is a generalized eigenvalue and ϕ is the associated generalized eigenfunction $(|\phi(n)| < 1 + |n|)$. Let φ be another solution of $Hu = Eu$. Let $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k) \end{pmatrix}$ $\phi(k-1)$ $\sum_{i=1}^{n}$ and $\sum_{i=1}^{n}$

 $\bar{U}(k) = \begin{pmatrix} \varphi(k) \\ \varphi(k) \end{pmatrix}$ $\varphi(k-1)$.

Step 1:Sharp estimates for the non-resonant points.

$$
\bullet ||U(k)|| \simeq e^{-\ln \lambda |k-k_i|}||U(k_i)|| + e^{-\ln \lambda |k-k_{i+1}|}||U(k_{i+1})||
$$

$$
\bullet ||\bar{U}(k)|| \simeq e^{-\ln \lambda |k-k_i|}||\bar{U}(k_i)|| + e^{-\ln \lambda |k-k_{i+1}|}||\bar{U}(k_{i+1})||
$$

where k_i is the resonant point and $k \in [k_i, k_{i+1}]$. **Step 2:**Sharp estimates for the resonant points.

$$
\bullet \,||U(k_{i+1})|| \simeq e^{-c(k_i,k_{i+1})|k_{i+1}-k_i|}||U(k_i)||
$$

$$
\bullet \, ||\, \overline{U}(k_{i+1})|| \simeq e^{c'(k_i,k_{i+1})|k_{i+1}-k_i|}||\, \overline{U}(k_i)||
$$

where $c(k_i,k_{i+1}),c^\prime(k_i,k_{i+1})$ can be given explicitly.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral Structure And universal structure

Current quasiperiodic preprints

Almost Mathieu operator:

- Avila-You-Zhou: sharp transition in α between pp and sc
- \bullet Avila-You-Zhou: dry Ten Martini, non-critical, all α
- Shamis-Last, Krasovsky, SJ- S. Zhang: gap size/dimension results for the critical case
- Avila-SJ-Zhou: critical line $\lambda = e^{\beta}$
- Damanik-Goldstein-Schlag-Voda: homogeneous spectrum, Diophantine α
- \bullet W. Liu-SJ: sharp transitions in α and θ and universal (reflective) hierarchical structure

Unitary almost Mathieu:

Fillman-Ong-Z. Zhang: complete a.e. spectral description

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

K □ K K @ K K 콜 K K 콜 K - 콜 - X Q Q Q

Current quasiperiodic preprints

Extended Harper's model:

- Avila-SJ-Marx: complete spectral description in the coupling phase space (+Erdos-Szekeres conjecture!)
- R. Han: an alternative argument
- R. Han-J: sharp transition in α between pp and sc spectrum in the positive Lyapunov exponent regime
- R. Han: dry Ten Martini (non-critical Diophantine)

General 1-frequency quasiperiodic:

analytic: SJ- S. Zhang: sharp arithmetic criterion for full spectral dimensionality (quasiballistic motion)

R. Han-SJ: sharp topological criterion for dual reducibility to imply localization

Damanik-Goldstein-Schlag-Voda: homogeneous spectrum, supercritical

monotone: SJ-Kachkovskiy: *all* coupling localization

meromorphic: SJ-Yang: sharp criterion for sc spectrum

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

Current quasiperiodic preprints

Maryland model:

W. Liu-SJ: complete arithmetic spectral transitions for *all* λ, α, θ W. Liu: surface Maryland model SJ-Yang: a constructive proof of localization **General Multi-frequency:**

- R. Han-SJ: localization-type results with arithmetic conditions (general zero entropy dynamics; including the skew shift)
- R. Han-Yang: generic continuous spectrum
- Hou-Wang-Zhou: ac spectrum for Liouville (presence)
- Avila-SJ: ac spectrum for Liouville (absence)

Deift's problem (almost periodicity of KdV solutions with almost periodic initial data) :

Binder-Damanik-Goldstein-Lukic: a solution under certain conditions.

S. Jitomirskaya Quasiperiodic Schrodinger operators: sharp arithmetic spectral

K ロ K x 行 K K ミ K K E K X H Y X C Y C Y C Y C