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Elliptic Variational Problems

I 1st variation and singular limits

I 2nd variation and stability

I Free boundary regularity n = 3, 4

I Higher critical points, topology

I Higher dimensions; n→ ∞ ?
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J(v) :=
∫

[|∇v |2 +F (v)]

First variation J ′(u) =−2∆u +F ′(u)

J(u + εv) =

J(u) + ε

∫
[2∇u ·∇v +F ′(u)v ] +O(ε2)

= J(u) + ε〈−2∆u +F ′(u),v〉+O(ε2).
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CRITICAL POINTS

J ′(u) =−2∆u +F ′(u) = 0

Euler-Lagrange eq’n:

2∆u = F ′(u)
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Blow down limit

F (v) = 0, v ≤ 0, F (v) = 1, v ≥ a.

vR(y) =
1

R
v(Ry) −→ v∞(y), R → ∞

∫
BR

[|∇v |2 +F (v)]
dx

Rn

−→
∫
B1

[|∇v∞|2 + 1{v∞>0}]dy
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Alt-Caffarelli functional

J∞(v ,Ω) =
∫

Ω
[|∇v |2 + 1{v>0}]dy

F∞(v) = 1{v>0}
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Optimal Insulation

Cost = c1

∫
R
|∇u|2 + c2 vol(R)

Equilibrium temperature u:

∆u = 0 on R = {T0 < u < T1}

∂u/∂ν = const on {u = T0}
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Global Minimizers

Functions u : Rn→ R such that

J(u,Ω) = min
v

J(v ,Ω) and all Ω⊂⊂ Rn,

min over all v such that v = u on ∂Ω.

J(v ,Ω) =
∫

Ω
(|∇v |2 + 1{v>0})dx
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Rescaled Euler-Lagrange Equation

uR(x) := u(Rx)/R

2∆uR = RF ′(RuR) −→ “2∆u∞ = δ(u∞)”

Free boundary condition

|∇u+|2−|∇u−|2 = 1 on ∂{u > 0}

One phase: u− ≡ 0. Two phase: u− 6≡ 0.
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How about ∆u = f (u),
∫
f du = 0?

2 wells: F > 0, |u|< a, F (u) = 0, |u| ≥ a.

wR(y) = v(Ry) −→ w∞(y), R → ∞∫
BR

[|∇v |2 +F (v)]
dx

Rn−1

−→ c voln−1(B1∩{|w∞|< a})

J∞ is the area of the ±a interface.
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Euler-Lagrange equation

If F has “one hump”, and∫
R
F (w)dw = 1, then

2∆wR = R2F ′(RwR) −→ “2∆w∞ = δ
′(w∞)”

w∞ =±a and H = 0 on the interface.

What can minimal surface theory teach us?
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Def’n. Area-minimizer M ⊂ B1 ⊂ Rn

voln−1(M)≤ voln−1(N) all N , ∂N = ∂M

Theorem. (J. Simons 1967 + )

Area-minimizers are smooth for n ≤ 7. But

for n = 8,

x2
1 + · · ·+ x2

4 = x2
5 + · · ·+ x2

8 minimizes.
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Universal bounds, n ≤ 7

Suppose M is area-minimizing in B1,
0 ∈M . After rotation, in B1/100,

M = {xn = g(x ′)}

|∇g |+ |D2g | ≤ 100
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Theorem. Energy-minimizing free

boundaries are smooth in Rn, n = 3, 4.

(Caffarelli, J-, Kenig 2002; J-, Savin 2015)

There are singular minimizing cones n ≥ 7.

(De Silva, J-, 2006)

Dimensions n = 5, 6 are open.
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STABILITY

d2

dε2
J(u + εv)|

ε=0

=
∫

(2|∇v |2 +F ′′(u)v 2)dx ≥ 0

Linearization of 2∆u−F ′(u) = 0

〈(−2∆ +F ′′(u))v ,v〉 ≥ 0
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SUBSOLUTION METHOD

Positive subsolution ⇐⇒ instability.

Lv = (−2∆ +F ′′(u))v < 0; v > 0 on Ω,

and v = 0 on ∂Ω, then

0 >
∫

Ω
(Lv)v =

∫
Ω

(2|∇v |2 +F ′′(u)v 2)
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Stability for minimal hypersurface M :∫
M
f 2|A|2dvol≤

∫
M
|∇f |2dvol

Instability ⇐⇒ Positive subsolution:

∆f > |A|2f , f ≥ 0, f ∈ C∞

0 (M)

Simons: On cones

f = |A|ψ(|x |), ψ ∈ C∞

0 (R+)
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Stability for minimal hypersurface M :∫
M
f 2|A|2dvol≤

∫
M
|∇f |2dvol

Stability for energy-minimizing u:∫
∂Γ

φ
2H dσ≤

∫
Γ
|∇φ|2dx

(Γ = {u > 0})
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Area instability ⇐⇒ Positive subsolution:

∆f > |A|2f , f ≥ 0, f ∈ C∞

0 (M)

Energy instability ⇐⇒ Pos. subsolution:

∆ϕ > 0 in Γ; ϕν ≥ Hϕ in ∂Γ; ϕ ∈ C∞(Γ̄)

(ϕ≥ 0)
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Simons: On cones

f = |A|ψ(|x |), ψ ∈ C∞

0 (R+)

Energy functional analogue:

ϕ = |D2u|αψ(|x |), ψ ∈ C∞

0 (R+)

Goal: ϕ≥ 0, ∆ϕ≥ 0 on Γ; ϕν ≥ Hϕ on ∂Γ

David Jerison ELLIPTIC VARIATIONAL PROBLEMS



Simons: On cones

f = |A|ψ(|x |), ψ ∈ C∞

0 (R+)

Energy functional analogue:

ϕ = |D2u|αψ(|x |), ψ ∈ C∞

0 (R+)

Goal: ϕ≥ 0, ∆ϕ≥ 0 on Γ; ϕν ≥ Hϕ on ∂Γ

David Jerison ELLIPTIC VARIATIONAL PROBLEMS



Plan

I 1st and 2nd variations

I Stability and subsolutions

I Free boundary regularity for n = 3, 4

I Higher critical points, topology

I Higher dimensions; n→ ∞ ?
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WARM-UP: Optimal α > 0 for which

∆u = 0 =⇒ ∆|Dku|α ≥ 0 (Cald.-Zyg)

w = |Du| =⇒ ∆wα ≥ 0, α = 1− 1

n−1

(∆(logw)≥ 0, n = 2.)
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w 2 = ∑
j

u2
j =⇒ 2wwk = 2∑

j

ujujk

w∆w + |∇w |2 = |D2u|2

D2u = diag[λ1, . . . ,λn]

wk = λkuk/w =⇒ |∇w |2 ≤max
k

λ
2
k

David Jerison ELLIPTIC VARIATIONAL PROBLEMS



w 2 = ∑
j

u2
j =⇒ 2wwk = 2∑

j

ujujk

w∆w + |∇w |2 = |D2u|2

D2u = diag[λ1, . . . ,λn]

wk = λkuk/w =⇒ |∇w |2 ≤max
k

λ
2
k

David Jerison ELLIPTIC VARIATIONAL PROBLEMS



w 2 = ∑
j

u2
j =⇒ 2wwk = 2∑

j

ujujk

w∆w + |∇w |2 = |D2u|2

D2u = diag[λ1, . . . ,λn]

wk = λkuk/w =⇒ |∇w |2 ≤max
k

λ
2
k

David Jerison ELLIPTIC VARIATIONAL PROBLEMS



Since ∆u = 0,

λ
2
n = (λ1 + · · ·+ λn−1)2 ≤ (n−1)(λ

2
1 + · · ·+ λ

2
n−1)

λ
2
n =

1

n
λ
2
n +

n−1

n
λ
2
n ≤

n−1

n
(λ

2
1 + · · ·+ λ

2
n)

=
n−1

n
|D2u|2

|∇w |2 ≤ max
k

λ
2
k ≤

n−1

n
|D2u|2
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w∆w + |∇w |2 = |D2u|2 ≥ n

n−1
|∇w |2

w∆w ≥ 1

n−1
|∇w |2

∆wα ≥ 0, α = 1− 1

n−1
.
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ELLIPTIC VARIATIONAL PROBLEMS

David Jerison (MIT)

Jan 2017

MSRI Lecture 2: Free Boundary Regularity
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Regularity of free boundary energy
minimizers

n = 2, Alt, Caffarelli, Friedman (ACF) 1984

n = 3, Caffarelli, Jerison, Kenig (CJK) 2002

n = 4, Jerison, Savin 2015
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Theorem If n ≤ 4 and u minimizes

J(v) :=
∫
B

[|∇v |2 + 1v>0]dx , B ⊂ Rn,

among all v = u on ∂B , then

B∩∂{u > 0} is smooth;

∆u = 0 in {u > 0} and {u ≤ 0}◦;
|∇u+|2−|∇u−|2 = 1 on B ∩ ∂{u > 0}.

David Jerison ELLIPTIC VARIATIONAL PROBLEMS



Proof Outline

I Blow up limits exist (ACF monotonicity)

I Limits are cones (Weiss monotonicity)

I Two-phase limits are planar (ACF)

I Characterize one-phase limits

I Flat implies smooth (Caffarelli)
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One-phase Limit: Stable Cone Γ

∆u = 0, u > 0, u(rx) = ru(x) in Γ.
u = 0 and |∇u|2 = 1 on ∂Γ.∫

∂Γ
Hϕ

2dσ≤
∫

Γ
|∇ϕ|2dx
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By induction, Sn−1∩∂Γ is smooth.
Moreover, we will only need test
functions ϕ≥ 0,

ϕ ∈ C∞

0 (U ∩ Γ̄),

U = {0 < a < |x |< b}.
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Mean Curvature H

Rotate and translate so locally

Γ = {xn > g(x ′)}, ∇g(0) = 0.

Then u(x ′,g(x ′)) = 0 implies for i , j < n,

uj = 0, uij =−ungij =−gij at 0.

∆u = 0 =⇒ unn = ∑
j<n

gjj =:−H .

David Jerison ELLIPTIC VARIATIONAL PROBLEMS



Mean Curvature H

Rotate and translate so locally

Γ = {xn > g(x ′)}, ∇g(0) = 0.

Then u(x ′,g(x ′)) = 0 implies for i , j < n,

uj = 0, uij =−ungij =−gij at 0.

∆u = 0 =⇒ unn = ∑
j<n

gjj =:−H .

David Jerison ELLIPTIC VARIATIONAL PROBLEMS



∆|∇u|2 ≥ 0 and |∇u|2 bounded in Γ imply

|∇u|2 ≤ 1 (Maximum principle)

∂n|∇u|2 < 0 (Hopf lemma)

∂n|∇u|2 = ∑
j

2ujunj = 2unn =−2H .

Hence −uνν = H > 0.
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uε = (u− εϕ)+, Sε = {0 < u < εϕ}.

J(uε) = J(u)−2ε

∫
Γ

∇u ·∇ϕ + ε
2
∫

Γ
|∇ϕ|2

−
∫
Sε

[|∇u|2 + 1] + 2ε

∫
Sε

∇u ·∇ϕ +O(ε3).
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uε = (u− εϕ)+, Sε = {0 < u < εϕ}.

J(uε) = J(u) + 2ε

∫
∂Γ

ϕdσ + ε
2
∫

Γ
|∇ϕ|2

−
∫
Sε

[|∇u|2 + 1] + 2ε

∫
Sε

∇u ·∇ϕ +O(ε3).
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uε = (u− εϕ)+, Sε = {0 < u < εϕ}.

J(uε) = J(u) + 2ε

∫
∂Γ

ϕdσ + ε
2
∫

Γ
|∇ϕ|2

−
∫
Sε

[|∇u|2 + 1]+2ε
2
∫

∂Γ
ϕϕνdσ +O(ε3).
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xt = x0− tν (ν inner unit normal)

dx = (1 + tH +O(t2))dtdσ,

|∇u(xt)|2 = 1−2tH +O(t2).

Sε : 0 < u < εϕ ⇐⇒ 0 < t < t̄,

t̄ = εϕ + ε
2

(
H

2
ϕ

2−ϕϕν

)
+O(ε3).
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SUMMARY

If u is a critical point and uε = (u− εϕ)+,

J(uε)−J(u)

= ε
2
∫

Γ
|∇ϕ|2− ε

2
∫

∂Γ
Hϕ

2dσ +O(ε3)
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SUBSOLUTION: U = {a < |x |< b}.
ϕ ∈ C∞

0 (U), ϕ≥ 0.

∆ϕ≥ 0 in U ∩Γ, ϕν ≥−Hϕ on ∂Γ.

∫
U∩Γ
|∇ϕ|2 =−

∫
U∩Γ

ϕ∆ϕ−
∫

∂Γ
ϕϕνdσ

≤
∫

∂Γ
Hϕ

2dσ.

For instability, we need strictness somewhere.
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w 2 := |D2u|2 = ∑
k`

u2
k` .

ϕ = wα
ψ(|x |), 0≤ ψ ∈ C∞

0 (R+)

If n = 3,

(wα)ν =−2αHwα =⇒ ϕν =−2αHϕ

Hence ϕν ≥−Hϕ for α≤ 1/2.
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Rotate so D2g(x0) is diagonal.

Differentiating |∇u(x ′,g(x ′))|2 = 1 gives

uin = 0, uijn = 0 i , j < n, i 6= j ,

uiin = unnuii −u2
ii , unnn = ∑u2

kk .

∂n∑u2
k` = 2∑uk`uk`n = 2∑ukknukk .
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Rotate so D2g(x0) is diagonal.

Differentiating |∇u(x ′,g(x ′))|2 = 1 gives

uin = 0, uijn = 0 i , j < n, i 6= j ,

uiin = λnλi −λ
2
i , unnn = ∑λ

2
k .

∂n(w 2) =−4Hw 2−2∑λ
3
k (=−4Hw 2, n = 3) .
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ϕ = wα
ψ(|x |), 0≤ ψ ∈ C∞

0 (R+)

If n = 3, there is ψ such that ∆ϕ≥ 0 iff

∆(wα)≥ (α−1/2)2wα/|x |2

∆(wα)≥ (α + 1)αwα/|x |2, α > 0.

Hence ϕ is a subsolution iff 1/8≤ α≤ 1/2.
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Compare our inequality for w = |D2u|,

∆(wα)≥ α(α + 1)
wα

|x |2
,

with Simons’s inequality for w = |A|:

(∆ + |A|2)w ≥ 2
w

|x |2
.

∆, Laplace-Beltrami; A, 2nd fund. form
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Lemma If u is harmonic, w = |D2u|, then

w∆w ≥ 2

n
|∇w |2 .

If, in addition, u(rx) = ru(x), then

w∆w ≥ 2

n−1
|∇w |2 + 2

n−2

n−1

w 2

|x |2
.
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Bochner identities

w 2 := ∑u2
k`, ∆u = 0.

w∆w + |∇w |2 = ∆(w 2) = 2∑u2
k`m .

wm = ∑
k`

uk`uk`m/w = ∑
k

λkukkm/w .
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For n = 4, α≥ 1/3 works:

∆w 1/3 ≥ 4

9

w 1/3

|x |2

yields ∆ϕ≥ 0 for appropriate ψ(|x |).

Unfortunately,

ϕν ≥−Hϕ fails!

It’s even worse for n ≥ 5: no multiple of Hϕ

is a lower bound for ϕν.
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n=4: φ = w 1/3ψ(|x |), new w

w =

∑
λj>0

λ
2
j + 4 ∑

λk<0

λ
2
k

1/2
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Lemma. Suppose ∆u = 0 and

u(rx) = ru(x). Let

w = S(λ1, . . . ,λn)

with S symmetric, convex and homogeneous

degree 1, and λj the eigenvalues of D2u.

Then

w∆w + |∇w |2 ≥ 2

n−1
|∇w |2 +

2(n−2)

n−1

w 2

|x |2
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Eigenvalues of(
λ1 ε

ε λ2

)
λ1 6= λ2

λ1 +
ε2

λ1−λ2
+O(ε4); λ2 +

ε2

λ2−λ1
+O(ε4).

(and λ± ε, if λ1 = λ2 = λ)
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Open Questions.

Suppose that u : Ω→ R, Ω⊂ Rn, and

∆u = f (u).

What do level sets of u look like?

In Lecture 3, we will discuss n = 2, n = 3,

and n→∞ by analogy with minimal surfaces.
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Higher critical points, Isoperimetric sets

David Jerison (MIT)

MSRl, Lecture 3, Jan 2017
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What else do we learn from
minimal surface theory?

Theorems of Colding-Minicozzi
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C-M Removable Singularities Theorem

∀δ > 0, ∃C , such that every minimal annulus

M ⊂ B1\Bε; ∂M = two loops in ∂Bε∪∂B1,

satisfies

M is a δ-Lipschitz graph in B1/C\BCε

(Proof inserts stable surfaces)
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Thm 1. (J-, Kamburov) Let A+ := {u > 0} be
simply-connected in

annulus A = {x ∈ R2 : ε < |x |< 1},

and assume that the two strands of F connecting
∂D1 to ∂Dε don’t get close to each other.

Then ∀δ > 0, ∃C such that

F is a δ-Lipschitz graph on Cε <|x |< 1/C

Significance: rules out spirals.
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In particular,

Flat implies Lipschitz

is valid for 2-dimensional, simply-connected

phases with a small hole.
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C-M Dichotomy for embedded minimal annuli.
a) curvature is bounded, or
b) near points of high curvature,

they resemble catenoids:

If M ⊂ B1 ⊂ R3 (∂M = two loops in ∂B1)

has neck size ε > 0 near the origin, then

M ≈ standard catenoid in |x |<
√

ε.
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Thm 2. J-, Kamburov There is c > 0 such that
if 0 ∈ ∂D+ and D+ is simply-connected, then either

Bc(0)∩∂D+ has one strand of bounded curvature

or it resembles a piece of a double hairpin HHP
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Hauswirth, Hélein, Pacard 2012

S = {ζ = ξ + iη : |η| ≤ π/2}

Ω := ϕ(S), ϕ(ζ) = i(ζ + sinhζ).

H(z) = Re cosh(ϕ
−1(z)) = (coshξ)(cosη)

Ha(z) = aH(z/a); Ωa = aΩ

David Jerison Compactness and Singular Limits of Free Boundaries
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Thm 3 (J-, Kamburov, Rigidity). ∀δ > 0,
∃c > 0 such that if “neck size” is ε > 0 near 0, then

there is a ≈ ε, ψ : Ωa∩Bc(0)→ D+

Near isometry: If |z |< c , then

|ψ′(z)−1| ≤ δ, z ∈ Ωa; |ψ′(z)|= 1, z ∈ ∂Ωa

Curvature bounds: If |z |< c , then

|ψ′′(z)| ≤ δ, z ∈Ωa; |κ(ψ(z))−κa(z)| ≤ δ; z ∈ ∂Ωa
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Colding-Minicozzi: Embedded minimal annulus

M ⊂ B1 ⊂ R3 with neck size ε > 0,

satisfies M ≈ standard catenoid, |x |<
√

ε

Our rigidity extends the range to unit scale
√

ε≤ |x |< 1/C .

Traizet correspondence: free boundary solutions
←→ minimal surfaces with reflection symmetry
The two theorems overlap in an easy, but illustrative
special case.

David Jerison Compactness and Singular Limits of Free Boundaries



Colding-Minicozzi: Embedded minimal annulus

M ⊂ B1 ⊂ R3 with neck size ε > 0,

satisfies M ≈ standard catenoid, |x |<
√

ε

Our rigidity extends the range to unit scale
√

ε≤ |x |< 1/C .

Traizet correspondence: free boundary solutions
←→ minimal surfaces with reflection symmetry
The two theorems overlap in an easy, but illustrative
special case.

David Jerison Compactness and Singular Limits of Free Boundaries



Colding-Minicozzi: Embedded minimal annulus

M ⊂ B1 ⊂ R3 with neck size ε > 0,

satisfies M ≈ standard catenoid, |x |<
√

ε

Our rigidity extends the range to unit scale
√

ε≤ |x |< 1/C .

Traizet correspondence: free boundary solutions
←→ minimal surfaces with reflection symmetry
The two theorems overlap in an easy, but illustrative
special case.

David Jerison Compactness and Singular Limits of Free Boundaries



TRAIZET CORRESPONDENCE

dX1 + idX2 =
1

2
dz̄−2

(
∂u

∂z

)2

dz

z 7→ (X1,X2,±u(z))

The image is an immersed minimal surface with
symmetry x3↔−x3. Moreover,

|∇u|< 1 ⇐⇒ embedded

David Jerison Compactness and Singular Limits of Free Boundaries



Open Questions.

Suppose that u : R3→ R, f ∈ C∞
0 (R),

∆u = f (u).

What do the level sets of u look like?

Conjecture 1. If {u > 0} and {u ≤ 0} are
contractible, then u = w(a · x).
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Conjecture 2. (De Giorgi/Calabi-Yau type):
Suppose ∆u = f (u) in R3, ∇u 6= 0, and/or u has
finite topology level sets. If one level set is
contained in a half space,

{u = 0} ⊂ {x3 > 0},

then
u(x) = w(x3)
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What estimates work for all n?

Bombieri-Giusti/Almgren, De Giorgi
Quantitative connectivity:

(∫
B(cr)
|f − f̄ |p dσ

)1/p

≤ C
∫
B(r)
|∇f |dσ
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Bombieri-Giusti 1972

Scale-invariant Harnack:

sup
B(r)

u ≤ C inf
B(r)

u

for positive solutions to Laplace-Beltrami

∆u = 0.

Corollary. A global area-minimizing surface

in a half-space is a hyperplane. (Miranda)
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Conjecture 3. Isoperimetric subsets of

symmetric convex bodies are contractible:

bounded by smooth graphs in all dimensions.

Neumann boundary condition implies

no Simons cone!
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Sternberg-Zumbrun 1990-92

Connectivity in isoperimetric case(∫
B(r)
|f |2dσ

)1/p

≤ C (r)
∫
B(r)
|∇f |2dσ,

f ∈ C∞
0 (B(r)), using stability.
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G. David, DJ (work in progress)

Another version of connectivity:
Intrinsic distance ≈ extrinsic distance

The embedding is proper = key step in CM

proof of Calabi-Yau conjecture.
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Why does connectivity help?

Bombieri, De Giorgi, Miranda 1969:

The L∞ bound on a minimal graph implies a

Lipschitz bound (hence a C∞ bound).

2006 proof using Harnack by De Silva, J-.

Also valid in free boundary setting
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Conjecture 4. There is c < 1 such that if

Ω is convex, symmetric and E ⊂ Ω has least

perimeter for |E | = |Ω|/2, then

Ω∩∂E ⊂ {−a < xn < a},

|Ω∩{−a < xn < a}| ≤ c|Ω|.
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C. Borell 1975. Isoperimetric subsets of

gauss space are half spaces for all n.

S. G. Bobkov 1999. Isoperimetric subsets

for log-concave densities on the real line are

half lines.
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Hot spots conjecture of J. Rauch.
The hottest spot of an insulated region tends

to the boundary as t→ ∞.

My favorite version: The first nontrivial

Neumann eigenfunction of a symmetric

convex domain is monotone in some

direction.
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KLS Conjecture A least perimeter

bisector of a convex set has area comparable

to the best bisecting hypersurface.

December 2016 progress by Lee and Vempala

Our Conjecture 3 is that the extremal

interface is a Lipschitz graph, that is, it

resembles a hyperplane.
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