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Three linear wave equations

1. The wave equation for functions

u : Rn+1 → R

Lagrangian:

L(φ) =

∫
∂αu · ∂αu dxdt

Euler-Lagrange equation:
�u = 0

D’Allembertian:
� = ∂α∂α
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Three linear wave equations
2. The Maxwell equation for 1-forms:
Electromagnetic potential:

Aα : Rn+1 → R

Covariant differentiation:

Dα = ∂α + iAα

Curvature:
Fαβ = ∂αAβ − ∂βAα.

Lagrangian:

L(A) :=
1

2

∫
R4+1

〈Fαβ, Fαβ〉 dxdt.

Maxwell system:
DαFαβ = 0

Gauge freedom
A→ A+ db, b : Rn+1 → R
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Three linear wave equations

3. The covariant wave equation for functions

φ : Rn+1 → C

Lagrangian:

L(φ) =

∫
Dαφ ·Dαφ dxdt

Euler-Lagrange equation:
�Au = 0

D’Allembertian:
�A = DαDα

D. Tataru (UC Berkeley) The Yang-Mills flow January 2017 4 / 22



Three geometric wave equations

Wave-Maps

Maxwell-Klein Gordon

Yang Mills

Global well-posedness and scattering in two settings:

small data in the critical Sobolev space

large data in the energy critical dimension
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Wave maps
Maps into a Riemannian manifold:

φ : Rn+1 → (M, g)

Lagrangian

L(φ) =

∫
〈∂αφ, ∂αφ〉gdxdt

Euler-Lagrange equation in local coordinates:

�φ+ Γ(φ)∂αφ∂αφ = 0

Covariant formulation:
Dα∂αφ = 0

Energy

E(φ) =

∫
|∂tφ|2g + |∇xφ|2gdx

Critical Sobolev space: Ḣ
n
2 × Ḣ

n
2
−1, energy critical dimension n = 2.
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Maxwell-Klein-Gordon

Maxwell field A, with curvature Fαβ = ∂αAβ − ∂βAα.
Complex field φ in Rn+1, with covariant differentiation Dα = ∂α + iAα.
Lagrangian: ∫

Rn+1

1

2
DαφDαφ+

1

4
FαβFαβdxdt

Euler-Lagrange equations:

∂βFαβ = =(φDαφ)

DαDαφ = 0

Gauge invariance: (A, φ)→ (A− db, φeib).
Energy:

E(A, φ) =

∫
Rn

1

4
|F |2 +

1

2
|DAφ|2dx

Critical Sobolev space: Ḣ
n
2
−1 × Ḣ

n
2
−2, energy critical dimension n = 4.
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Yang-Mills
Connection form Aα : R4+1 → g, semisimple Lie algebra.

DαB := ∂αB + [Aα, B] (covariant differentiation)

Curvature tensor

Fαβ := ∂αAβ − ∂βAα + [Aα, Aβ],

Lagrangian action functional

L(Aα, φ) :=
1

2

∫
R4+1

〈Fαβ, Fαβ〉 dxdt.

Covariant form of Euler-Lagrange equations:

DαFαβ = 0.

Gauge invariance: Aα → OAO−1 − ∂αOO−1.
Conserved energy:

E(A) =

∫
R4

|F |2dx

Critical Sobolev space: Ḣ
n
2
−1 × Ḣ

n
2
−2, energy critical dimension n = 4.
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Small data results

Theorem

(WM) is globally well-posed for small data in Ḣ
n
2 × Ḣ

n
2
−1, n ≥ 2.

( Tao ’01 Sn, Krieger ’03 H2, T.’05 (M, g))

Theorem

(MKG) is globally well-posed for small data in Ḣ
n
2
−1 × Ḣ

n
2
−2, n ≥ 4.

[Coulomb gauge] (Rodnianski-Tao ’05 (n ≥ 6), Krieger-Sterbenz-T. ’13)

Theorem

(YM) is globally well-posed for small data in Ḣ
n
2
−1 × Ḣ

n
2
−2, n ≥ 4.

[Coulomb gauge] ( Sterbenz-Krieger ’06 (n ≥ 6), Krieger-T. ’15 )

quasilinear well-posedness (continuous dependence on data)

modified scattering
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The large data energy critical problem

Energy critical dimension: n = 2 (WM), n = 4 (MKG), (YM)

Potential obstructions to large data global well-posedness:

Blow-up solutions (e.g. self-similar)

Stationary solutions (solitons)

Ground state = lowest energy nontrivial steady state

Conjecture (Threshold Conjecture)

Global well-posedness and scattering holds in energy critical problems
for data below the ground state energy (globally, if there is no steady
state solution).
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Three large data results

Theorem

(WM) is globally well-posed for data below the ground state energy,
n = 2. ( Sterbenz-T. ’08 (M, g), Krieger-Schlag ’08 H2, Tao ’08 Hn)

Theorem

(MKG) is globally well-posed for finite energy data, n = 4. [Coulomb
gauge] (Oh-T. ’15, Krieger-Luhrmann ’15 )

Theorem

(YM) is globally well-posed for data below the ground state energy.
[caloric gauge] ( Oh-T. ’17, main goal of these lectures )

no self-similar blow-up scenario
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The gauge choice

Gauge freedom:
A→ A− db (MKG)

Aα → OAO−1 − ∂αOO−1 (YM).

Objectives of gauge fixing:

preserve hyperbolic structure

capture null structure of equations

globally defined (large data)

Gauge choices:

Lorenz gauge ∂αAα = 0.

temporal gauge A0 = 0.

Coulomb gauge ∂jAj = 0. [ (MKG), small data (YM)]

Caloric gauge -defined via covariant heat flow. [ Large data (YM)]
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The heat flow and the local caloric gauge

Covariant Yang-Mills heat flow:

Fjα = DkFkα

Gauge choices:

De Turck gauge As = ∂jAj .
I strongly parabolic flow, but
I not clear that solutions are global for large data

local caloric gauge As = 0
I degenerate parabolic
I global solutions
I solutions decay to flat conection A∞, i.e. F∞ = 0.

Theorem (Threshold theorem for Yang-Mills heat flow)

Data with energy below the ground state energy E0 yield global
solutions in the local caloric gauge.
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The caloric gauge

A state Ax is called caloric if its parabolic flow satisfies

A(s =∞) = 0

Caloric manifold C of class C1 below E0.
Wave Yang Mills data (Ax, ∂0Ax) ∈ TC.
Generalized Coulomb condition:

∂jAj = Q(A,A) +R(A,A,A)

with Q quadratic and explicit, and R cubic and higher.
Yang-Mills equation in the caloric gauge:

�AAj = Qj(A, ∂A) +Rj(A,A,A)

∆AA0 = Q0(A, ∂A) +R0(A,A,A)
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Small data: semilinear vs quasilinear

Nonlinear wave equation:

�A = N(A)

Perturbative (semilinear) set-up:

�A = N(A) (perturbative)

Paradifferential (quasilinear) set-up:

�Ak + 2[Aα<k, ∂αAk] = Npert(A)k

Two key difficulties:

A. Scale invariant function spaces for the perturbative part.

B. Parametrix construction for the paradifferential part.
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Function spaces S,N
Here the goal is to have two properties:

‖A‖S . ‖A[0]‖E + ‖�A‖N (linear mapping)

‖Npert(A)‖N . C(‖A‖S) (nonlinear mapping)

1 Strichartz norms
I scale invariant
I do not capture null structure

2 Xs,b spaces
I capture null structure
I no good scaling.

3 U2 and V 2 spaces (T. ’00, Koch-T. ’04)

I scale invariant refinements of X
1
2 spaces.

4 Null frame spaces (T, Tao ’00)
I combine Strichartz norms with multiscale frequency localizations

adapted to the null cone.

D. Tataru (UC Berkeley) The Yang-Mills flow January 2017 16 / 22



The parametrix construction
Here the goal is to have the linear bound

‖Ak‖S . ‖Ak[0]‖E + ‖�Ak + ‖N

Renormalization: approximately conjugate the paradifferential flow to
the flat wave flow.

R(Ak + 2[Aα<k, ∂αAk])−�RAk = perturbative

with good mapping and invertibility properties

R : S → S, R : N → N

(i) (WM) (Tao ’01, T. ’04) Multiplicative renormalization

R = R(t, x) : Rn+1 → SO(d)

(ii) (MKG) (Rodnianski-Tao ’05) (YM) (Sterbenz-Krieger ’06).

R = R(t, x,D),

pseudodifferential operator with rough symbol.
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Large data: three related methods
Goal: To prove an estimate

‖A‖S . F (E(A)), E < E0 (ground state energy)

1 Direct induction on energy (Bourgain), combines perturbative and
nonperturbative elements in a single induction step.

2 Concentration compactness method (Kenig-Merle). Two step
approach, by contradiction:

I prove the existence of a minimal energy blow-up solution, with good
compactness properties.

I disprove the existence of a minimal energy blow-up solution, by
Morawetz style (nonconcentration) estimates.

3 Energy dispersion method (Sterbenz-T.). Two step approach,
direct method:

I prove that energy dispersed solutions are global and scatter.
I prove that all solutions are either energy dispersed or have pockets

of energy convergent to a steady state.
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Energy dispersed solutions

Energy dispersion norm:

‖A‖ED = sup
k

2−k‖Ak‖L∞ ,

scales like the energy

measure of pointwise concentration

measured in a time interval, not at fixed time

Theorem (Energy dispersed solutions)

For each E < E0 there exist ε(E), F (E) so that for each solution A of
energy E in a time interval I we have:

‖A‖ED ≤ ε(E) =⇒ ‖A‖S ≤ F (E)
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An induction on energy proof

The key steps are as follows:

1 Improved bilinear/multilinear estimates: ED yields gains for all
balanced frequency interactions.

2 Improved paradifferential bound:

‖Ak‖S . ‖Ak[0]‖E + ‖�Ak + 2[Aα<k, ∂αAk]‖N

with the frequency gap m�‖φ‖S 1 as a proxy for smallness.

3 Divisibility estimate: For any solution φ of energy E and S size F
we can split the time interval into N .F 1 so that

‖φ‖S[Ik] . E

4 Induction on energy E → E + c with c = c(E).
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A concentration dichotomy

Theorem

For any finite energy solution in a cone we have the following
dichotomy. Either E(A)→ 0 at the tip of the cone, or, on a
subsequence,

A(
x− xn
rn

,
t− tn
rn

)→ LAsteady

with L Lorentz and Asteady steady state.

Proof ideas:

Energy-flux relation: Flux converges to 0 at the tip of the cone.

Morawetz identity with vector field X0 =
t∂t + x∂x√
t2 − x2

and translates.

Eliminate null concentration scenario

Show concentration persists away from cone.

Extract concentration profile by multiple pidgeonhole arguments.

Exclude self-similar solutions.
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