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Context

Area

We’ll be concerned with multilinear inequalities with a geometrical
flavour such as

Loomis–Whitney inequalities and their relatives
Brascamp–Lieb inequalites and their relatives
Multilinear Kakeya inequalities

We will focus on the sharp inequalities (no “ε-loss”).

We’ll work in the setting where curvature considerations do not come
into play.

We’ll not discuss any of the wide variety of applications...



Context

Starting point: Guth’s multilinear Kakeya theorem

A couple of the key ingredients:

Guth’s universal visibility theorem – the polynomial method
Some elementary functional analysis

These, together with some other ingredients, give:

Theorem (Guth’s endpoint multilinear Kakeya theorem)
Suppose that Tj , 1 ≤ j ≤ d are finite transversal families of 1-tubes in
Rd . Then for a certain Cd > 1 we have

∫

Rd


∑

T1∈T1

χT1(x) · · ·
∑

Td∈Td

χTd (x)




1
d−1

dx

≤ Cd

d∏

j=1

(#Tj)
1

d−1



Context

Affine-invariant formulation

Theorem (Bourgain–Guth variant)

Suppose that Tj , 1 ≤ j ≤ d are finite families of 1-tubes in Rd . Then for
a certain Cd > 1 we have

∫

Rd


∑

T1∈T1

χT1(x) · · ·
∑

Td∈Td

χTd (x)e(T1) ∧ · · · ∧ e(Td)




1
d−1

dx

≤ Cd

d∏

j=1

(#Tj)
1

d−1

Note that there is no longer an explicit transversality hypothesis; e(T )
is the unit vector in the direction of the axis of T .



Context

The universal visibilty theorem

For a hypersurface Z in Rd we associate to it a fundamental convex
body defined by

K (Z ) := {u ∈ Bd :

∫

Z
|u · n(x)|dS(x) ≤ 1}.

Theorem (Guth)
For any nonnegative function M defined on the lattice of unit cubes Q
in Rd there exists a polynomial p with zero set Zp such that

deg p ≤ Cd

(∑

Q

M(Q)d

)1/d

and such that for each unit cube Q,

Vol(K (Zp ∩Q))−1/d ≥ CM(Q).



Context

Comments

(Strictly one needs a technical ε-mollification)
Uses deep results from algebraic topology. (Simpler proof using
only Borsuk–Ulam theorem (AC – S. Valdimarsson))
Numerology: In the multilinear Kakeya theorem we have
d × 1/(d − 1) = d/(d − 1) whose dual exponent corresponds to
the Ld of the visibility theorem
A tool to facilitate the introduction the polynomial method to and
thence solve endpoint multilinear Kakeya...
But perhaps it is better viewed as a fundamental geometric
property of euclidean space?

NEXT: A high-level overview of the proof of the endpoint multilinear
Kakeya theorem...more detail later



Context

Elementary functional analysis

Suppose we are interested in inequalities of the form

‖
d∏

j=1

(Sj fj)αj‖p ≤ A
d∏

j=1

(∫
fj

)αj

where
∑d

j=1 αj = 1, Sj are positive linear operators and fj ≥ 0.

Suppose that for all nonnegative G ∈ Lp′ we have that there exist
G1, . . . ,Gd such that

G(x) ≤ G1(x)α1 . . .Gd(x)αd

and such that for all j

‖S∗j Gj‖∞ ≤ A‖G‖p′
which (if Sj is not bounded) can be interpreted as

∫

X
Sj f (x)Gj(x)dx ≤ A‖G‖p′‖f‖1.

Then our desired inequality is true. PREPOSTEROUS!!



Context

Proof

Take fj ∈ L1 for j = 1, . . . ,d and G ∈ Lp′ with ‖G‖p′ ≤ 1. Then

∫

X
G(x)

d∏

j=1

(Sj fj)αj dx ≤
∫ d∏

j=1

gj(x)αj

d∏

j=1

Sj fj(x)αj dx

=

∫ d∏

j=1

(gj(x)Sj fj(x))αj dx ≤
d∏

j=1

(∫
gj(x)Sj fj(x)dx

)αj

≤
d∏

j=1

(
A‖G‖p′‖fj‖1

)αj ≤ A
d∏

j=1

‖fj‖
αj
1 .

Now take the supremum over all G. (Note that we actually need only

d∏

j=1

‖S∗j Gj‖
αj
∞ ≤ A‖G‖p′

rather than an estimate on each multiplicand separately.)



Context

Gathering together

We can recast the endpoint multilinear Kakeya inequality in the form

‖
d∏

j=1

(Sj fj)αj‖p ≤ A
d∏

j=1

(∫
fj

)αj

with each αj = 1/d , p = d/(d − 1) and the Sj are constant at scale 1.

Then the visibilty theorem – given M = G, existence of a p such that

deg p ≤ Cd

(∑

Q

M(Q)d

)1/d

and such that for each unit cube Q,

Vol(K (Zp ∩Q))−1/d ≥ CM(Q)

– is used to construct the desired Mj = Gj to feed the functional
analysis.



Duality

An equivalent dual form of Young’s inequality

Young’s inequality in the form

‖
3∏

j=1

fj(x · vj)
αj‖L2(R2) ≤ B

3∏

j=1

(∫
fj

)αj

for 0 ≤ αj ≤ 1/2,
∑
αj = 1 is equivalent to the following statement:

For all M ∈ L2(R2) there exist M1,M2,M3 such that

M(x) ≤ M1(x)α1M2(x)α2M3(x)α3

and, for 1 ≤ j ≤ 3,

sup
s∈R

∫

R
Mj(svj + tv⊥j )dt ≤ B‖M‖2.

The “B” in both instances is the same.

Exercise. Find a factorisation of M ∈ L2(R2) of this form which yields
the sharp Beckner constant B({vj}, {αj}) for the problem.



Duality

Duality theorem

Theorem (AC, S. Valdimarsson)

Suppose
∑d

j=1 αj = 1 and Sj are positive linear operators. Then

‖
d∏

j=1

(Sj fj)αj‖p ≤ A
d∏

j=1

(∫
fj

)αj

holds for all fj ≥ 0 if and only if for all nonnegative G ∈ Lp′ we have that
there exist G1, . . . ,Gd such that the sub-factorisation

G(x) ≤ G1(x)α1 . . .Gd(x)αd

holds, and such that for 1 ≤ j ≤ d,
∫

X
Sj f (x)Gj(x)dx ≤ A‖G‖p′‖f‖1.



Duality

Remarks

When d = 1 this is ordinary linear duality
Techniques: solving a convex optimisation problem – (L∞)∗ and
finitely additive measure theory of Hewitt and Yosida –
non-constructive
Despite the audacity of Guth’s approach to multilinear Kakeya,
there is an inevitability to it!
More important than the result itself are the perspectives and
insights it brings to bear in the situations in which it applies...
What does it tell us about Loomis–Whitney, Young’s inequality and
Brascamp–Lieb? Can we analyse these inequalities from this
perspective?



Duality

Combinatorial Loomis–Whitney inequalities

What does multilinear duality and factorisation tell us about the class of
Loomis–Whitney inequalities?

The perspective is clearest when we consider the class of
“Combinatorial” Loomis–Whitney inequalities.

It provides a unified approach to various sub-classes of
Loomis–Whitney type inequalities – classical, affine invariant,
projections on subspaces of various dimensions (Calderón, Finner),
“nonlinear” Loomis–Whitney inequalites of Bennett–C– Wright,
Bennett & Bez, Bejenaru–Herr–Tataru, Koch & Steinerberger....

It also gives sharp constants (when these make sense) – under
minimal regularity hypotheses in the case of “nonlinear”
Loomis–Whitney.



Duality

A Combinatorial Loomis–Whitney inequality

Let (X ,M, µ) be a measure space. Suppose that for 1 ≤ j ≤ d we
have a family Rj consisting of disjoint subsets Rj ∈M. Catalogue the
nonempty R1 ∩ · · · ∩ Rd as Q ∈ Q.

Theorem
Suppose for that every Q,Q′ ∈ Q there are at most K chains
Q = Q0,Q1, . . . ,Qd = Q′ such that Ri(Qi−1) = Ri(Qi) for 1 ≤ i ≤ d.
Then

∫

X


 ∑

R1∈R1

· · ·
∑

Rd∈Rd

cR1χR1 . . . cRdχRdµ(R1 ∩ · · · ∩ Rd)
−(d−1)




1/(d−1)

dµ

≤ K 1/(d−1)


 ∑

R1∈R1

cR1




1/(d−1)

. . .


 ∑

Rd∈Rd

cRd




1/(d−1)

.



Duality

Proof

All we need to do is to write down a suitable factorisation for an
arbitrary M defined on Q.

For Q,Q′ ∈ Q and 1 ≤ j ≤ d , let λj(Q′,Q) be the number
j-connections of Q′ with Q, i.e. the number of chains
Q = Q0,Q1, . . . ,Qj = Q′ such that Ri(Qi−1) = Ri(Qi) for 1 ≤ i ≤ j . Let
λ0(Q′,Q) = 1 if Q′ = Q and λ0(Q′,Q) = 0 otherwise.

Then we have a telescoping product

M(Q)d =
d∏

j=1

∑
q∈Q λj−1(q,Q)M(q)d

∑
q∈Q λj(q,Q)M(q)d ×

∑

q∈Q
λd(q,Q)M(q)d .

For 1 ≤ j ≤ d the j ’th multiplicand Sj satisfies
∑

Q :Rj (Q)=Rj
Sj(Q) = 1

by construction, and the last term is at most K
∑

Q M(Q)d by
hypothesis.



Duality

Factorisation and Brascamp–Lieb

It seems challenging to find factorisations yielding the sharp constants
in Brascamp–Lieb inequalities (given by evaluation on gaussians).

However for the problem of boundedness of the multilinear form, we
can give an algorithm for the factorisation.

Suppose that Bj : Rn → Rnj are linear surjections for 1 ≤ j ≤ d .
Brascamp–Lieb inequalities take the form

∫

Rn

d∏

j=1

fj(Bjx)pj dx ≤ BL(Bj ,pj)

(∫
f1

)p1

· · ·
(∫

fd

)pd

.

Let V be the lattice of vector subspaces of Rn generated by the
subspaces ker Bj . Then (BCCT) BL(Bj ,pj) is finite if and only if∑d

j=1 pjnj = n, and for all V ∈ V we have

dim V ≤
d∑

j=1

pj dim BjV .



Duality

Factorisation and Brascamp–Lieb, cont’d

The proof of this result is functorial: for given {Bj} let the
Brascamp–Lieb polyhedron be those (p1, . . . ,pd) satisfying the scaling
condition

∑d
j=1 pjnj = n and all the (necessary) conditions

dim V ≤
d∑

j=1

pj dim BjV .

Then either (p1, . . . ,pd) is in the “interior” of the polytope – in which
case interpolation techniques apply – or it is an extreme point, in which
case there is some proper critical subspace V ∈ V such that
dim V =

∑d
j=1 pj dim BjV . In this case the problem decomposes

(“factorises”) into two B–L subproblems over V and the quotient space
Rn/V respectively. When this process stops we invoke a trivial identity.

Factorisation works perfectly with respect to interpolation (simply take
log-convex combinations of “endpoint” factorisations) and with respect
to decomposition over critical subspaces. The trivial identity
corresponds to the trivial factorisation.



kj -plane Multilinear Kakeya

Multilinear Kakeya again

Recall Guth’s endpoint multilinear Kakeya theorem:

Theorem (Bourgain–Guth variant)

Suppose that Tj , 1 ≤ j ≤ d are finite families of 1-tubes in Rd . Then for
a certain Cd > 1 we have

∫

Rd


∑

T1∈T1

χT1(x) · · ·
∑

Td∈Td

χTd (x)e(T1) ∧ · · · ∧ e(Td)




1
d−1

dx

≤ Cd

d∏

j=1

(#Tj)
1

d−1

What happens if we replace d families of 1-tubes by d families of
1-neighbourhoods of kj -planes where

∑d
j=1 kj = n? (We will be

working on Rn and d will be the degree of multilinearity.)



kj -plane Multilinear Kakeya

Multilinear duality paradigm in Guth’s result

Following the multilinear duality paradigm, Guth’s theorem follows
immediately from the following factorisation property:

For all nonnegative functions M defined on the lattice of unit cubes Q
in Rd , for all finite families of 1-tubes Tj , there exist Sj : Q× Tj → R+

such that for each cube Q and each Tj ∈ Tj with Tj ∩Q 6= ∅ we have

M(Q) ≤ Cd (S1(Q,T1) . . .Sd(Q,Td))
1/d |e(T1) ∧ · · · ∧ e(Td)|−1/d ,

and such that for all j , for all Tj ∈ Tj ,

∑

Q :Q∩Tj 6=∅
Sj(Q,Tj) ≤ Cd


∑

Q∈Q
M(Q)d




1/d

.



kj -plane Multilinear Kakeya

Defining the Sj ’s – directional surface area

Given a hypersurface Z we define the directional surface area of Z in
the direction e ∈ Sd−1 as

surfe(Z ) =

∫

Z
|e · n(x)|dS(x).

Given M defined on Q, we take Guth’s polynomial hypersurface Zp

deg p .
(∑

Q

M(Q)d

)1/d

and, for all Q,
Vol(K (Zp ∩Q))−1/d ≥ CM(Q),

and we define Sj : Q× Tj → R+ by

Sj(Q,T ) = surfe(T )(Zp ∩Q).

(A small lie – for technical reasons which we shall supress that
everything needs to be scaled up by a catalytic parameter...)



kj -plane Multilinear Kakeya

Convex geometry

Some easy convex geometry (under the mild “catalytic” assumption):

Definition chasing shows that for any hypersurface Z , and any 1-tubes
Tj , the convex set K (Z ∩Q) contains each of the vectors

e(Tj)

surfe(Tj )(Z ∩Q)

and hence the parallepiped spanned by them.

Therefore we have that for any 1-tubes Tj with Tj ∩Q 6= ∅,

Vol(K (Zp ∩Q)) & |e(T1) ∧ · · · ∧ e(Td)|
S1(Q,T1) . . .Sd(Q,Td)

,

which, together with Vol(K (Zp ∩Q))−1/d ≥ CM(Q) gives

M(Q) . (S1(Q,T1) . . .Sd(Q,Td))
1/d |e(T1) ∧ · · · ∧ e(Td)|−1/d

upon rearrangement.

There are two surpises to come a bit later in this context...



kj -plane Multilinear Kakeya

The degree estimate

We have that for any tube T ,
∑

Q :Q∩T 6=∅
surfe(T )(Zp ∩Q) ∼

∫

Zp∩T
|e(T ) · n(x)|dS(x)

=

∫

Bd−1
#(Zp ∩ `y ) dy . deg p

where the `y are lines parallel to e(T ) foliating T , since, for almost
every y we have #(Zp ∩ `y ) ≤ deg p.

Hence for all j , for all Tj ∈ Tj ,

∑

Q :Q∩Tj 6=∅
Sj(Q,Tj) ≤ Cd


∑

Q∈Q
M(Q)d




1/d

.

Note here the complementarity of the dimensions involved: tubes are
1-neighbouroods of lines – which are 1-dimensional; a hypersurface is
(d − 1)-dimensional and 1 + (d − 1) = d .



kj -plane Multilinear Kakeya

Zhang’s kj-plane multilinear Kakeya theorem

Let Tj (for 1 ≤ j ≤ d) be families of 1-neighbourhoods of kj -planes such
that

∑d
j=1 kj = n.

Theorem (Ruixiang Zhang, 2016)

∫

Rn


∑

T1∈T1

χT1(x) · · ·
∑

Td∈Td

χTd (x)E(T1) ∧ · · · ∧ E(Td)




1
d−1

dx

≤ Cd ,n

d∏

j=1

(#Tj)
1

d−1

[(BCT): when q > 1/(d − 1) in the transversal case, via heat-flow.]

The index 1/(d − 1) in the context of a d-linear inequality strongly
suggests factorisation of and a focus on functions in Ld(Rn), (cf.
Combinatorial Loomis–Whitney,) not Ln(Rn) which is the setting for
Guth’s visibility theorem.



kj -plane Multilinear Kakeya

Factorisation for kj-plane multilinear Kakeya

We need: For all functions G defined on the lattice of unit cubes Q in
Rn, there exist S1(Q,T1), . . . ,Sd(Q,Td) for Tj ∈ Tj such that for each
cube Q and each Tj ∈ Tj with Tj ∩Q 6= ∅; and for all j ,all Tj we have

G(Q) ≤ Cd (S1(Q,T1) . . .Sd(Q,Td))
1/d |T1 ∧ · · · ∧ Td |−1/d ;

∑

Q :Q∩Tj 6=∅
Sj(Q,Tj) ≤ Cd

(∑

Q

G(Q)d

)kj/n

.

Change of notation: M(Q)n := G(Q)d : need for for all M, Q, Tj ∈ Tj
there exist Sj(Q,Tj) such that for all Tj ∈ Tj such that Tj ∩Q 6= ∅,

M(Q) ≤ Cn (S1(Q,T1) . . .Sd(Q,Td))
1/n |T1 ∧ · · · ∧ Td |−1/n

and, for all j , for all Tj ∈ Tj ,

∑

Q:Q∩Tj 6=∅
Sj(Q,Tj) .

(∑

Q

M(Q)n

)kj/n

.



kj -plane Multilinear Kakeya

What are the Sj ’s? – I

When kj = 1 for all j we have seen that a good choice is

Sj(Q,T ) =

∫

Z∩Q
|e(T ) · n(x)|dS(x) =

∫

Z∩Q
|e(T )⊥ ∧ n(x)|dS(x)

where Z is Guth’s hypersurface obtained from the polynomial method.

Analogues of these Sj for the general case are not so clear...

Dimensional considerations lead us to expect that now we are working
with kj -planes rather than lines, Sj should have something to do with
the (n − kj)-dimensional (directional) surface areas of an algebraic
variety of codimension kj .

Even if we are fortunate enough to be working in the case of equal
kj = k , with kd = n, there is no natural k(d − 1)-dimensional algebraic
variety lurking – Guth’s hypersurface is squarely of dimension n − 1
and so looks to be useless. If the kj ’s are different, matters look even
more hopeless.



kj -plane Multilinear Kakeya

What are the Sj ’s? – II

Zhang introduces quantities Sj which seem to have no direct
relationship with kj -dimensional surface area.

Indeed there are no algebraic surfaces of lower dimension featuring
explicitly, and instead he works, somewhat against intuition, once
again with the Guth polynomial hypersurface Z associated to the
function M which we are aiming to factorise.

For Tj a 1-neighbourhood of a kj -plane, Zhang defines

Sj(Q,Tj) :=

∫

Z∩Q
· · ·
∫

Z∩Q
|E(Tj)

⊥∧n(x1)∧· · ·∧n(xkj )|dS(x1) . . . dS(xkj ).

A quick dimension count shows that this makes sense, and it agrees
with directional surface area when kj = 1.

Once this definition has been made it is not so hard to establish the
desired estimates leading to the factorisation and thus the kj -plane
multilinear Kakeya theorem. Indeed...



kj -plane Multilinear Kakeya

Bézout’s theorem

In fact, for any 1-neighbourhood T of any kj -plane H we have
∑

Q :Q∩T 6=∅
Sj(Q,T )

=
∑

Q :Q∩T 6=∅

∫

Zp∩T
· · ·
∫

Zp∩T
|E(T )⊥∧n(x1)∧· · ·∧n(xkj )|dS(x1) . . . dS(xkj )

≈
∫

Bn
· · ·
∫

Bn
#{H ∩ (Zp − v1) ∩ · · · ∩ (Zp − vkj )}dv1 . . . dvkj

. (deg p)kj .
(∑

Q

M(Q)n

)kj/n

by first doing some integral calculus, and then applying Bézout’s
theorem, and finally the estimate on deg p from Guth’s theorem.

Note that, magically, the hypotheses of Bézout’s theorem verify
themselves automatically!



kj -plane Multilinear Kakeya

Convex geometry again

The other condition we need is that for all Tj ∈ Tj with Tj ∩Q 6= ∅,

M(Q) ≤ Cn (S1(Q,T1) . . .Sd(Q,Td))
1/n |E(T1) ∧ · · · ∧ E(Td)|−1/n.

We have M(Q) . Vol(K (Zp ∩Q))−1/n by Guth’s theorem, so we need

Vol(K (Zp ∩Q)) & |T1 ∧ · · · ∧ Td |
S1(Q,T1) . . .Sd(Q,Td)

for all T1, . . . ,Td with Tj ∩Q 6= ∅ in order to complete the argument.

We can establish this by doing some (slightly more complicated)
convex geometry as before (modulo a cataytic assumption).

A surprise: this is also a direct consequence (with a little convex
geometry) of the affine-invariant generalised L–W inequality
∫

Rn

d∏

j=1

fj(Pjx)
1

d−1 dx ≤ (E(T1) ∧ · · · ∧ E(Td))
−1

d−1

(∫
f1

) 1
d−1

· · ·
(∫

fd

) 1
d−1

where Pj is projection with kernel parallel to Tj .



kj -plane Multilinear Kakeya

Multilinear Kakeya–Brascamp–Lieb inequalities

Summarising, Guth’s visibility theorem plus generalised affine-invariant
Loomis–Whitney implies multilinear kj -plane Kakeya!

Likewise, if we have Brascamp–Lieb inequalities with fixed indices p
for a family of linear surjections B ∈ B with uniform bounds

sup
B∈B

BL(B,p) ≤ A,

the same argument gives a multilinear Kakeya type Brascamp–Lieb
inequality, where the various Bj are allowed come from any of the
corresponding components of members of the family B.

So, with the benefit of hindsight, Guth’s theorem can be viewed as a
universal machine or a black box which takes any uniform family of
Brascamp–Lieb inequalities on Rn as input, and churns out multilinear
Kakeya–Brascamp–Lieb inequalities as output.

Everything applies to kj -dimensional algebraic varieties too...



Discrete Analogues

Multijoints

This is a counterpart of the multilinear Kakeya scenario where we
replace 1-neighbourhoods of lines by lines.

We have a d-dimensional vector space Fd over a field F, and families
L1, . . . ,Ld , each Lj each consisting of finitely many lines Lj . A
multijoint is a point x ∈ Fd such that for each j there is an Lj ∈ Lj such
that x ∈ Lj for all j and such that the directions e(L1), . . . ,e(Ld) span
Fd . The multiplicity N(x) of the multijoint x is given by

#{(L1, . . . ,Ld) ∈ L1 × · · · × Ld : ((L1, . . . ,Ld) forms a multijoint at x}
and is denoted by N(x).

In direct analogy with the multilinear Kakeya problem in Rd we can ask
whether we have

∑

x∈Fd

N(x)1/(d−1) . (#L1)
1/(d−1) . . . (#Ld)

1/(d−1) .

Note that we allow “repeats” in Lj and #Lj counts according to
multiplicities.



Discrete Analogues

Joints vs. multijoints

∑

x∈Fd

N(x)1/(d−1) . (#L1)
1/(d−1) . . . (#Ld)

1/(d−1) .

Specialising to Lj = L for all j we get the better-known joints problem
with multiplicities; at this level the problems are equivalent. On the
other hand, partial progress on one problem does not necessarily imply
partial progress on the other. Originally posed by Sharir et al for simple
counting of joints (rather than multijoints) in Rd without multiplicities.

Simple joint counting: Sharir & coauthors; Bennett–C–Tao;
Guth–Katz (R3); Quildodrán and Kaplan, Sharir & Shustin (Rd );
eventually all Fd

Joints with multiplicities: Iliopoulou (R3); Hablicsek (Fd under a
generic hypothesis)
Simple multijoints (without multiplicities): Iliopoulou (Rd and F3),
(also C& Valdimarsson for a weak result in Fd )
Multijoints with multiplicities: Iliopoulou (R3)



Discrete Analogues

Recent results

Theorem (Ruixiang Zhang, 2016)
The joints and multijoints problems (with multiplicities) have an
affirmative solution over arbitrary fields.

There is the question of replacing lines by algebraic curves:

Theorem (AC & M. Iliopoulou, Work in progress, 2017)
An affirmative solution with polynomial or algebraic curves.

Lines kj -planes? Rd , Yes, Yang (2016) with extra ε powers.

Theorem (AC & M. Iliopoulou, Work in progress, 2017)
If kj = 1 for 1 ≤ j ≤ d − 1 and kd = k, (k + d − 1 = n), and if #Lj = L
for 1 ≤ j ≤ d − 1, then

#J .
d∏

j=1

(
#Lj

)1/(d−1)
.



Discrete Analogues

Techniques and challenges?

Yang uses polynomial partitioning.

In other cases the first challenge is to find suitable analogues of the
continuous quantities Sj(Q,T ). Zhang has done this when all the
kj = 1 by using local Taylor expansions with respect to special axes at
every multijoint which are aligned to the directions of lines forming the
multijoint.

Less clear in general – do we work with a single polynomial or a -tuple
of polynomials?

The next challenge is to find ways of applying Bézout’s theorem, in
particular of veryfing its hypothesis – recall that in the continuous case
this happened automatically as Zhang was working with averages...
not at all clear how to bring this in in the discrete setting.

Challenges outside the discrete setting...? Non-linear Brascamp–Lieb
outside the algebraic setting...?




