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Three linear wave equations

1. The wave equation for functions
w:R" SR

Lagrangian:

L(¢) = /8au - Opu dxdt

Euler-Lagrange equation:

D’Allembertian:
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Three linear wave equations

2. The Maxwell equation for 1-forms:
Electromagnetic potential:

Ay R SR
Covariant differentiation:

Dy = 0, + 1A,
Curvature:

Fop = 0,.A — 0gAq.

Lagrangian:

1

Lmy:i/ (Fop, FOP) dzdt.

2 R4+1

Maxwell system:
D*F,3=0

Gauge freedom
A — A+ db, b:R"™ SR
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Three linear wave equations

3. The covariant wave equation for functions

¢: R - C
Lagrangian:
L(¢) = /D"‘gb - Dy dadt

Euler-Lagrange equation:

Oqu=0
D’Allembertian:
04 = D*D,
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Three geometric wave equations

o Wave-Maps
o Maxwell-Klein Gordon

e Yang Mills

Global well-posedness and scattering in two settings:

e small data in the critical Sobolev space

o large data in the energy critical dimension

D. Tataru (UC Berkeley) The Yang-Mills flow January 2017 5/ 22



Wave maps

Maps into a Riemannian manifold:
¢ :R™ = (M, qg)
Lagrangian
L(g) = / (076, D) ydadt

Euler-Lagrange equation in local coordinates:
O¢ +T(¢)0%¢dag =0

Covariant formulation:
D% =0
Energy

E(6) = / 02 + V6 2de

P ¥ o oy . .
Critical Sobolev space: H2 x H2 !, energy critical dimension n = 2.
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Maxwell-Klein-Gordon

Maxwell field A, with curvature F,g3 = 0,Ag — 0gAq.
Complex field ¢ in R"*! with covariant differentiation Dy = O + i Aq.
Lagrangian:

1 — 1
/ ~D°¢Dyd + ~ F*PF,pdxdt
Rn+1 2 4:
Euler-Lagrange equations:

aﬁFa,B = S(¢m)
DDy = 0

Gauge invariance: (A, $) — (A — db, pe™®).
Energy:

1 1
B(A0)= [ JIFP+ 5 Dagfds
Rn
Critical Sobolev space: H sl 272, energy critical dimension n = 4.
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Yang-Mills

Connection form A, : R**! — g, semisimple Lie algebra.
DB := 0,B + [Aa, B] (covariant differentiation)
Curvature tensor
Faﬂ = 8aA5 — aﬂAa + [Aa,Aﬁ],

Lagrangian action functional

1
L(Ay, ¢) = = / (Fop, FO%) dadt.
2 Jrat1
Covariant form of Euler-Lagrange equations:
D*F,3 =0.

Gauge invariance: 4, - OAO~' — 9,007 1.
Conserved energy:

E(A) = /R4 |F|dx

Critical Sobolev space: Hz ! x Hz =2, energy critical dimension n. = 4.
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Small data results

Theorem

(WM) is globally well-posed for small data in H? x H2~', n > 2.
( Tao °01 S™, Krieger 03 H?, T.05 (M, g))

Theorem

(MKG) is globally well-posed for small data in H2 ™' x H272, n > 4.
[Coulomb gauge] (Rodnianski-Tao '05 (n > 6), Krieger-Sterbenz-T. ’13)

v

Theorem

(YM) is globally well-posed for small data in Hz 'x H3 72 n>4.
[Coulomb gauge] ( Sterbenz-Krieger ‘06 (n > 6), Krieger-T. '15 )

@ quasilinear well-posedness (continuous dependence on data)

e modified scattering
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The large data energy critical problem

Energy critical dimension: n =2 (WM), n =4 (MKG), (YM)

Potential obstructions to large data global well-posedness:
e Blow-up solutions (e.g. self-similar)
e Stationary solutions (solitons)

Ground state = lowest energy nontrivial steady state

Conjecture (Threshold Conjecture)

Global well-posedness and scattering holds in energy critical problems

for data below the ground state energy (globally, if there is no steady
state solution).
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Three large data results

Theorem

(WM) is globally well-posed for data below the ground state energy,
n = 2. ( Sterbenz-T. 08 (M, g), Krieger-Schlag '08 H?, Tao 08 H")

v

Theorem

(MKG) is globally well-posed for finite energy data, n = 4. [Coulomb
gauge/ (Oh-T. ’15, Krieger-Luhrmann 15 )

Theorem

(YM) is globally well-posed for data below the ground state energy.
[caloric gauge] ( Oh-T. 17, main goal of these lectures )

@ no self-similar blow-up scenario
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The gauge choice

Gauge freedom:
A— A—db (MKQ)
Ay — OAO Y — 9,007t (Y M).

Objectives of gauge fixing:

@ preserve hyperbolic structure
@ capture null structure of equations
e globally defined (large data)
Gauge choices:
o Lorenz gauge 0“4, = 0.
@ temporal gauge Ay = 0.
e Coulomb gauge 0;A4; = 0. [ (MKG), small data (YM)]

o Caloric gauge -defined via covariant heat flow. [ Large data (YM)]
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The heat flow and the local caloric gauge

Covariant Yang-Mills heat flow:
Fja = Dkaa

Gauge choices:
o De Turck gauge A; = §7A;.
» strongly parabolic flow, but
» not clear that solutions are global for large data
@ local caloric gauge A; =0

» degenerate parabolic
» global solutions
» solutions decay to flat conection A, i.e. Fiy = 0.

Theorem (Threshold theorem for Yang-Mills heat flow)

Data with energy below the ground state energy Eqy yield global
solutions in the local caloric gauge.
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The caloric gauge
A state A, is called caloric if its parabolic flow satisfies
A(s =00) =0

Caloric manifold C of class C! below Ej.
Wave Yang Mills data (A,, 0pAz) € TC.
Generalized Coulomb condition:

PA; =Q(A, A) + R(A, A, A)

with @) quadratic and explicit, and R cubic and higher.
Yang-Mills equation in the caloric gauge:

044 =Q;(A,0A)+ R;j(A, A, A)

AaAyg = Qo(A,0A) + Ro(A, A, A)

D. Tataru (UC Berkeley) The Yang-Mills flow January 2017 14 / 22



Small data: semilinear vs quasilinear
Nonlinear wave equation:
OA=N(A)
Perturbative (semilinear) set-up:
OA=N(A) (perturbative)

Paradifferential (quasilinear) set-up:

OAg + 2[A2,, 00 Ak) = Nperi(A)s
Two key difficulties:
A. Scale invariant function spaces for the perturbative part.

B. Parametrix construction for the paradifferential part.
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Function spaces S, N

Here the goal is to have two properties:
[Alls S [ A[0]llz + [[BA[lx  (lincar mapping)
[Npert(A)[v < C([Alls)  (nonlincar mapping)

@ Strichartz norms

» scale invariant
» do not capture null structure

o X5t spaces
» capture null structure
» no good scaling.

© U? and V? spaces (T. '00, Koch-T. ’04)
» scale invariant refinements of X 2 spaces.
@ Null frame spaces (T, Tao '00)

» combine Strichartz norms with multiscale frequency localizations
adapted to the null cone.
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The parametrix construction
Here the goal is to have the linear bound

[Aklls < 1Ak 0]l + [[BAL + [ x

Renormalization: approximately conjugate the paradifferential flow to
the flat wave flow.

R(Ay + 2[A2,,, 0, AL]) — ORAy = perturbative
with good mapping and invertibility properties
R:S5— 85, R:N— N
(i) (WM) (Tao ’01, T. '04) Multiplicative renormalization
R=R(t,z):R"™ = SO(d)
(ii) (MKG) (Rodnianski-Tao '05) (YM) (Sterbenz-Krieger ’06).
R = R(t,z,D),

pseudodifferential operator with rough symbol.
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Large data: three related methods

Goal: To prove an estimate

[Alls S F(E(A)), E < Ey (ground state energy)

@ Direct induction on energy (Bourgain), combines perturbative and
nonperturbative elements in a single induction step.
© Concentration compactness method (Kenig-Merle). Two step
approach, by contradiction:
» prove the existence of a minimal energy blow-up solution, with good
compactness properties.
» disprove the existence of a minimal energy blow-up solution, by
Morawetz style (nonconcentration) estimates.
@ Energy dispersion method (Sterbenz-T.). Two step approach,
direct method:
» prove that energy dispersed solutions are global and scatter.
» prove that all solutions are either energy dispersed or have pockets
of energy convergent to a steady state.
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Energy dispersed solutions
Energy dispersion norm:

IAllep = Sup 27F|| Akl L,

o scales like the energy
@ measure of pointwise concentration

@ measured in a time interval, not at fixed time

Theorem (Energy dispersed solutions)

For each E < Ey there exist €(E), F(E) so that for each solution A of
energy E in a time interval I we have:

|Allzp < e(E) = [|Alls < F(E)
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An induction on energy proof

The key steps are as follows:

© Improved bilinear/multilinear estimates: ED yields gains for all
balanced frequency interactions.

@ Improved paradifferential bound:
[Aklls < 11 A&[0]| 2 + |0 AL + 2[AZ,., O Akll|lN

with the frequency gap m >4 1 as a proxy for smallness.

@ Divisibility estimate: For any solution ¢ of energy E and S size F
we can split the time interval into N <p 1 so that

19llsir) S E

@ Induction on energy E — E + ¢ with ¢ = ¢(E).
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A concentration dichotomy

Theorem

For any finite energy solution in a cone we have the following
dichotomy. Either E(A) — 0 at the tip of the cone, or, on a
subsequence,

GB= G G=10
A( TL’ n) — LAsteady
Tn Tn

with L Lorentz and Agieady Steady state.

Proof ideas:

o Energy-flux relation: Flux converges to 0 at the tip of the cone.
t@t + 1’8$

1/252 —1‘2

Morawetz identity with vector field Xy = and translates.

o Eliminate null concentration scenario

@ Show concentration persists away from cone.

e Extract concentration profile by multiple pidgeonhole arguments.

o Exclude self-similar solutions.
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