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Objects

The Cauchy Integral along the boundary of a (simply
connected) planar domain D ⇢ C :

Cf (z) =
1

2⇡i

Z

w2bD

f (w)

w � z
dw , z 2 D

More precisely, we regard C as a Singular Integral Operator
(SIO):

Cf (z) = p.v .
1

2⇡i

Z

w2bD

f (w)

w � z
dw , z 2 bD
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Landmark Results

Theorem [Calderòn (1977); Coifman-McIntosh-Meyer (1982)]:

Suppose D ⇢ C is a Lipschitz domain, i.e.

bD = {w = t + i A(t) | |A(t)� A(s)|  M|s � t|, s, t 2 R}

Then, the Cauchy Integral

f 7! C(f )

is bounded: Lp(bD,�) ! Lp(bD,�), 1 < p < 1
with respect to arc-length measure for bD

(Here, Lp(bD,�) := {f |
R
bD |f (w)|pd�(w) < 1}, p > 1)

Theorem [Coifman-McIntosh-Meyer (1982)]:
The Double Layer Potential Operator: f 7! D(f )
for a Lipschitz domain D ⇢ RN is bounded:

Lp(bD,�) ! Lp(bD,�), 1 < p < 1
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Impact

Elliptic Linear PDEs:
Boundary Value Problems on non-smooth domains

Harmonic Analysis: New Techniques for SIOs

Geometric Function Theory: Analytic Capacity

One & Several complex variables: Orthogonal projections
of L2 onto spaces of holomorphic functions for domains:

D b Cn, n � 1

(Specifically, the Szegő projection and the Bergman
projection, which map L2 onto the holomorphic Hardy space
(Szegő), and onto the Bergman space)
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Motivation: Lp-regularity of orthogonal projections

E.g.,
Holomorphic Hardy Space for D ⇢ Cn, n � 1:

Hp(bD,�) :=

⇢
F

���� @F (z) = 0, z 2 D, sup
✏>0

Z

z2bD✏

|F (z)|pd�✏(z) < +1
�

(A closed subspace of Lp(bD,�), 1  p < 1).

Pick p = 2: Orthogonal Projection
S : L2(bD,�) 7! H2(bD,�):

S is orthogonal proj. () S = S⇤ () kSkL2!L2 = 1

(S = Szegő Projection)

Lp-Regularity problem for Szegő projection S:

under minimal assumptions on D, find P = P(D) 2 [2,+1] so that

S : Lp(bD,�) ! Lp(bD,�) is bounded for all P 0 < p < P
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Lp-regularity of Szegő projection: History and Motivation.

Size of (P 0,P) is related to geometry and regularity of D e.g.,

L. - Stein (2004):

n = 1: If D b C is Vanishing Chord-Arc (e.g., D of class C 1),
then P = +1.

n = 1: If D b C is Lipschitz with constant M, then

P = 2
⇣
1 +

⇡

2 arctanM

⌘
> 4

n = 1: If D b C is a rectifiable local graph, then P = 4.
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Connection with Cauchy Integral

T (e.g., Cauchy int.) is also a projection: L2 7! H2 i.e.,

T reproduces holomorphic functions from their boundary
values (“Cauchy formula”)
T produces holomorphic functions from, say, C 1-smooth
boundary data

Compare T with the orthogonal projection S:

ST = T ; TS = S ) ST ⇤ = S

S(T ⇤ � T ) = S� T

T = S [I � (T ⇤ � T )] on L2 (I = Identity op.)
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The basic idea, after Kerzman & Stein

T = S [I � (T ⇤ � T )] on L2 (0.1)

Basic idea: if T ⇤ � T is “better” than T (“cancellation of
singularities”) then can use (0.1) to draw information:
from S to T and vice-versa, from T to S.

From S to T : another proof of T :L2 ! L2 (regularity of T ).

From T to S: Suppose T bounded in L2: can we solve (0.1)
for S?

(T ⇤ � T )⇤ = �(T ⇤ � T )

=)

S = T [I � (T ⇤ � T )]�1 in L2 (0.2)

??? What about Lp, p 6= 2 ???
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From T to S via: S = T [I � (T ⇤ � T )]�1

Settings where we can deal with p 6= 2:

D ⇢ C (n = 1) and T = Cauchy integral:

D of class C 2: 1 < p < 1 (Kerzman-Stein 1978),
via: T ⇤ � T smoothing, which implies

[I � (T ⇤ � T )]�1 : Lp ! Lp

D vanishing-constant chord-arc: 1 < p < 1 (Semmes, 1983),
via T ⇤ � T compact in Lp, which implies

[I � (T ⇤ � T )]�1 : Lp ! Lp
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From T to S via: T = S [I � (T ⇤ � T )]
Settings where we can deal with p 6= 2:

D ⇢ Cn (n � 2) and T✏ = Henkin-Ramirez integral(s) (later):

D bounded, of class C 2 and strongly pseudo-convex (later):
1 < p < 1 (L. - Stein 2016), via

T✏ : Lp ! Lp (later)

T ⇤
✏ � T✏ = A✏ + B✏;

kA✏kLp!Lp  Cp ✏ ; B✏ : L1 ! L1

T✏ = S [I � A✏]� SB✏

Say 1 < p < 2: SB✏ : Lp ,! L1!L1 ,! L2 ! L2 ,! Lp

Choose ✏ = ✏(p) such that kA✏kLp!Lp < 1:

S = (T✏ + SB✏) [I � A✏]
�1 : Lp ! Lp
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Caveat: Studying the orthogonal projection S by comparing it
with another operator T requires that the kernel of T be
holomorphic as a function of the output parameter z 2 D
(“holomorphic kernel”) (which is of course the case when n = 1):

This talk is about holomorphic Cauchy-like kernels in
complex dimension n � 2:

Construction of holomorphic kernels

Lp-regularity
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Two crucial features of the 1-dimensional Cauchy Kernel

n = 1

(as we just said) the fact that H(w , z) is holomorphic i.e.,
analytic, as a function of z 2 D for fixed w 2 bD;

H(w , z) is universal:

H(w , z) =
1

2⇡i

dw

w � z
, z , w 2 C⇥ C \ {w = z}

in the sense that the e↵ect of the particular domain D ⇢ C we
are working with is only exerted through the inclusion
j : bD ,! C, i.e.

H(w , z) =
1

2⇡i
j⇤
✓

dw

w � z

◆
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A candidate for the Cauchy kernel in Cn

n � 1

One option is to choose the Bochner-Martinelli kernel:

H(w , z) =
1

(2⇡i)n
j⇤

0

@
nX

`=1

w ` � z`
|w � z |2n dw`

^

⌫ 6=`

dw⌫ ^ dw⌫

1

A (0.3)

Favorable features of BM-kernel:
Bochner-Martinelli is a higher dim. analogue of Cauchy:

n = 1 ) H(w , z) =
1

2⇡i

dw

w � z
(0.4)

the Bochner-Martinelli integral for a Lipschitz domain D ⇢ Cn

is bounded:

Lp(bD,�) ! Lp(bD,�), 1 < p < 1
the Bochner-Martinelli integral for e.g., a Lipschitz domain
D ⇢ Cn does reproduce holomorphic (i.e. analytic) functions
(“Cauchy formula”).
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A candidate for the Cauchy kernel in Cn

The Bochner-Martinelli kernel:

H(w , z) =
1

(2⇡i)n

nX

`=1

w ` � z`
|w � z |2n dw`

^

⌫ 6=`

dw⌫ ^ dw⌫ (0.5)

An unfavorable feature of BM kernel:

n � 2 )
BM kernel (0.5) is not holomorphic as a function of z 2 D

As a consequence, the BM integral does not produce
holomorphic functions (from, say, C 1(bD)- data): this fact
limits the applicability of the BM integral to the study of
problems in complex function theory.
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Objective

Extend the 1-dimensional theory for C to Cn, n � 1:

Find a higher-dimensional analog of the Cauchy kernel:

H(w , z) =
1

2⇡i

dw

w � z
, z 2 D ⇢ C, w 2 bD ⇢ C

which is now

meaningful when z 2 D ⇢ Cn, w 2 bD ⇢ Cn, n � 1

for D with “minimal” regularity

and, holomorphic as a function of z 2 D

Show that the operator defined via this new kernel is bounded :

Lp(bD,�) ! Lp(bD,�), 1 < p < 1
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E↵ects of the requirement that the kernel be holomorphic

Requirement on domain’s geometry:

D has to have some “convexity”

Requirement on domain’s regularity:

D needs to be more regular than “Lipschitz”
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Why “convexity” ????

The Lp-theory of the (holomorphic) Cauchy integral for
D b Cn, n � 2 requires dealing with

Dimension-induced obstructions (Cn vs. C)
Complex-Structure-induced obstructions (Cn vs. R2n)

These obstructions ultimately lead to the requirement that

D b Cn be “pseudoconvex”
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Why “Pseudoconvexity”?

“Pseudoconvexity” is a dimension-induced phenomenon:

When you look for a holomorphic kernel H(w , z), what you are
really looking for is a function that is holomorphic in z 2 D and is
singular at (any) w 2 bD (cannot be extended holom. past w) i.e.,
D must be a maximal domain of analyticity (= “domain of
holomorphy”)

In dimension 1 one can always find such a function
(no matter what D looks like): just take

H(w , z) =
1

w � z
In dimension n � 2 there are examples of domains D0 for
which this may not be the case (“bad domains” – known since
early ‘1900s!)

Levi problem (connects “analysis” with “geometry”):
D ⇢ Cn is a domain of holomorphy () D is “pseudoconvex”
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Settings where things are known to work:

Henkin; Ramirez; Kerzman-Stein (1978):

D 2 C k , k � 3 and strongly Levi-pseudoconvex

Kernel: via an algebraic construct (Cauchy-Fantappié theory)

Proof of Lp(bD,�) ! Lp(bD,�)-regularity:

by way of “osculation by model domain ”:

{z | Im zn > |z1|2 + · · ·+ |zn�1|2}

the Siegel Upper Half Space
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Settings where things are known to work:

L. - Stein (2016)

D 2 C k , k = 2 and strongly Levi-pseudoconvex

Kernel(s): a family of Cauchy-Fantappiè terms

Proof of Lp ! Lp-regularity: T (1) theorem.
( Original method (“osculation by model domain”) breaks
down as soon as regularity of D is below the class C 3.)
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Setting of current interest:

L. - Stein (2014):

D b Cn, D 2 C 1,1 and strongly C-linearly convex, i.e.

D has a defining function of class C 1,1, i.e.

D = {⇢ < 0} and bD = {w | ⇢(w) = 0},with
⇢ : Cn ! R, ⇢ 2 C 1(Cn)
r⇢(w) 6= 0, w 2 bD, and r⇢ 2 Lip(Cn)

and

dE (z ,w + TC
w ) � c |w � z |2 if z 2 D and w 2 bD

Example: Siegel upper half space: D = {z 2 C2 | Im z2 > |z1|2}
is strongly C-linearly convex, but not strongly convex
(because ` = {(0 + i0, x2 + i0) | x2 2 R} ⇢ bD)
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Kernel

Cauchy-Leray kernel:

H(w , z) =
1

(2⇡i)n
@⇢(w) ^ (@@⇢(w))n�1

h@⇢(w),w � zin , w 2 bD, z 2 D

⇢ is (any) defining function for D

@⇢(w) =
nX

j=1

@⇢

@⇣j
(w)dwj ; @@⇢ =

nX

j ,k=1

@2⇢

@⇣j@⇣k
(w)dwj ^ dwk

h⇣, ⌘i :=
P
⇣j ⌘j , ⇣, ⌘ 2 Cn

first introduced by J. Leray (1950s) in the setting of
C 2-smooth, strongly convex domains D.
Revisited by T. Hansson (1999) in the specialized context of a
family of C1-smooth, weakly convex ellipsoids.
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Cauchy-Leray kernel: good news

Suppose for the moment that D is of class C 2:

H(w , z) =
1

(2⇡i)n
@⇢(w) ^ (@@⇢(w))n�1

h@⇢(w),w � zin (0.6)

If n = 1 then Cauchy-Leray is the one-dim Cauchy kernel:

@⇢(w)

h@⇢(w),w � zi =
⇢0(w)dw

⇢0(w)(w � z)
=

dw

w � z

H(w , z) is holomorphic wrt z 2 D because denominator does
not vanish by strong C-linear convexity:

|h@⇢(w),w � zi| ⇡ dE (z ,w + TC
w ) � c |w � z |2 > 0
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Cauchy-Leray kernel: caveats

Suppose now D that is only of class C 1,1:

H(w , z) =
1

(2⇡i)n
@⇢(w) ^ (@@⇢(w))n�1

h@⇢(w),w � zin (0.7)

By Rademacher Theorem:

⇢ 2 C 1,1(Cn) ) r2⇢ 2 L1(Cn)

in particular, r2⇢(w) is defined only a.e. w 2 Cn

but bD has measure 0 in Cn

so, r2⇢ may be undefined on bD. In particular

@@⇢, and thus H(w , z), may be undefined

Loredana Lanzani HA in SCV



An example

For
F : C ! R given by F (x + iy) := |x |

and
D := {x + iy | x < 0} ⇢ C

we have

D is a smooth domain in C;

F 2 Lip(C) and so rF 2 L1(C)

However, rF is undefined on bD = {x + iy | x = 0}

On the other hand, j⇤dF is well-defined on bD (in fact, j⇤dF = dj⇤F ⌘ 0)

j : bD ,! C
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An example

For
F : C ! R given by F (x + iy) := |x |

and
D := {x + iy | x < 0} ⇢ C

we have

D is a smooth domain in C;

F 2 Lip(C) and so rF 2 L1(C)

However, rF is undefined on bD = {x + iy | x = 0}

On the other hand, j⇤dF is well-defined on bD (in fact, j⇤dF = dj⇤F ⌘ 0)

j : bD ,! C
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Cauchy-Leray kernel: the role of tangential components

H(w , z) =
1

(2⇡i)n
j⇤
✓
@⇢(w) ^ (@@⇢(w))n�1

h@⇢(w),w � zin

◆

Proposition (L. – Stein)

Suppose F 2 C 1,1(Cn) (with n � 2) and D ⇢ Cn is of class C 1,1.
Then there exists a (unique) 2-form on bD, which we write as
j⇤(@@F ), whose coe�cients are in L1(bD) and satisfies

Z

bD

j⇤(@@F ) ^  =

Z

bD

j⇤(@F ) ^ d( )

for all (2n � 3)-forms  on bD that are of class C 1.

Outcomes:
Cauchy-Leray kernel is well-defined (meaningful):
H(w , z) reproduces holomorphic functions (“Cauchy
formula”) and is “canonical” (independent of choice of ⇢).
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Cauchy-Leray integral: main result

Theorem

Suppose D ⇢ Cn is strongly C-linearly convex and of class C 1,1.
Then, the Cauchy-Leray integral:

f 7! C(f )(z) := 1

(2⇡i)n

Z

w2bD

f (w) j⇤
✓
(@⇢(w) ^ (@@⇢(w))n�1)

h@⇢(w),w � zin

◆

initially defined for functions in C 1(bD), extends to a bounded
linear operator:

Lp(bD,�) ! Lp(bD,�), 1 < p < 1

where � is the Leray-Levi measure

d�(w) := j⇤(@⇢(w) ^ (@@⇢(w))n�1)
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Cauchy-Leray integral: Lp-regularity

Proof of Lp ! Lp-regularity: goes by way of

T (1)-Theorem in the special case:

T (1) = 0; T ⇤(1) = 0

for a space of homogeneous type informed by the geometry
and regularity of the ambient domain D.
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A space of homogeneous type that works for us

Theorem

Suppose D b Cn is strongly C-linearly convex and of class C 1,1.

Then, (X , d,�) is a space of homogeneous type, with:

Set: X := bD

Quasimetric: d(w , z) := |h@⇢(w),w � zi|1/2, w , z 2 bD

Doubling measure: Leray-Levi meas.: d� = j⇤(@⇢ ^ (@@⇢)n�1)

(in fact: � ({w 2 bD, d(w , z) < r}) ⇡ r2n)

Note: Leray-Levi measure � plays a distinguished role which is
akin to harmonic measure for Laplace operator.....
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A few words about the proof

A key ingredient in the proof of the weak-boundedness property
and of the cancellation conditions:

T (1) = 0; T ⇤(1) = 0

are two basic identities that in e↵ect express the Cauchy-Leray
kernel and its adjoint kernel as appropriate derivatives. Namely:

H(w , z) = dw!(w , z) + r(w , z), and

H(z ,w) = dw e!(w , z) +er(w , z), where

the coe�cients of ! (resp. e!) are absolutely integrable and
have better homogeneity than H(z ,w) (resp. H(w , z)), i.e.

they have h@⇢(w),w � zi�n+1 vs. h@⇢(w),w � zi�n

the remainders r and er have su�cient integrability to ensure
that the corresponding integral operators map:

C (bD) 7! C (D)
From this it follows that C is weakly bounded and also that

h := C⇤(1) 2 C (D) (in fact |h(w)�h(z)| . d(w , z)↵, 0 < ↵ < 1).

(in fact |h(w)� h(z)| . d(w , z)↵ for any 0 < ↵ < 1)Loredana Lanzani HA in SCV



Comparison with proof for 1-dimensional setting

Remarkably the “basic identities” are meaningful only for n > 1,
because a one-dimensional analogue would necessarily involve a
logarithmic term, invalidating their use: i.e., for n = 1 one has:

H(w , z) =
dw

w � z
= dw!(w , z) + r(w , z)

with

!(w , z) := log(w � z)

r(w , z) = 0

but log(w � z) does not have the appropriate homogeneity that
would automatically ensure the weak boundedness property.
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Further results

C is also bounded: Lp(bD,�) ! Lp(bD,�) (�=Induced
Lebesgue meas.) because � ⇡ � as a consequence of

Strong C-linear convexity of D (“� & �”)
C 1,1-regularity of D (“� . �”)

L.-Stein (2017): Strong C-lin. convexity is optimal:

D := {x21 + y41 + x22 + (y2 � 1)2 < 1}

D is smooth and strictly (but not strongly) convex
C unbounded in Lp for all 1 < p < 1.

L.-Stein (2017): C 1,1 category also optimal:

D↵ := {|x1|1+↵ + y21 + x22 + (y2 � 1)2 < 1}, 0 < ↵ < 1.

D↵ strongly convex and of class C 1,↵ (but not C 1,1)
C unbounded in Lp for all 1 < p < 1.
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Thank You!
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