Radial Fourier Multipliers

Laura Cladek, University of British Columbia MSRI Workshop - Connections for Women: Harmonic Analysis January 20, 2017

Radial Fourier Multipliers

 \leftarrow \Box \rightarrow

◆ 母 ▶

画

 $2Q$

Þ

Fourier Multiplier Operators

- Fourier multiplier operators are a basic object of study in harmonic analysis.
- \bullet Given $m \in L^{\infty}(\mathbb{R}^d)$, we may define an operator \mathcal{T}_m acting on Schwartz functions $f \in \mathcal{S}(\mathbb{R}^d)$ by

$$
\mathcal{F}[T_m f](\xi) = m(\xi)\widehat{f}(\xi).
$$

- One is typically interested in the mapping properties of *T^m* between various function spaces.
- Most basic question to ask: For a given *p*, does *T^m* extend to a bounded operator on *Lp*?

Radial Fourier Multipliers

◀ ㅁ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶ ...

唐

L^p Mapping Properties of Multipliers

- **•** Is there a *characterization*, i.e. a simple and useful criterion for *m* that determines L^p boundedness of T_m for general multipliers $m \in L^{\infty}$?
- **•** If $p = 1$, T_m is bounded on L^1 if and only if m is the Fourier transform of a finite Borel measure.
- **•** If $p = 2$, T_m is bounded on L^2 by Plancherel since $m \in L^{\infty}$.
- If $p \neq 1, 2$, it is widely believed that no reasonable characterization exists.
- What if we ask the same question but restrict the class of multipliers $m \in L^{\infty}$ to a smaller subclass, for example the subclass of bounded, *radial* functions?

Radial Fourier Multipliers

(ロ) (伊) (ミ) (ミ)

Þ

The Radial Fourier Multiplier Conjecture (Simplified Version)

Let $1 < p < p_d := \frac{2d}{d+1}$ and $d \geq 2$. If $m \in L^{\infty}(\mathbb{R}^d)$ is radial and *supported in a compact subset of* $\{ \xi : 1/2 < |\xi| < 2 \}$, then the *operator* T_m *is bounded on* $L^p(\mathbb{R}^d)$ *if and only if* $K := \widehat{m} \in L^p(\mathbb{R}^d)$ *. Moreover, we actually have*

$$
\|T_m\|_{L^p\to L^p}\approx_p \|K\|_p.
$$
 (1)

 \bullet If (1) is true, we will say Rad(d , p) holds.

The Radial Fourier Multiplier Conjecture (Full Version)

Let $1 < p < p_d := \frac{2d}{d+1}$ and $d \geq 2$. Fix an arbitrary Schwartz *function* η *that is not identically* 0*. If* $m \in L^{\infty}(\mathbb{R}^d)$ *is radial, then*

$$
\|T_m\|_{L^p\to L^p}\approx_p\sup_{t>0}t^{d/p}\|T_m[\eta(t\cdot)]\|_{L^p}.
$$

Radial Fourier Multipliers

≮ロト ⊀母 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

É

 $2Q$

Background and Motivation for the Conjecture

In 2008, Garrigós and Seeger obtained a characterization of L_{rad}^p boundedness of radial Fourier multipliers, where L_{rad}^p denotes the space of radial *L^p* functions. The simplified version of their result states:

Theorem (Garrigós and Seeger, 2008)

Let $1 < p < p_d := \frac{2d}{d+1}$ and $d \geq 2$. If $m \in L^{\infty}(\mathbb{R}^d)$ is radial and *supported in a compact subset of* $\{\xi : 1/2 < |\xi| < 2\}$, then the *operator* T_m *is bounded on* $L^p_{rad}(\mathbb{R}^d)$ *if and only if* $K := \widehat{m} \in L^p(\mathbb{R}^d)$ *. Moreover, we actually have*

$$
\|T_m\|_{L_{rad}^p\to L_{rad}^p}\approx_p \|K\|_p.
$$

Radial Fourier Multipliers

◀ ロ ▶ ◀ 何 ▶ ◀ ヨ ▶

Previous partial progress toward the Conjecture for $d \geq 4$

In 2011, Heo, Nazarov, and Seeger proved the conjecture in the partial range $1 < \rho < \frac{2d-2}{d+1}$ in dimensions $d \geq 4$. They actually proved the following stronger conjecture in the partial range $1 < p < \frac{2d-2}{d+1}$ and $d \geq 4$.

The Spherical Means Conjecture

Let $1 < p < p_d := \frac{2d}{d+1}$. Let σ_r denote the surface measure on the $(d-1)$ -sphere of radius r centered at the origin. Let ψ_0 be a smooth, radial *function supported in the unit ball centered at the origin whose Fourier transform vanishes to higher order (say* 100*d) at the origin. Set* $\psi = \psi_0 * \psi_0$. *There is a constant* C_p *so that for every* $h \in L^p(\mathbb{R}^d \times \mathbb{R}^+)$ *dy* r^{d-1} *dr*) we have

$$
\left\| \int_{\mathbb{R}^d} \int_1^\infty h(y,r) \, \sigma_r * \psi(\cdot - y) \, dr \, dy \right\|_{L^p(\mathbb{R}^d)}
$$

\$\leq C_p \left(\int \int_{\mathbb{R}^d \times \mathbb{R}^+} |h(y,r)|^p \, dy \, r^{d-1} \, dr \right)^{1/p}\$. (2)

• If (2) is true we will say $Sph(d, p)$ holds.

Radial Fourier Multipliers

A Tree of Conjectures in Harmonic Analysis

Radial Fourier Multipliers

New Results in Three and Four Dimensions

We improve Heo, Nazarov, and Seeger's range for $Rad(4, p)$ from $1 < p < 6/5$ to $1 < p < 36/29$.

Theorem 1 (C., 2016)

The Radial Fourier Multiplier Conjecture in four dimensions holds in the range $1 < p < 36/29$.

In three dimensions, we obtain a characterization in the range $1 < p < 13/12$ in terms of the $L^{p,1}$ norm of the kernel.

Theorem 2 (C., 2016)

Let $1 < p < 13/12$ *. Let* $m \in L^{\infty}(\mathbb{R}^{3})$ *be radial and supported in a compact subset of* $\{\xi : 1/2 < |\xi| < 2\}$ *. Then* T_m *is restricted strong type* (p, p) *if* $K = \widehat{m} \in L^p(\mathbb{R}^3)$, and T_m is bounded on $L^p(\mathbb{R}^3)$ if $K \in L^{p,1}(\mathbb{R}^3)$. Moreover

 $\|T_m\|_{L^p \to L^p} \lesssim \|K\|_{L^{p,1}}$.

 \bullet We expect $||K||_{L_p,1}$ in the second theorem could be improved to $||K||_{L_p}$, which would imply that the Radial Fourier Multiplier Conjecture holds in the range $1 < p < 13/12$ in $\mathbb{R}^3.$

Radial Fourier Multipliers

◀ ロ ▶ ◀ 包 ▶ ◀ 듣 ▶ ◀ 듣 ▶ ...

唐

- First, some motivation for what we are about to do next:
- Since the multiplier *m* is compactly supported away from the origin, we have $\hat{m} =: K = K * \phi$ where ϕ is a smooth bump with ϕ supported in a compact set away from the origin (which implies ϕ has a lot of cancellation).
- Moreover, since \hat{K} is supported in the double of the unit ball, *K* is "essentially constant" at unit scales, and so since it is radial it is essentially constant on annuli centered at the origin of thickness 1.
- **•** Thus we should expect that we should be able to "decompose" the kernel K into functions that have a lot of cancellation and are supported on annuli of thickness ≈ 1 centered at the origin.

Radial Fourier Multipliers

≮ロト ⊀母 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

∌

- **•** Some machinery of Heo, Nazarov, and Seeger is needed.
- As in [HNS], the first step is to **discretize** the problem and to reduce it to proving an inequality involving sums of functions with cancellation supported on annuli of thickness ≈ 1 whose centers and radii lie in a discrete set.
- Let $\mathcal{Y} \subset \mathbb{R}^3$ be the integer lattice in \mathbb{R}^3 which will represent centers of 3-D annuli and let $\mathcal{R} \subset \mathbb{R}$ be the integers, which will represent **radii** of 3-D annuli.
- For $(y, r) \in \mathcal{Y} \times \mathcal{R}$, let $F_{y,r}$ denote the function $\psi * \sigma_r(\cdot y)$, where ψ is a smooth compactly supported function whose Fourier transform vanishes to high order at the origin and where σ_r is the surface measure on the 2-sphere of radius *r* centered at the origin.
- **•** Discretization, followed by an application of a dyadic interpolation lemma, reduces Sph(3*, p*) to proving the following inequality for every finite set $\mathcal{E} \subset \mathcal{Y} \times \mathcal{R}$ and every measurable function $c: \mathcal{Y} \times \mathcal{R} \to \mathbb{C}$ with $|c(y, r)| \leq 1$:

$$
\left\|\sum_{(y,r)\in\mathcal{E}}c(y,r)\mathcal{F}_{y,r}\right\|_{p}^{p}\lesssim_{p}\sum_{k}2^{2k}\#\mathcal{E}_{k},\tag{3}
$$

where $\mathcal{E}_k = \mathcal{E} \cap (\mathcal{Y} \times [2^k, 2^{k+1}]).$

Radial Fourier Multipliers

◀ ロ ▶ ◀ 倒 ▶ ◀ 듣 ▶ ◀ 듣 ▶

∍

Density decompositions

- For dyadic numbers $u \geq 1$, we decompose \mathcal{E}_k into sets $\mathcal{E}_k(u)$ of "density" *u* as follows.
- $\mathsf{Set}\ \mathcal{E}_k(u) := \{ (y,r) \in \mathcal{E}_k : \, \exists \text{ a ball } B \text{ of radius } \leq \}$ 2^{*k*} containing (y, r) such that $\#(\mathcal{E}_k \cap B) \geq u(\text{rad}(B))$.
- $\mathsf{Set}\ \mathcal{E}_k(u)=\widehat{\mathcal{E}_k}(u)\setminus\bigcup$ u' $>$ *u* dyadic $\mathcal{E}_{k'}(u)$.
- We have

$$
\mathcal{E}_k = \bigcup_{u \geq 1 \text{ dyadic}} \mathcal{E}_k(u).
$$

• For a given function $c(y, r): \mathcal{Y} \times \mathcal{R} \to \mathbb{C}$, set

$$
G_{u,k} = \sum_{(y,r)\in \mathcal{E}_k(u)} c(y,r) F_{y,r},
$$

$$
G_u = \sum_k G_{u,k}.
$$

Radial Fourier Multipliers

*L*² bounds vs. support size

Lemma (Support size estimate, [HNS])

For all dyadic $u \geq 1$, the Lebesgue measure of the support of $G_{u,k}$ $i s \leq u^{-1} 2^{2k} \# \mathcal{E}_k$.

 \bullet To prove the restricted strong type version of Rad(3, p), it actually suffices to prove inequality (3) with the additional assumption that $\mathcal E$ is a **product**, i.e. a set of the form $Y \times R$ where $Y \subset Y$ and $R \subset R$. Under this assumption, we obtain the following L^2 estimate, which is an improvement over the L^2 estimate proved in [HNS].

Lemma (Improved *L*² bound)

For all $\epsilon > 0$.

$$
||G_u||_2^2 \lesssim_{\epsilon} u^{11/13+\epsilon} \sum_k 2^{2k} \#\mathcal{E}_k.
$$

 $\big(\text{Recall } G_u := \sum_k \sum_{(y,r) \in \mathcal{E}_k(u)} c(y,r) F_{y,r}$.)

Radial Fourier Multipliers

◆ロト ◆伊ト

Þ

Outline of proof of the *L*² estimate

• We require scalar product estimates:

$$
|\langle F_{y,r}, F_{y',r'} \rangle| \lesssim \frac{rr'}{(1+|y-y'|+|r-r'|)} \times \sum_{\pm,\pm} (1+r\pm r'\pm |y-y'|)^{-N}
$$

for any $N > 0$.

- For a fixed y, r, r' the set of y' for which the second term in the product is the worst is contained in the union of two annuli centered at *y*, one of radius $r + r'$ and one of radius $|r - r'|$.
- **•** This corresponds exactly to tangencies of annuli.
- We will use a geometric argument to control the number of tangencies between annuli.
- For our argument, it will be essential to use the product structure of the set *E*. **K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶**

Radial Fourier Multipliers

 \equiv

A geometric lemma

Lemma

Fix integers m, *l* with $l \leq m$. *Fix* $t \approx 2^m$. *Then the size of the intersection of three annuli in* \mathbb{R}^3 *of thickness* \approx 1 *and inner radius t such that the distance between the centers of any pair is at least* 2^{I} and no greater than $2^{\mathsf{m}}/10$ is $\lesssim 2^{3(\mathsf{m}-\mathsf{I})}$, provided that $l \ge m/2 + 10$ *.*

Thank you!

Radial Fourier Multipliers

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

È

 $\mathcal{P} \circ \mathcal{P} \circ \mathcal{P}$