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Rank one unitary perturbations

Given unitary U on H, fix unit vector b 2 H

All rank one K = ( · , b)
H
 =:  b⇤ for which perturbed

operator U +K is unitary parametrized by complex |�| = 1:

U� = U +K = U + (� � 1)bb⇤U

WLOG: b star-cyclic, i.e. H = span{Ukb, (U⇤
)

kb : k 2 Z
+

}
In the spectral representation of U wrt b we have

U� = M⇠ + (� � 1)1 ¯⇠⇤ on L2

(µ) where µ = µU,b

When |�| < 1, then U� is a c.n.u. contraction; fix such �

Translate the problem into its functional model

Our goal: Carry out this correspondence!



Model theory and the Clark operator �

Unitarily equivalent formulation of rank one contractions U�

A Clark operator is a unitary operator � : K✓ ! L2

(µ) so that

U�� = �M✓ and �1 = ↵b

where:

There is a 1-1 correspondence {µ, b}$ {✓ 2 H1
(D)}

The model space K✓ is a backward shift invariant subspace of
a generally vector-valued (possibly weighted) L2 space
If ✓ is inner, then K✓ = H2

(D) ✓H2
(D) by Beurling

M✓ = P✓Mz|K✓ is the compression of the forward shift
WLOG ↵ = 1



What should �⇤ look like? A formal computation

Take |�| = 1 and substitute

U� = U + (� � 1)bb⇤U

into Mz�
⇤
= �

⇤U� . Using �⇤b = 1 we obtain

Mz�
⇤
= �

⇤U� = �

⇤
[U + (� � 1)bb⇤U ] = �

⇤U + (� � 1)1b⇤U.

ASSUME that �⇤ is an integral operator with kernel K(z, ⇠) and
deal only with the integrand:

K(z, ⇠)z = K(z, ⇠)⇠ + (� � 1)⇠

K(z, ⇠) =
(� � 1)⇠

z � ⇠ =

1� �
1� ¯⇠z

.

Integrating wrt spectral measure µ, we obtain a Cauchy-type SIO.



Unitary rank one perturbations were studied by Aleksandrov, Ball,
Clark, Douglas–Shapiro–Shields, Kapustin, Poltoratski, Ross,
Sarasson, etc.

A self-adjoint setting was studied by Albeverio–Kurasov,
Aronszajn–Donoghue, delRio, Kato-Rosenblum, Simon, etc.

Finite rank generalizations occur in literature by Albeverio–Kurasov
(extension theory), Kapustin–Poltoratski (case µ ? dx).



Finite rank unitary perturbations

Consider unitary operator U on separable Hilbert space H

Assume U is star-cyclic!

By the spectral theorem, WLOG, assume U = M⇠ in
H = L2

(µ), where µ is a probability measure on T
We study the family of rank d perturbations U +K with
RanK ⇢ E for some a priori fixed E  H, dimE = d

All unitary perturbations U +K of U can be parametrized as

T = U + (R� I
E
)P

E
U,

where R runs over all unitary operators in E



Slight reformulation
The perturbation T = U + (R� I

E
)P

E
U can be rewritten as

T = U +B(�� I
Cd )B

⇤U

where:

We factorized R through Cd by picking an isometric operator
B : Cd ! H, RanB ⇢ E

A “matrix” representation of B comes about from defining
functions bk 2 L2

(µ) by bk := Bek

B is the multiplication by the row vector function

B(⇠) = (b
1

(⇠), b
2

(⇠), . . . , bd(⇠))

The adjoint acts by B⇤f =

R
T
f(⇠)B⇤

(⇠)dµ(⇠)

Then R = B�B⇤ where � is a d⇥ d matrix

For rank one unitary perturbations this reduces to the usual

T = U + (� � 1)bb⇤U with � 2 T.



Star-cyclic subspaces and c.n.u. contractions

Recall: Vector ' is star-cyclic for an operator T , if

H = span{T k', (T ⇤
)

k' : k 2 Z
+

}

Ex.: Given ONB {fi}i2N of H, consider the unitary operator
U =

P
�ifif

⇤
i with �i 6= �j for i 6= j and �i 2 T. This

operator is star-cyclic with star-cyclic vector ' =

P
2

�ifi.
Take E = span{f

1

, f
2

} and consider rank two perturbation
T = �f

1

f⇤
1

+ �f
2

f⇤
2

+

P
i>2

�ifif
⇤
i . Operator T has

eigenvalue � with multiplicity 2. T is not star-cylic.

A subspace E is star-cyclic for an operator T on H, if

H = span{T kE, (T ⇤
)

kE : k 2 Z
+

}

Lemma

If E = RanB is a star-cyclic subspace for U and k�k
2

< 1, then
T = U +B(�� I)B⇤U is a c.n.u. contraction.



Model theory
For a contraction T its defect operators and defect spaces are

D
T
:= (I� T ⇤T )1/2, D

T ⇤ := (I� TT ⇤
)

1/2,

D
T
:= closRanD

T
, D

T ⇤ := closRanD
T ⇤

Operator-valued characteristic function ✓ 2 H1
(D!D⇤),

where dimD = dimD
T
and dimD⇤ = dimD

T ⇤

Here dimD = dimD
T
= d

The model space K✓ is a backward shift invariant subspace of
L2

(D⇤ �D;W ), the model operator M✓ is the compression
of the forward shift

Sz.-Nagy–Foiaş uses W ⌘ I and with � := (ID � ✓⇤✓)1/2

K✓ :=

✓
H2

(D⇤)
clos�L2

(D)

◆
 
✓
✓
�

◆
H2

(D)

If ✓ is inner, then � ⌘ 0. So K✓ = H2

(D⇤) ✓H2

(D)



Operator-valued characteristic function ✓
In the formula for the characteristic function

✓T (z) = B⇤
⇣
�T + zDT ⇤

�
I
H
� zT ⇤��1

DT

⌘
(B⇤U)

⇤
���
D
, z 2 D

we need to invert a 2d⇥ 2d matrix.

Theorem

Let T = U +B(�� ICd)B⇤U with strict contraction �. In matrix
representation the characteristic function ✓

T
2 H1

(Cd!Cd
) is

✓
T
(z) = ��+D

�

⇤F1

(z)
⇣
I
Cd � (�

⇤ � I
Cd )F1

(z)
⌘�1

D
�

, where

F
1

(z) := zB⇤
(I

H
� zU⇤

)

�1U⇤B =

Z

T

z⇠

1� z⇠
M(⇠)dµ(⇠)

with matrix-valued function M , Mj,k(⇠) = bj(⇠)bk(⇠).

If � is also normal, then the characteristic functions ✓
�

and ✓ are
related via linear fractional transformation

✓
�

= D�1

�

(✓ � �)(I
Cd � �

⇤✓)�1D
�

.



Clark operator
A Clark operator � : K✓ ! H is unitary with �M✓ = T�

Parametrizations C : Cd ! DM✓
and C⇤ : Cd ! DM⇤

✓
agree,

if there is a Clark operator � so that the diagram commutes

Lemma

In the above setting, the following parametrizations agree

C⇤e⇤ =

✓
I� ✓(z)✓⇤(0)
��(z)✓⇤(0)

◆
(I� ✓(0)✓⇤(0))�1/2 e⇤, e⇤ 2 Cd,

Ce =

✓
z�1

(✓(z)� ✓(0))
z�1

�(z)

◆
(I� ✓⇤(0)✓(0))�1/2 e, e 2 Cd.



Representation of �⇤
Operator C : Cd ! DM✓

can be realized as multiplication by

2d⇥ d matrix-valued function: (Ce)(z) = C(z)e for e 2 Cd. And
let C⇤(z) be so that (C⇤e⇤)(z) = C⇤(z)e⇤ for e⇤ 2 Cd.

Theorem (Universal representation)

Consider the usual finite rank perturbation setting:

T = U +B(�� ICd)B⇤U with k�k < 1 and U = M⇠ in H = L2
(µ)

RanB star-cyclic; ✓ characteristic function of T ; K✓ model space

C and C⇤ parameterizing unitary operators agree � : K✓ ! H.

And let C(z), C⇤(z) be as above.

Then for all b 2 RanB and for all f 2 C1

(T) we have

�
�

⇤fb
�
(z) = f(z)C⇤(z)B

⇤b+C
1

(z)

Z
f(⇠)� f(z)

1� z¯⇠
B⇤

(⇠)b(⇠)dµ(⇠)

with C
1

(z) = C⇤(z)� zC(z), B⇤
(⇠) =

⇣
b
1

(⇠), b
2

(⇠), . . . , bd(⇠)
⌘>

and B⇤b =
R
B⇤

(⇠)b(⇠)dµ(⇠).



Regularization
Fix f 2 L2

(µ) and g 2 L2

(Cd �Cd
) so that f and g have compact

supports, supp f \ supp g = ?. Through approximation

(�

⇤f, g) =

Z

T
g⇤(z)C

1

(z)

Z

T

f(⇠)

1� z¯⇠
B⇤

(⇠)dµ(⇠)dm(z).

Those terms of the representation formula for �⇤ that include f(z)
vanish because of the separated support assumptions.

|(�⇤f, g)|  kfk
L2

(µ)
kgk

L2
(C2d

)

.

Theorem

Let µ and ⌫ be Radon measures in RN without common atoms.
Assume that a kernel K 2 L2

loc

(µ⇥ ⌫) is Lp restrictedly bounded,
with the restricted norm C. Then the integral operator with T
kernel K is a bounded operator Lp

(µ)! Lp
(⌫) with the norm at

most 2C.

Through standard mollification (TB⇤µ
r g)(z) =

R
T

g(⇠)

1�rz¯⇠
B⇤

(⇠)dµ(⇠)

is bounded with norm independent of r.



�⇤ on all of L2(µ)

The Cauchy-type operator (TB⇤µ
r g)(z) =

R
T

g(⇠)

1�rz¯⇠
B⇤

(⇠)dµ(⇠)

has L2 boundary values as r ! 1� for a.e. z 2 T
Define pointwise (TB⇤µ

± g)(z) := limr!1

⌥(TB⇤µ
r g)(z)

Operators C
1

TB⇤µ
± : L2

(µ)! L2

(Cd � Cd
) are bounded and

C
1

TB⇤µ
± = w.o.t.- lim

r!1

⌥
C
1

TB⇤µ
r

Theorem

In Sz.-Nagy–Foiaş transcription �⇤ is represented for f 2 L2

(µ) by

(�

⇤f)(z) = C
1

(z)(TB⇤µ
+

f)(z) + f(z) (z), z 2 T, where

 (z) := b�1

(z)[C⇤(z)B
⇤b� C

1

(z)(TB⇤µ
+

b)(z)].



Summary

Defined finite rank perturbations and star-cyclic subspaces

Introduced model spaces and Clark operator

Matrix-valued characteristic functions related by linear
fractional transformations, if � is normal

Universal representation for �⇤
� on C1

(T) and ...

... on all of L2

(µ) via regularization in Sz.-Nagy–Foiaş
transcription



Some possible future questions

Allow non-simple U

Investigate cyclicity properties

Perturbation theory (expressing µ
�

in terms of µ)

Infinite rank perturbations T with trace class D
T

Ramifications for Anderson-type Hamiltonians (infinite rank
random perturbations includes the discrete random
Schrödinger operator)


